1
|
Ovbude ST, Sharmeen S, Kyei I, Olupathage H, Jones J, Bell RJ, Powers R, Hage DS. Applications of chromatographic methods in metabolomics: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124124. [PMID: 38640794 DOI: 10.1016/j.jchromb.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.
Collapse
Affiliation(s)
- Susan T Ovbude
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Harshana Olupathage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Richard J Bell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
2
|
Zhu F, Zhang H, Wu R, Lu Y, Wang J, A R, G TS, Zhu N, Zhang Z, Tang J. A dual-signal aptasensor based on cascade amplification for ultrasensitive detection of aflatoxin B1. Biosens Bioelectron 2024; 250:116057. [PMID: 38286091 DOI: 10.1016/j.bios.2024.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Aflatoxin B1 (AFB1) is considered as a serious carcinogenic mycotoxin that was widely detected in grains and foods, and its sensitive analysis is of key importance to avoid the health threats for consumers. In this study, a dual-signal aptasensor based on cascade of entropy-driven strand displacement reaction (ESDR) and linear rolling circle amplification (LRCA) was fabricated for ultrasensitive determination of AFB1. At the sensing system, the complementary strand would be released after the aptamer combined with AFB1, which will bring about the functional domains exposed, triggering the subsequent ESDR. Meanwhile, the two strands that were outputted by ESDR would incur the downstream LRCA reaction to produce a pair of long strands to assist in the generation of fluorescence and absorbance signals. Under the optimized conditions, the proposed aptasensor could achieve excellent sensitivity (limit of detection, 0.427 pg/mL) with satisfactory accuracy (recoveries, 92.8-107.9 %; RSD, 2.4-5.0 %), mainly ascribed to the cascade amplification. Importantly, owing to the flexibility design of nucleic acid primer, this analytical method can be applied in monitoring various hazardous substances according to the specific requirements. Our strategy provides some novel insights at signal amplification for rapid detection of AFB1 and other targets.
Collapse
Affiliation(s)
- Fang Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hu Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ruoxi Wu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yanyan Lu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jin Wang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ravikumar A
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tamil Selvan G
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Nuanfei Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310015, China.
| |
Collapse
|
3
|
Sameiyan E, Lavaee P, Ramezani M, Alibolandi M, Khoshbin Z, Abnous K, Taghdisi SM. A novel electrochemical method for the sensitive determination of aflatoxin B1 using a bivalent binding aptamer‐cDNA structure. ELECTROANAL 2022. [DOI: 10.1002/elan.202200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elham Sameiyan
- Mashhad University of Medical Sciences IRAN (THE ISLAMIC REPUBLIC OF)
| | | | | | - Mona Alibolandi
- Mashhad University of Medical Sciences IRAN (THE ISLAMIC REPUBLIC OF)
| | - Zahra Khoshbin
- Mashhad University of Medical Sciences IRAN (THE ISLAMIC REPUBLIC OF)
| | - Khalil Abnous
- mashhad university of medical science IRAN (THE ISLAMIC REPUBLIC OF)
| | | |
Collapse
|
4
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
5
|
Cheraghi Shahi S, Dadmehr M, Korouzhdehi B, Tavassoli A. A novel colorimetric biosensor for sensitive detection of aflatoxin mediated by bacterial enzymatic reaction in saffron samples. NANOTECHNOLOGY 2021; 32:505503. [PMID: 34488207 DOI: 10.1088/1361-6528/ac23f7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/06/2021] [Indexed: 05/28/2023]
Abstract
Aflatoxin is regarded as the potent carcinogenic agent which is secreted from fungi and present in some food products. So far, many detection methods have been developed to determine the trace amounts of aflatoxin in foods. In the present study a colorimetric competitive assay for detection of aflatoxin B1 (AFB1) has been developed based on interaction of gelatin functionalized gold nanoparticles (AuNPs@gelatin) in specific enzymatic reaction. Bacterial supernatant containing gelatinase enzyme were used as the substrate that could digest the coated gelatin on the surface of AuNPs and following in the presence of NaCl medium ingredient resulted to color change of AuNPs colloidal solution from red to purple. It was observed that with addition of aflatoxin to the bacterial supernatant, aflatoxin could interfere in aggregation of AuNPs and inhibited the process which subsequently prevent the expected color change induced by AuNPs aggregation. The supernatant containing AuNPs were investigated to analyze their induced surface plasmon resonance spectra through UV-visible spectroscopy. The absorption values were directly proportional with the applied AFB1 concentration. The experiment conditions including incubation time, AuNPs concentration and pH were investigated. The obtained results showed that through this approach we could detect the AFB1 in a linear range from 10 to 140 pg ml-1, with detection limit of 4 pg ml-1. Real sample assay in saffron samples showed recoveries percentage of 92.4%-95.3%. The applied approach proposed simple, cost effective and specific method for detection of AFB1 toxin in food samples.
Collapse
Affiliation(s)
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Behnaz Korouzhdehi
- Department of Biotechnology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
6
|
Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, Pekarek A, Walters M, Lott S, Hage DS. Affinity chromatography: A review of trends and developments over the past 50 years. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122332. [PMID: 32871378 PMCID: PMC7584770 DOI: 10.1016/j.jchromb.2020.122332] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
The field of affinity chromatography, which employs a biologically-related agent as the stationary phase, has seen significant growth since the modern era of this method began in 1968. This review examines the major developments and trends that have occurred in this technique over the past five decades. The basic principles and history of this area are first discussed. This is followed by an overview of the various supports, immobilization strategies, and types of binding agents that have been used in this field. The general types of applications and fields of use that have appeared for affinity chromatography are also considered. A survey of the literature is used to identify major trends in these topics and important areas of use for affinity chromatography in the separation, analysis, or characterization of chemicals and biochemicals.
Collapse
Affiliation(s)
| | - Saumen Poddar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ashley G Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Allegra Pekarek
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Morgan Walters
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Shae Lott
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
7
|
Saini SS, Abdel‐Rehim M. Integrated extraction approach for trace analysis of aflatoxin B1 in domestic water tanks using HPLC. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shivender Singh Saini
- Department of Chemistry and Chemical SciencesCentral University of Himachal Pradesh Shahpur Kangra Himachal Pradesh India
| | - Mohamed Abdel‐Rehim
- Department of Clinical NeuroscienceCentre for Psychiatric ResearchKarolinska HospitalKarolinska Institutet S‐171 76 Stockholm Sweden
| |
Collapse
|
8
|
Lin B, Kannan P, Qiu B, Lin Z, Guo L. On-spot surface enhanced Raman scattering detection of Aflatoxin B 1 in peanut extracts using gold nanobipyramids evenly trapped into the AAO nanoholes. Food Chem 2019; 307:125528. [PMID: 31648181 DOI: 10.1016/j.foodchem.2019.125528] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/15/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023]
Abstract
Simple, rapid, convenient, and economical surface enhanced Raman scattering (SERS) substrate is developed for on-site evaluation of Aflatoxin B1 (AFB1) in food matrix using handheld Raman Spectrometer. Self-assembly of gold nanobipyramids (Au NBPs) into the nanoholes of anodic aluminum oxide (AAO) template/pattern using 'drop-dry' approach provides a reliable pathway for the rapid fabrication of highly active and uniform SERS substrate. It shows enhanced and reproducible SERS signals towards the probe molecule, 4-aminothiophenol (4-ATP) with a relative standard deviation (RSD) of less than 10% and an average enhancement factor (EF) of 1 × 108. For practical application, the proposed method is demonstrated for the detection of aflatoxin B1 (AFB1) in peanut extracts. The results show that the AFB1 in peanut extracts can be identified within 1 min, with a limit of detection of 0.5 μg/L. Compared with conventional ELISA based AFB1 analysis, our method is much more efficient (1 min versus >30 min).
Collapse
Affiliation(s)
- Bingyong Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Bin Qiu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Longhua Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| |
Collapse
|
9
|
Peng G, Li X, Cui F, Qiu Q, Chen X, Huang H. Aflatoxin B1 Electrochemical Aptasensor Based on Tetrahedral DNA Nanostructures Functionalized Three Dimensionally Ordered Macroporous MoS 2-AuNPs Film. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17551-17559. [PMID: 29733573 DOI: 10.1021/acsami.8b01693] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In food safety evaluation, aflatoxin B1 (AFB1) is an important indicator. In this work, we developed an AFB1 electrochemical aptasensor based on a tetrahedral DNA nanostructures (TDNs) immobilized three dimensionally ordered macroporous MoS2-AuNPs hybrid (3DOM MoS2-AuNPs) recognition interface and horseradish peroxidase (HRP) functionalized magnetic signal amplifier. To greatly enhance the recognition efficiency, sensitivity, and stability of the aptasensor, the AFB1 aptamer-incorporated TDNs were ingeniously combined with the 3DOM MoS2-AuNPs film for the construction of the sensing interface. The aptamers would release from the electrode surface after they reacted with AFB1, and then the hybridization-free TDNs formed. Thus, the biocomposite of DNA helper strands (H1)/HRP functionalized AuNPs-SiO2@Fe3O4 nanospheres would combine with the hybridization-free TDNs due to the hybridization of H1 and TDNs. The more AFB1 existed in the solution, the more H1/HRP-AuNPs-SiO2@Fe3O4 could be combined onto the 3DOM MoS2-AuNPs surface. The current response coming from HRP-catalyzed reduction of H2O2 using thionine (Thi) as electrochemical probe was proportional with the AFB1 concentration. Upon optimal conditions, the aptasensor showed specificity for AFB1, achieving a good linear range of 0.1 fg/mL-0.1 μg/mL and the detection limit of 0.01 fg/mL. Furthermore, the developed aptasensor was also applied for detecting AFB1 content in rice and wheat powder samples, obtaining good results in conformity with those achieved from the high-performance liquid chromatography tandem mass spectrometry (HPLC-MS) method.
Collapse
|
10
|
Bonichon M, Combès A, Desoubries C, Bossée A, Pichon V. Development of immunosorbents coupled on-line to immobilized pepsin reactor and micro liquid chromatography–tandem mass spectrometry for analysis of butyrylcholinesterase in human plasma. J Chromatogr A 2017; 1526:70-81. [DOI: 10.1016/j.chroma.2017.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
11
|
Li Z, Rodriguez E, Azaria S, Pekarek A, Hage DS. Affinity monolith chromatography: A review of general principles and applications. Electrophoresis 2017; 38:2837-2850. [PMID: 28474739 PMCID: PMC5671914 DOI: 10.1002/elps.201700101] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | | | - Shiden Azaria
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Allegra Pekarek
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S. Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
12
|
Porous monoliths for on-line sample preparation: A review. Anal Chim Acta 2017; 964:24-44. [DOI: 10.1016/j.aca.2017.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
|
13
|
Zhao J, Zhu Y, Jiao Y, Ning J, Yang Y. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1, B2, G1, and G2in animal feeds by high-performance liquid chromatography with fluorescence detection. J Sep Sci 2016; 39:3789-3797. [DOI: 10.1002/jssc.201600671] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jiao Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Yunnan Province China
| | - Yan Zhu
- Central monitoring center of Kunming City; Yunnan Province China
| | - Yang Jiao
- Yunnan Jianniu Bio Technology Co., Ltd; Kunming China
| | - Jinyan Ning
- Yunnan Jianniu Bio Technology Co., Ltd; Kunming China
| | - Yaling Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Yunnan Province China
| |
Collapse
|
14
|
Khademi F, Mohammadi M, Kiani A, Haji Hosseini Baghdadabadi R, Parvaneh S, Mostafaie A. Efficient Conjugation of Aflatoxin M1 With Bovine Serum Albumin through Aflatoxin M1-(O-carboxymethyl) Oxime and Production of Anti-aflatoxin M1 Antibodies. Jundishapur J Microbiol 2015; 8:e16850. [PMID: 26034542 PMCID: PMC4449894 DOI: 10.5812/jjm.8(4)2015.16850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/27/2014] [Accepted: 07/07/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aflatoxins are the most extensively studied group of mycotoxins produced by molds, especially the Aspergillus group, which are highly toxic to animals and humans. OBJECTIVES Since immunoassay is a simple and rapid method for the analysis of many toxic substances in comparison to the chromatographic methods, it is necessary to produce specific and sensitive antibodies for detection of Aflatoxin M1 (AFM1). The current study was conducted to produce bioconjugate of Aflatoxin M1 (AFM1) with Bovine Serum Albumin (BSA) as well as to generate specific antibodies against AFM1 for immunoassay of the mycotoxin. MATERIALS AND METHODS First, AFM1 was converted to AFM1-(O-carboxymethyl) oxime derivative. Then, AFM1-oxime was coupled with BSA and the product was assessed by UV-VIS spectrophotometry. In order to generate polyclonal antibodies against AFM1, rabbits were immunized with BSA-AFM1 conjugate. Produced antibodies were purified using ion exchange chromatography and BSA-Sepharose 4B affinity chromatography. The titers and specificity of the produced antibodies were determined by Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS The results indicated that coupling of AFM1 with O-(Carboxymethyl) hydroxylamine hemihydrochloride was suitable and 12 moles of AFM1-oxime were successfully coupled to each mole of BSA. In addition, the titers and specificity of the prepared antibody were considerable compared to standard anti-AFM1 antibodies. The relative cross-reactivity of each toxin (relative to AFM1) with purified anti-AFM1 antibodies, as determined by the amount of aflatoxin necessary to cause 50% inhibition of enzyme activity, was 70, 105, 240, and 2500 ng/mL for AFB1, AFB2, AFG1, and AFG2, respectively. CONCLUSIONS The prepared antibody can be used for the development of an ELISA kit to assay AFM1 in milk and other biological fluids.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Masoud Mohammadi
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, IR Iran
| | - Amir Kiani
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | | | - Shahram Parvaneh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
- Corresponding author: Ali Mostafaie, Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, IR Iran. Tel: +98-8314279923, Fax: +98-8314276471, E-mail:
| |
Collapse
|
15
|
Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. ScientificWorldJournal 2015; 2015:510982. [PMID: 25884032 PMCID: PMC4390168 DOI: 10.1155/2015/510982] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022] Open
Abstract
Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants). In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed.
Collapse
|
16
|
Amoli-Diva M, Taherimaslak Z, Allahyari M, Pourghazi K, Manafi MH. Application of dispersive liquid–liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry. Talanta 2015; 134:98-104. [DOI: 10.1016/j.talanta.2014.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
|
17
|
Taherimaslak Z, Amoli-Diva M, Allahyari M, Pourghazi K, Manafi MH. Low density solvent based dispersive liquid–liquid microextraction followed by vortex-assisted magnetic nanoparticle based solid-phase extraction and surfactant enhanced spectrofluorimetric detection for the determination of aflatoxins in pistachio nuts. RSC Adv 2015. [DOI: 10.1039/c4ra11484a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel extraction method based on DLLME followed by VA-D-SPE was developed to determine total aflatoxins in pistachio.
Collapse
Affiliation(s)
| | - Mitra Amoli-Diva
- Department of Chemistry
- Payame Noor University (PNU)
- Tehran
- Iran
- Faculty of Chemistry
| | | | - Kamyar Pourghazi
- Faculty of Chemistry
- Kharazmi (Tarbiat Moallem) University
- Tehran
- Iran
| | | |
Collapse
|
18
|
Soy 11S Globulin Acid Subunits as the Novel Food Polymer Carrier. INT J POLYM SCI 2015. [DOI: 10.1155/2015/250146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aflatoxins were conjugated with soy 11S globulins acid subunits and the hapten-specific monoclonal antibodies (McAbs) cross-reactive with four major aflatoxins were achieved using indirect competitive ELISA screening procedure. The two antibodies (clones 1B2 and 2D3) had similar reaction efficiency with aflatoxins B1, B2, and G1 but showed a weak cross-reaction to G2. The clone 4C5 exhibited the highest sensitivity for all four aflatoxins. The concentrations of aflatoxins B1, B2, G1, and G2 at 50% inhibition for 4C5 were 1.1, 1.2, 2.1, and 17.6 pg mL−1. The results indicated that soy 11S globulin acid subunits were suitable novel carriers for aflatoxin antigen in immunization experiments and clone 4C5 could be used for simultaneous analysis of total aflatoxins.
Collapse
|
19
|
Babakhanian A, Momeneh T, Aberoomand-azar P, Kaki S, Torki M, Hossein Kiaie S, Sadeghi E, Dabirian F. A fabricated electro-spun sensor based on Lake Red C pigments doped into PAN (polyacrylonitrile) nano-fibers for electrochemical detection of Aflatoxin B1 in poultry feed and serum samples. Analyst 2015; 140:7761-7. [DOI: 10.1039/c5an01602a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work was to fabricate a novel nano-fiber modified electrode, involving Lake Red C (LRC) pigments doped into electrospun polyacrylonitrile (PAN) fibrous films.
Collapse
Affiliation(s)
- Arash Babakhanian
- Department of Chemistry
- College of Science
- Kermanshah Branch
- Islamic Azad University
- Kermanshah
| | - Tahereh Momeneh
- Department of Chemistry
- College of Science
- Kermanshah Branch
- Islamic Azad University
- Kermanshah
| | | | - Samineh Kaki
- Department of Chemistry
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Mehran Torki
- Department of Animal Science
- Faculty of Agriculture
- Razi University
- Kermanshah
- Iran
| | - Seyed Hossein Kiaie
- Department of Chemistry
- College of Science
- Kermanshah Branch
- Islamic Azad University
- Kermanshah
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Farzad Dabirian
- Department of Mechanical Engineering
- Engineering Faculty
- Razi University
- Kermanshah
- Iran
| |
Collapse
|
20
|
Fernández-Ramos C, Šatínský D, Šmídová B, Solich P. Analysis of trace organic compounds in environmental, food and biological matrices using large-volume sample injection in column-switching liquid chromatography. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Forsberg EM, Brennan JD. Bio-Solid-Phase Extraction/Tandem Mass Spectrometry for Identification of Bioactive Compounds in Mixtures. Anal Chem 2014; 86:8457-65. [DOI: 10.1021/ac5022166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erica M. Forsberg
- Biointerfaces Institute and Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - John D. Brennan
- Biointerfaces Institute and Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
22
|
Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS. Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 2013; 405:2133-45. [PMID: 23187827 PMCID: PMC3578177 DOI: 10.1007/s00216-012-6568-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis, or study of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments and applications of this method, with particular emphasis being given to work that has appeared in the last 5 years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths, and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns, and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal ions, and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized-metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations, and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing, and biotechnology. Current trends and possible directions in AMC are also discussed.
Collapse
Affiliation(s)
| | | | - Courtney M. Dupper
- Department of Chemistry University of Nebraska Lincoln, NE 68588-0304, USA
| | - David S. Hage
- Department of Chemistry University of Nebraska Lincoln, NE 68588-0304, USA
| |
Collapse
|
23
|
Shim WB, Kim K, Ofori JA, Chung YC, Chung DH. Occurrence of aflatoxins in herbal medicine distributed in South Korea. J Food Prot 2012; 75:1991-9. [PMID: 23127708 DOI: 10.4315/0362-028x.jfp-12-190] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to investigate the occurrence of aflatoxins in herbal medicines distributed in South Korea. A total of 700 herbal medicine samples (10 samples each for 70 types of herbal medicine) were analyzed by an enzyme-linked immunosorbent assay (ELISA) for aflatoxin B(1) (AFB(1)), and levels of total aflatoxins were quantified and confirmed by liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The levels of recovery of the methods were 84.30 to 102.68% (ELISA for AFB(1)) and 72.17 to 90.92% (LC-MS/MS for total aflatoxins). Fifty-eight (8.29%) of 700 samples were AFB(1) positive by ELISA, and 17 (2.43%) of them were finally confirmed as positive for total aflatoxins by LC-MS/MS. Total aflatoxin levels in the herbal medicines were from 4.51 to 108.42 μg/kg. Among the 17 samples, the AFB(1) content of 6 samples (11.95 to 73.27 μg/kg) and the total aflatoxin content of 10 (12.12 to 108.42 μg/kg) samples exceeded the legal limits set by the Korea Food and Drug Administration for AFB(1) (10 μg/kg) and by the European Commission for total aflatoxins (10 μg/kg), respectively. These results demonstrate the risk to consumers of herbal medicine contamination by aflatoxins and encourage further studies to investigate the transfer rate of mycotoxins to decoction, which is the final product for consumption.
Collapse
Affiliation(s)
- Won-Bo Shim
- Department of Nutrition, Florida State University, Tallahassee, FL 32312, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
AbstractCarcinogenic and mutagenic properties of aflatoxin species are known in literature. Their intake over a long time period might be health-dangerous for human even at trace levels. It is well known that different foodstuffs can be contaminated by aflatoxin species through growing and storage. Due to the serious health effects, sensitive determination of aflatoxin species in any matrices related with the human being is very crucial at trace levels. In literature, there are sensitive techniques to analyze the different samples for the contents of their aflatoxin species. Each technique has some advantages and disadvantages over the other techniques. This review aims to summarize the different health effects of aflatoxin species, development of analytical techniques and applications of developed techniques in a variety of matrices.
Collapse
|
25
|
Xu H, Yan Z, Song D. Development of a novel monolith frit-based solid-phase microextraction method for determination of hexanal and heptanal in human serum samples. J Sep Sci 2012; 35:713-20. [DOI: 10.1002/jssc.201100908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/12/2022]
|
26
|
Gunasena DN, El Rassi Z. Organic monoliths for hydrophilic interaction electrochromatography/chromatography and immunoaffinity chromatography. Electrophoresis 2012; 33:251-61. [PMID: 22147366 PMCID: PMC3415793 DOI: 10.1002/elps.201100523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/10/2011] [Accepted: 10/14/2011] [Indexed: 12/19/2022]
Abstract
This article is aimed at providing a review of the progress made over the past decade in the preparation of polar monoliths for hydrophilic interaction LC (HILIC)/capillary electrochromatography (HI-CEC) and in the design of immuno-monoliths for immunoaffinity chromatography that are based on some of the polar monolith precursors used in HILIC/HI-CEC. In addition, this review article discusses some of the applications of polar monoliths by HILIC and HI-CEC, and the applications of immuno-monoliths. This article is by no means an exhaustive review of the literature; it is rather a survey of the recent progress made in the field with 83 references published in the past decade on the topics of HILIC and immunoaffinity chromatography monoliths.
Collapse
Affiliation(s)
- Dilani N. Gunasena
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071
| |
Collapse
|
27
|
Wang X, Li P, Yang Y, Zhang W, Zhang Q, Fan S, Yu L, Wang L, Chen X, Li Y, Jiang J. [Determination of aflatoxins in cereals and oils by liquid chromatography-triple quadrupole tandem mass spectrometry]. Se Pu 2011; 29:517-22. [PMID: 22032163 DOI: 10.3724/sp.j.1123.2011.00517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The high performance liquid chromatography (HPLC)-triple quadrupole tandem mass spectrometry was applied for the determination of the aflatoxins: B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2), in cereals and oils. The samples were first extracted by ultrasonic method. The optimized conditions of ultrasonic extraction were as follows: temperature of 50 degrees C, extraction time of 3 min, methanol-water (containing 40 g/L NaCl) (80: 20, v/v) solution as the medium and a ratio of sample to solvent of 1 : 3 (g: mL). The extracts were then purified using an immunoaffinity column. The separation was performed on a C18 column with mobile phases of 10 mmol/L ammonium acetate and methanol in gradient elution. The sensitive detection of the four AFT compounds by electrospray ionization mass spectrometry (ESI-MS) was carried out in selected reaction monitoring (SRM) mode with aflatoxin M1 (AFM1) as the internal standard. Under the optimized conditions, the limits of detection of AFB1, AFB2, AFG1 and AFG2 were 0.002, 0.004, 0.004 and 0.012 microg/kg, respectively. The recoveries of aflatoxins in different spiked cereals and oils were in the range from 87% to 111%. The intra-day and inter-day precisions were not more than 6.7% and 5.6%, respectively. In comparison with the external standard method, this method can effectively inhibit the matrix effects, and greatly improve the accuracy.
Collapse
Affiliation(s)
- Xiupin Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sproß J, Sinz A. Monolithic media for applications in affinity chromatography. J Sep Sci 2011; 34:1958-73. [DOI: 10.1002/jssc.201100400] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022]
|
29
|
Guan D, Li P, Cui Y, Zhang Q, Zhang W. A competitive immunoassay with a surrogate calibrator curve for aflatoxin M1 in milk. Anal Chim Acta 2011; 703:64-9. [PMID: 21843676 DOI: 10.1016/j.aca.2011.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/13/2011] [Accepted: 07/06/2011] [Indexed: 11/20/2022]
Abstract
A green enzyme-linked immunosorbent assay (ELISA) to measure aflatoxin M(1) (AFM(1)) in milk was developed and validated with a surrogate calibrator curve. Polyclonal anti-idiotype (anti-Id) antibody, used as an AFM(1) surrogate, was generated by immunizing rabbits with F(ab')(2) fragments from the anti-AFM(1) monoclonal antibody (mAb). The rabbits exhibited high specificity to the anti-AFM(1) mAb, and no cross-reactivity to either of the other anti-aflatoxin mAbs or the isotype matched mAb was observed. After optimizing the physicochemical factors (pH and ionic strength) that influence assay performance, a quantitative conversion formula was developed between AFM(1) and the anti-Id antibody (y=31.91x-8.47, r=0.9997). The assay was applied to analyze AFM(1) in spiked milk samples. The IC(50) value of the surrogate calibrator curve was 2.4 μg mL(-1), and the inter-assay and intra-assay variations were less than 10.8%; recovery ranged from 85.2 to 110.9%. A reference high-performance liquid chromatography method was used to validate the developed method, and a good correlation was obtained (y=0.81x+9.82, r=0.9922).
Collapse
Affiliation(s)
- Di Guan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
30
|
Namera A, Nakamoto A, Saito T, Miyazaki S. Monolith as a new sample preparation material: Recent devices and applications. J Sep Sci 2011; 34:901-24. [DOI: 10.1002/jssc.201000795] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/12/2011] [Accepted: 01/15/2011] [Indexed: 11/07/2022]
|
31
|
Abstract
Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bioaffinity chromatography (including immunochromatography) is summarized and discussed. After giving an introduction into affinity chromatography, information on different biomolecules (antibodies, enzymes, lectins, aptamers) that can act as ligands in bioaffinity chromatography is presented. Subsequently, the history of monoliths, their advantages, preparation and formats (disks, capillaries and microchips) as well as ligand immobilization techniques are mentioned. Finally, analytical and preparative applications of bioaffinity chromatography on monoliths are presented. During the last four years 37 papers appeared. Protein A and G are still most often used as ligands for the enrichment of immunoglobulins. Antibodies and lectins remain popular for the analysis of mainly smaller molecules and saccharides, respectively. The highly porous cryogels modified with ligands are applied for the sorting of different cells or bacteria. New is the application of aptamers and phages as ligands on monoliths. Convective interaction media (epoxy CIM disks) are currently the most used format in monolithic bioaffinity chromatography.
Collapse
Affiliation(s)
- Kishore K R Tetala
- Laboratory of Organic Chemistry, Natural Products Chemistry Group, Wageningen University, Wageningen, The Netherlands.
| | | |
Collapse
|
32
|
|
33
|
|
34
|
Rahmani A, Jinap S, Soleimany F. Qualitative and Quantitative Analysis of Mycotoxins. Compr Rev Food Sci Food Saf 2009; 8:202-251. [DOI: 10.1111/j.1541-4337.2009.00079.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Shephard GS. Aflatoxin analysis at the beginning of the twenty-first century. Anal Bioanal Chem 2009; 395:1215-24. [DOI: 10.1007/s00216-009-2857-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
36
|
Reiter E, Zentek J, Razzazi E. Review on sample preparation strategies and methods used for the analysis of aflatoxins in food and feed. Mol Nutr Food Res 2009; 53:508-24. [DOI: 10.1002/mnfr.200800145] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int J Mol Sci 2009; 10:62-115. [PMID: 19333436 PMCID: PMC2662450 DOI: 10.3390/ijms10010062] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/24/2008] [Accepted: 01/01/2009] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are a group of compounds produced by various fungi and excreted into the matrices on which they grow, often food intended for human consumption or animal feed. The high toxicity and carcinogenicity of these compounds and their ability to cause various pathological conditions has led to widespread screening of foods and feeds potentially polluted with them. Maximum permissible levels in different matrices have also been established for some toxins. As these are quite low, analytical methods for determination of mycotoxins have to be both sensitive and specific. In addition, an appropriate sample preparation and pre-concentration method is needed to isolate analytes from rather complicated samples. In this article, an overview of methods for analysis and sample preparation published in the last ten years is given for the most often encountered mycotoxins in different samples, mainly in food. Special emphasis is on liquid chromatography with fluorescence and mass spectrometric detection, while in the field of sample preparation various solid-phase extraction approaches are discussed. However, an overview of other analytical and sample preparation methods less often used is also given. Finally, different matrices where mycotoxins have to be determined are discussed with the emphasis on their specific characteristics important for the analysis (human food and beverages, animal feed, biological samples, environmental samples). Various issues important for accurate qualitative and quantitative analyses are critically discussed: sampling and choice of representative sample, sample preparation and possible bias associated with it, specificity of the analytical method and critical evaluation of results.
Collapse
|
38
|
Fu Z, Huang X, Min S. Rapid determination of aflatoxins in corn and peanuts. J Chromatogr A 2008; 1209:271-4. [DOI: 10.1016/j.chroma.2008.09.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/09/2008] [Accepted: 09/12/2008] [Indexed: 11/27/2022]
|
39
|
Potter OG, Hilder EF. Porous polymer monoliths for extraction: Diverse applications and platforms. J Sep Sci 2008; 31:1881-906. [DOI: 10.1002/jssc.200800116] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|