1
|
Kumar N, Rana M, Geiwitz M, Khan NI, Catalano M, Ortiz-Marquez JC, Kitadai H, Weber A, Dweik B, Ling X, van Opijnen T, Argun AA, Burch KS. Rapid, Multianalyte Detection of Opioid Metabolites in Wastewater. ACS NANO 2022; 16:3704-3714. [PMID: 35201755 PMCID: PMC9949512 DOI: 10.1021/acsnano.1c07094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
By monitoring opioid metabolites, wastewater-based epidemiology (WBE) could be an excellent tool for real-time information on the consumption of illicit drugs. A key limitation of WBE is the reliance on costly laboratory-based techniques that require substantial infrastructure and trained personnel, resulting in long turnaround times. Here, we present an aptamer-based graphene field effect transistor (AptG-FET) platform for simultaneous detection of three different opioid metabolites. This platform provides a reliable, rapid, and inexpensive method for quantitative analysis of opioid metabolites in wastewater. The platform delivers a limit of detection 2-3 orders of magnitude lower than previous reports, but in line with the concentration range (pg/mL to ng/mL) of these opioid metabolites present in real samples. To enable multianalyte detection, we developed a facile, reproducible, and high-yield fabrication process producing 20 G-FETs with integrated side gate platinum (Pt) electrodes on a single chip. Our devices achieved the selective multianalyte detection of three different metabolites: noroxycodone (NX), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), and norfentanyl (NF) in wastewater diluted 20× in buffer.
Collapse
Affiliation(s)
- Narendra Kumar
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muhit Rana
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Michael Geiwitz
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Matthew Catalano
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Juan C Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hikari Kitadai
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Andrew Weber
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Badawi Dweik
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Avni A Argun
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Lei X, Xu X, Liu L, Kuang H, Xu L, Hao C, Xu C. Rapid quantitative determination of fentanyl in human urine and serum using a gold-based immunochromatographic strip sensor. J Mater Chem B 2021; 8:8573-8584. [PMID: 32814936 DOI: 10.1039/d0tb01509a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fentanyl is a typical opioid that is used in surgical anesthesia. However, when abused, fentanyl can lead to addiction and even death. To better control the use of fentanyl, it is necessary to develop rapid and sensitive detection methods. In this study, an ultrasensitive monoclonal antibody (mAb) was prepared and used to develop an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and a colloidal gold-based immunochromatographic strip (CG-ICS) for the analysis of fentanyl in urine and serum. Under optimum conditions, the anti-fentanyl mAb belonging to the subtype of IgG2b showed a half-maximal inhibitory concentration (IC50) of 0.11 ng mL-1 and a linear range of detection of 0.020-0.50 ng mL-1. Fenanyl-spiked original urine and serum diluted eight times were used for the analysis of fentanyl by ic-ELISA and CG-ICS. IC50 from the standard curves was 0.46 ng mL-1 for urine and 2.6 ng mL-1 for serum in ic-ELISA and 1.6 ng mL-1 for urine and 6.27 ng mL-1 for serum in CG-ICS. The recovery test revealed that the ic-ELISA and CG-ICS, with a recovery rate of 87.0-108.4% and a coefficient of variation of 3.3-10.9%, were the same reliable tools as the liquid chromatography tandem mass spectrometry for fentanyl analysis in real samples.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
3
|
Wang CH, Terracciano AC, Masunov AE, Xu M, Vasu SS. Accurate prediction of terahertz spectra of molecular crystals of fentanyl and its analogs. Sci Rep 2021; 11:4062. [PMID: 33603077 PMCID: PMC7892882 DOI: 10.1038/s41598-021-83536-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/04/2021] [Indexed: 11/09/2022] Open
Abstract
Fentanyl is a potent synthetic opioid pain reliever with a high bioavailability that can be used as prescription anesthetic. Rapid identification via non-contact methods of both known and emerging opioid substances in the fentanyl family help identify the substances and enable rapid medical attention. We apply PBEh-3c method to identify vibrational normal modes from 0.01 to 3 THz in solid fentanyl and its selected analogs. The molecular structure of each fentanyl analog and unique arrangement of H-bonds and dispersion interactions significantly change crystal packing and is subsequently reflected in the THz spectrum. Further, the study of THz spectra of a series of stereoisomers shows that small changes in molecular structure results in distinct crystal packing and significantly alters THz spectra as well. We discuss spectral features of synthetic opioids with higher potency than conventional fentanyl such as ohmefentanyl and sufentanil and discover the pattern of THz spectra of fentanyl analogs.
Collapse
Affiliation(s)
- Chun-Hung Wang
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL, 32826, USA
| | - Anthony C Terracciano
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA.,Center for Advanced Turbomachinery and Energy Research, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA
| | - Artёm E Masunov
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL, 32826, USA. .,South Ural State University, Lenin Pr. 76, Chelyabinsk, Russia, 454080. .,National Research Nuclear University MEPhI, Kashirskoye Shosse 31, Moscow, Russia, 115409.
| | - Mengyu Xu
- Center for Advanced Turbomachinery and Energy Research, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA.,Department of Statistics and Data Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA
| | - Subith S Vasu
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA.,Center for Advanced Turbomachinery and Energy Research, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA
| |
Collapse
|
4
|
Angi C, Lurie IS, Marginean I. Analysis of fentanyl derivatives by ultra high performance liquid chromatography with diode array ultraviolet and single quadrupole mass spectrometric detection. J Sep Sci 2019; 42:1686-1694. [DOI: 10.1002/jssc.201801098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Carolyn Angi
- George Washington University Department of Forensic Sciences NW Washington, DC USA
| | - Ira S. Lurie
- George Washington University Department of Forensic Sciences NW Washington, DC USA
| | - Ioan Marginean
- George Washington University Department of Forensic Sciences NW Washington, DC USA
| |
Collapse
|
5
|
Wang YK, Wang YC, Wang HA, Ji WH, Sun JH, Yan YX. An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.11.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Abstract
Opioid analgesic misuse has risen significantly over the past two decades, and these drugs now represent the most commonly abused class of prescription medications. They are a major cause of poisoning deaths in the USA exceeding heroin and cocaine. Laboratory testing plays a role in the detection of opioid misuse and the evaluation of patients with opioid intoxication. Laboratories use both immunoassay and chromatographic methods (e.g., liquid chromatography with mass spectrometry detection), often in combination, to yield high detection sensitivity and drug specificity. Testing methods for opioids originated in the workplace-testing arena and focused on detection of illicit heroin use. Analysis for a wide range of opioids is now required in the context of the prescription opioid epidemic. Testing methods have also been primarily based upon urine screening; however, methods for analyzing alternative samples such as saliva, sweat, and hair are available. Application of testing to monitor prescription opioid drug therapy is an increasingly important use of drug testing, and this area of testing introduces new interpretative challenges. In particular, drug metabolism may transform one clinically available opioid into another. The sensitivity of testing methods also varies considerably across the spectrum of opioid drugs. An understanding of opioid metabolism and method sensitivity towards different opioid drugs is therefore essential to effective use of these tests. Improved testing algorithms and more research into the effective use of drug testing in the clinical setting, particularly in pain medicine and substance abuse, are needed.
Collapse
|
7
|
Peterson JR, Lu Y, Luais E, Lee NA, Gooding JJ. Demonstrating the Use of Bisphenol A-functionalised Gold Nanoparticles in Immunoassays. Aust J Chem 2013. [DOI: 10.1071/ch13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spherical gold nanoparticles (5-nm diameter) were modified with a small-molecule thiolated bisphenol A (BPA) ligand to achieve an estimated coverage of ~3.3 × 10–10 mol cm–2, or 180 ligands per particle. The modified particles were tested in an enzyme-linked immunosorbent assay (ELISA) format to measure functionality and were shown to bind specifically to anti-BPA antibody while resisting the non-specific adsorption of an antibody with no affinity for BPA. It was found that the use of 10 % ethanol as a co-solvent was required in the ELISA as aqueous buffers alone resulted in poor binding between anti-BPA antibody and the functionalised nanoparticles. This is likely due to the hydrophobic nature of the BPA ligand limiting its solubility, and therefore its availability for antibody interactions, in purely aqueous environments. To our knowledge, this is the first example of a nanoparticle modified with a small organic molecule being used in an ELISA assay.
Collapse
|
8
|
Snyder ML, Jarolim P, Melanson SE. A new automated urine fentanyl immunoassay: Technical performance and clinical utility for monitoring fentanyl compliance. Clin Chim Acta 2011; 412:946-51. [DOI: 10.1016/j.cca.2011.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/10/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
|
9
|
Abstract
Urine toxicology screening testing is an important standard of care in the addiction and pain treatment setting, offering a reproducible, unbiased, and accurate laboratory test to monitor patients and provide objective support for clinical observations. It has been shown that physicians do not have proficiency in the ordering or interpretation of these tests. This article is an attempt to respond to that need. Current antibody-based enzymatic immunoassays (EIAs) used for urine toxicology screening are useful to detect classes of drugs (ex., opiate) but cannot determine which specific drug (ex., morphine) is present. Gas chromatography and mass spectroscopy can determine exactly which drugs are present, allowing prescribed (or illicit) opiates and benzodiazepines to be identified. This article will discuss principles and details of opiate and benzodiazepine EIA and gas chromatography and mass spectroscopy urine toxicology testing. The approach to detecting patients attributing positive opiate EIAs to prescription opiates who are using heroin or other opioids will be reviewed. Cases of controlled prescription drugs that do not produce the expected positive urine tests (ex., oxycodone producing negative opiate screening tests) will be discussed. How to differentiate codeine from heroin and the role of poppy seeds in toxicology will be examined. The case of an anti-depressant drug that produces false-positive benzodiazepine results and antibiotics that cause positive opiate urine toxicology results will be reviewed. Common benzodiazepines (ex., clonazepam and lorazepam) that do not reliably produce positive benzodiazepine EIAs will be discussed. The approach to detection and management of all these types of toxicology cases will be reviewed, and it is hoped that the analyses presented will impart an adequate information base to medical providers and staff members of drug treatment and pain centers, enabling them to order and interpret these tests in the clinic more effectively as an integrated part of whole patient care.
Collapse
Affiliation(s)
- Peter L Tenore
- Wellness Center atWaters Place, 1510Waters Place, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Magnetic solids in analytical chemistry: A review. Anal Chim Acta 2010; 674:157-65. [DOI: 10.1016/j.aca.2010.06.043] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 12/21/2022]
|
11
|
Simultaneous screening and quantification of 25 opioid drugs in post-mortem blood and urine by liquid chromatography–tandem mass spectrometry. Forensic Sci Int 2009; 186:36-43. [DOI: 10.1016/j.forsciint.2009.01.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 12/30/2008] [Accepted: 01/14/2009] [Indexed: 11/22/2022]
|
12
|
Zhang S, Li X, Zhang F. CE-based simultaneous liquid-phase noncompetitive enzyme immunoassay for three tumor markers in human serum using electrochemical detection. Electrophoresis 2007; 28:4427-34. [DOI: 10.1002/elps.200700026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|