1
|
Velez-Silva NL, Drennen JK, Anderson CA. Continuous manufacturing of pharmaceutical products: A density-insensitive near infrared method for the in-line monitoring of continuous powder streams. Int J Pharm 2024; 650:123699. [PMID: 38081558 DOI: 10.1016/j.ijpharm.2023.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Near infrared (NIR) spectroscopy is a valuable analytical technique for monitoring chemical composition of powder blends in continuous pharmaceutical processes. However, the variation in density captured by NIR during spectral collection of dynamic powder streams at different flow rates often reduces the performance and robustness of NIR models. To overcome this challenge, quantitative NIR measurements are commonly collected across all potential manufacturing conditions, including multiple flow rates to account for the physical variations. The utility of this approach is limited by the considerable quantity of resources required to run and analyze an extensive calibration design at variable flow rates in a continuous manufacturing (CM) process. It is hypothesized that the primary variation introduced to NIR spectra from changing flow rates is a change in the density of the powder from which NIR spectra are collected. In this work, powder stream density was used as an efficient surrogate for flow rate in developing a quantitative NIR method with enhanced robustness against process rate variation. A density design space of two process parameters was generated to determine the conditions required to encompass the apparent density and spectral variance from increases in process rate. This apparent density variance was included in calibration at a constant low flow rate to enable the development of a density-insensitive NIR quantitative model with limited consumption of materials. The density-insensitive NIR model demonstrated comparable prediction performance and flow rate robustness to a traditional NIR model including flow rate variation ("gold standard" model) when applied to monitoring drug content in continuous runs at varying flow rates. The proposed platform for the development of in-line density-insensitive NIR methods is expected to facilitate robust analytical model performance across variable continuous manufacturing production scales while improving the material efficiency over traditional robust modeling approaches for calibration development.
Collapse
Affiliation(s)
- Natasha L Velez-Silva
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
2
|
Caccamo MT, Magazù S. Multiscale Spectral Analysis on Lysozyme Aqueous Solutions in the Presence of PolyEthyleneGlycol. Molecules 2022; 27:8760. [PMID: 36557893 PMCID: PMC9781088 DOI: 10.3390/molecules27248760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Infrared spectroscopy measurements were performed on Lysozyme aqueous solutions also in the presence of PolyEthylene Glycol (PEG 400) as a function of an increasing temperature from T = 27 °C to 90 °C, and, successively in sequence, by decreasing temperatures from T = 90 °C to 27 °C. Data were analyzed by evaluating the spectral difference with respect to the initial spectrum collected at 27 °C. This procedure allows to quantitatively evaluate the thermal restraint related to the thermal scan from T = 27 °C to 90 °C, as well as to introduce a spectral resilience concerning the entire increasing and decreasing thermal paths which allow to highlight the bioprotectant effectiveness of low molecular weight PEG. In particular, the main purpose of the present work is to highlight the effects of a thermal treatment on a mixture of Lysozyme/water and of Lysozyme/water/PEG 400 during an increasing temperature scan, and then after a successive decreasing temperature scan, in order to highlight the bioprotectant role of PEG 400. On that score, an evaluation of the spectral distances of the registered spectra as a function of increasing and decreasing temperatures has been performed and analyzed.
Collapse
Affiliation(s)
- Maria Teresa Caccamo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze Della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze Della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
3
|
Shi Z, Rao KS, Thool P, Kuhn R, Thomas R, Rich S, Mao C. Development of a Near-Infrared Spectroscopy (NIRS)-Based Characterization Approach for Inherent Powder Blend Heterogeneity in Direct Compression Formulations. AAPS J 2022; 25:9. [PMID: 36482014 DOI: 10.1208/s12248-022-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of continuous direct compression (CDC) process, it becomes increasingly desirable to characterize inherent powder blend heterogeneity at a small batch scale for a robust and CDC-amenable formulation. To accomplish this goal, a near infrared spectroscopy (NIRS)-based characterization approach was developed and implemented on multiple direct compression (DC) blends in this study, with the intended purpose of complementing existing formulation development tools and enabling to build an early CMC data package for late-phased process analytical technology (PAT) method development. Three fumaric acid DC blends, designed to harbor varied degrees of inherent blend heterogeneity, were employed. Near infrared spectral data were collected on a kg-scale batch blender via both time- and angle-based triggering modes. The time-triggered data were used to investigate the blending heterogeneity with respect to rotation angles, while the angle-triggered data were used to provide blending variability characterization and compare against off-line HPLC-based results. The time-triggered data revealed that the greatest blend variability was observed between revolutions, while the blending variability within a single revolution stayed relatively low with respect to rotation angles. This confirmed earlier literature findings that the bottom layer of powder blends tends to move with the blender within each revolution, and the most intense powder mixing takes place across revolutions. This also indicates the use of blending speed and the number of co-adds are not able to increase sampling volume to improve signal-to-noise ratio under a tumble-bin blender as what were typically done in a feedframe application. The angle-triggered data showed that there is a consistent trend between NIRS and HPLC-based methods on characterizing blend heterogeneity across the blends at a given sample size. This study contributes to establishing NIRS as a potential characterization approach for inherent powder blend heterogeneity for early R&D. It also highlights the promise of continuous characterization of inherent powder blend heterogeneity from gram scale to mini-batch CDC scale.
Collapse
Affiliation(s)
- Zhenqi Shi
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Kallakuri Suparna Rao
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Prajwal Thool
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Robert Kuhn
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Rekha Thomas
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Sharyl Rich
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
4
|
Zhou Y, Li F, Sanders C, Samain S, Salman A. Online monitoring of dry powder mixing in a bin mixer. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Talwar S, Pawar P, Wu H, Sowrirajan K, Wu S, Igne B, Friedman R, Muzzio FJ, Drennen JK. NIR Spectroscopy as an Online PAT Tool for a Narrow Therapeutic Index Drug: Toward a Platform Approach Across Lab and Pilot Scales for Development of a Powder Blending Monitoring Method and Endpoint Determination. AAPS J 2022; 24:103. [PMID: 36171513 DOI: 10.1208/s12248-022-00748-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023] Open
Abstract
An online near-infrared (NIR) spectroscopy platform system for real-time powder blending monitoring and blend endpoint determination was tested for a phenytoin sodium formulation. The study utilized robust experimental design and multiple sensors to investigate multivariate data acquisition, model development, and model scale-up from lab to manufacturing. The impact of the selection of various blend endpoint algorithms on predicted blend endpoint (i.e., mixing time) was explored. Spectral data collected at two process scales using two NIR spectrometers was incorporated in a single (global) calibration model. Unique endpoints were obtained with different algorithms based on standard deviation, average, and distributions of concentration prediction for major components of the formulation. Control over phenytoin sodium's distribution was considered critical due to its narrow therapeutic index nature. It was found that algorithms sensitive to deviation from target concentration offered the simplest interpretation and consistent trends. In contrast, algorithms sensitive to global homogeneity of active and excipients yielded the longest mixing time to achieve blending endpoint. However, they were potentially more sensitive to subtle uniformity variations. Qualitative algorithms using principal component analysis (PCA) of spectral data yielded the prediction of shortest mixing time for blending endpoint. The hybrid approach of combining NIR data from different scales presents several advantages. It enables simplifying the chemometrics model building process and reduces the cost of model building compared to the approach of using data solely from commercial scale. Success of such a hybrid approach depends on the spectroscopic variability captured at different scales and their relative contributions in the final NIR model.
Collapse
Affiliation(s)
- Sameer Talwar
- Duquesne University Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA, 15282, USA.,MST-BPDS-Biopharm Product Dev & Supply, GSK, 709 Swedeland Road, King of Prussia, PA, 19406, USA
| | - Pallavi Pawar
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA.,Gilead, Foster City, CA, 94404, USA
| | - Huiquan Wu
- Office of Pharmaceutical Quality, CDER, FDA, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| | - Koushik Sowrirajan
- Office of Pharmaceutical Quality, CDER, FDA, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Suyang Wu
- Office of Pharmaceutical Quality, CDER, FDA, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Benoît Igne
- Duquesne University Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Richard Friedman
- Office of Manufacturing Quality, Office of Compliance, CDER, FDA, Silver Spring, MD, 20993, USA
| | - Fernando J Muzzio
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - James K Drennen
- Duquesne University Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
6
|
Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy. Molecules 2022; 27:molecules27196310. [PMID: 36234846 PMCID: PMC9573458 DOI: 10.3390/molecules27196310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Creatine is a very popular amino acid widely utilized in the sports world due to its functions mainly related to muscle building and increasing performance. The present work investigates the behavior of creatine aqueous solutions and of creatine aqueous in the presence of trehalose as a function of time changes by means of Infrared spectroscopy. Infrared spectra have been gathered and studied over time for both the full spectrum and the intramolecular OH-stretching region for the two mixtures. This latter region was studied more specifically using a cutting-edge technique called Spectral Distance (SD). From this analysis of the spectral features of the investigated samples, it emerges that trehalose has a significant stabilizing effect on creatine aqueous solutions.
Collapse
|
7
|
Velez NL, Drennen JK, Anderson CA. Challenges, opportunities and recent advances in near infrared spectroscopy applications for monitoring blend uniformity in the continuous manufacturing of solid oral dosage forms. Int J Pharm 2022; 615:121462. [PMID: 35026317 DOI: 10.1016/j.ijpharm.2022.121462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Near infrared (NIR) spectroscopy has been widely recognized as a powerful PAT tool for monitoring blend uniformity in continuous manufacturing (CM) processes. However, the dynamic nature of the powder stream and the fast rate at which it moves, compared to batch processes, introduces challenges to NIR quantitative methods for monitoring blend uniformity. For instance, defining the effective sample size interrogated by NIR, selecting the best sampling location for blend monitoring, and ensuring NIR model robustness against influential sources of variability are challenges commonly reported for NIR applications in CM. This article reviews the NIR applications for powder blend monitoring in the continuous manufacturing of solid oral dosage forms, with a particular focus on the challenges, opportunities for method optimization and recent advances with respect three main aspects: effective sample size measured by NIR, probe location and method robustness.
Collapse
Affiliation(s)
- Natasha L Velez
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
8
|
Kim EJ, Kim JH, Kim MS, Jeong SH, Choi DH. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021; 13:919. [PMID: 34205797 PMCID: PMC8234957 DOI: 10.3390/pharmaceutics13060919] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Various frameworks and methods, such as quality by design (QbD), real time release test (RTRT), and continuous process verification (CPV), have been introduced to improve drug product quality in the pharmaceutical industry. The methods recognize that an appropriate combination of process controls and predefined material attributes and intermediate quality attributes (IQAs) during processing may provide greater assurance of product quality than end-product testing. The efficient analysis method to monitor the relationship between process and quality should be used. Process analytical technology (PAT) was introduced to analyze IQAs during the process of establishing regulatory specifications and facilitating continuous manufacturing improvement. Although PAT was introduced in the pharmaceutical industry in the early 21st century, new PAT tools have been introduced during the last 20 years. In this review, we present the recent pharmaceutical PAT tools and their application in pharmaceutical unit operations. Based on unit operations, the significant IQAs monitored by PAT are presented to establish a control strategy for CPV and real time release testing (RTRT). In addition, the equipment type used in unit operation, PAT tools, multivariate statistical tools, and mathematical preprocessing are introduced, along with relevant literature. This review suggests that various PAT tools are rapidly advancing, and various IQAs are efficiently and precisely monitored in the pharmaceutical industry. Therefore, PAT could be a fundamental tool for the present QbD and CPV to improve drug product quality.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Ji Hyeon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 heon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea;
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| |
Collapse
|
9
|
Panikar S, Li J, Rane V, Gillam S, Callegari G, Kurtyka B, Lee S, Muzzio F. Integrating sensors for monitoring blend content in a pharmaceutical continuous manufacturing plant. Int J Pharm 2021; 606:120085. [PMID: 33737095 DOI: 10.1016/j.ijpharm.2020.120085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/14/2020] [Accepted: 11/08/2020] [Indexed: 10/21/2022]
Abstract
In a pharmaceutical manufacturing process, Critical Quality Attributes (CQAs) need to be monitored not only for the final product but also for intermediates. Blend uniformity of powders is one such attribute that needs to be measured to ensure the quality of the final product. Multiple in-line sensors were implemented within a Direct Compaction (DC) continuous tablet manufacturing line to monitor the blend content of the powders. In most cases, since the primary ingredient of interest is the active pharmaceutical ingredient (API), the concentration (potency) of the API was monitored/predicted over the course of manufacturing. For the calibration model building process, a unique setup involving dynamic powder spectral acquisition method was used. This setup was aimed at mimicking the powder flow characteristics within the manufacturing line, while at the same time utilizing a relatively small amount of powder. A Raman probe and a portable NIR were used concurrently at the exit of the blending process before the tableting stage. The performance of the two sensors and their respective models were evaluated in terms of accuracy, precision, operating range, measurement frequency, placement, reliability, robustness, and compared to predictions using gravimetric feed rates. Additionally, their performances were validated by off-line traditional analytical measurements.
Collapse
Affiliation(s)
- Savitha Panikar
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States
| | - Jingzhe Li
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States
| | - Varsha Rane
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States
| | - Sean Gillam
- Kaiser Optical Systems, Inc., Ann Arbor, MI 48103, United States
| | - Gerardo Callegari
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States
| | - Bogdan Kurtyka
- Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Sau Lee
- Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Fernando Muzzio
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States.
| |
Collapse
|
10
|
Ozawa Y, Watanabe Y, Ando D, Koide T, Fukami T. Advanced Formulation Design for Topical Creams Assisted with Vibrational Spectroscopic Imaging. Chem Pharm Bull (Tokyo) 2021; 69:271-277. [PMID: 33642475 DOI: 10.1248/cpb.c20-00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrational spectroscopic imaging has become useful analytical tools for quality control of drug products. In this study, we applied microscopic attenuated total reflection (ATR)-IR and confocal Raman microscopy to elucidate microscopic structure of creams and for the formulation design in the development of semi-solid drug products. The model creams were prepared with prednisolone (PRD) and fluconazole (FLC) as active pharmaceutical ingredients and oily solvents such as mineral oil (MO), isopropyl myristate (IPM), benzyl alcohol (BA) and diethyl sebacate (DES). As a result of microscopic ATR-IR imaging, several domains indicating oily internal phase were observed, which had absorption around 1732 and 1734 cm-1 derived from MO, IPM and DES. In addition, domains of BA around 1009 cm-1 were observed at the complemental or similar position in the formulation with MO or DES, respectively. These results suggested that the creams were oil-in-water type and the distribution of domains would reflect the compatibility of the solvents. The contents of PRD and BA were determined quantitatively in each layer after the intentional separation of the creams and the results agreed well with the imaging analysis. Whereas, confocal Raman imaging allowed to visualize the distribution of the components in depth direction as well as two-dimensional plane. In particular, the Raman imaging would ensure the coexistence of FLC and BA as oily phase in the cream. From these results, the feasibility of spectroscopic imaging techniques was successfully demonstrated for the formulation design of semi-solid dosage forms.
Collapse
Affiliation(s)
- Yosuke Ozawa
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Yutaro Watanabe
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Daisuke Ando
- Division of Drugs, National Institute of Health Sciences
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| |
Collapse
|
11
|
Testing the Limits of a Portable NIR Spectrometer: Content Uniformity of Complex Powder Mixtures Followed by Calibration Transfer for In-Line Blend Monitoring. Molecules 2021; 26:molecules26041129. [PMID: 33672675 PMCID: PMC7924328 DOI: 10.3390/molecules26041129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Portable NIR spectrometers gain more and more ground in the field of Process Analytical Technology due to the easy on-site flexibility and interfacing versatility. These advantages that originate from the instrument miniaturization, also come with a downside with respect to performance compared to benchtop devices. The objective of this work was to evaluate the performance of MicroNIR in a pharmaceutical powder blend application, having three active ingredients and 5 excipients. (2) Methods: Spectral data was recorded in reflectance mode using static and dynamic acquisition, on calibration set samples developed using an experimental design. (3) Results: The developed method accurately predicted the content uniformity of these complex mixtures, moreover it was validated in the entire calibration range using ±10% acceptance limits. With respect to at-line prediction, the method presented lower performance compared to a previously studied benchtop spectrometer. Regarding the in-line monitoring of the blending process, it was shown that the spectral variability-induced by dynamic acquisition could be efficiently managed using spectral pre-processing. (4) Conclusions: The in-line process monitoring resulted in accurate concentration profiles, highlighting differences in the mixing behaviour of the investigated ingredients. For the low dose component homogeneity was not reached due to an inefficient dispersive mixing.
Collapse
|
12
|
Shi G, Lin L, Liu Y, Chen G, Luo Y, Wu Y, Li H. Pharmaceutical application of multivariate modelling techniques: a review on the manufacturing of tablets. RSC Adv 2021; 11:8323-8345. [PMID: 35423324 PMCID: PMC8695199 DOI: 10.1039/d0ra08030f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The tablet manufacturing process is a complex system, especially in continuous manufacturing (CM). It includes multiple unit operations, such as mixing, granulation, and tableting. In tablet manufacturing, critical quality attributes are influenced by multiple factorial relationships between material properties, process variables, and interactions. Moreover, the variation in raw material attributes and manufacturing processes is an inherent characteristic and seriously affects the quality of pharmaceutical products. To deepen our understanding of the tablet manufacturing process, multivariable modeling techniques can replace univariate analysis to investigate tablet manufacturing. In this review, the roles of the most prominent multivariate modeling techniques in the tablet manufacturing process are discussed. The review mainly focuses on applying multivariate modeling techniques to process understanding, optimization, process monitoring, and process control within multiple unit operations. To minimize the errors in the process of modeling, good modeling practice (GMoP) was introduced into the pharmaceutical process. Furthermore, current progress in the continuous manufacturing of tablets and the role of multivariate modeling techniques in continuous manufacturing are introduced. In this review, information is provided to both researchers and manufacturers to improve tablet quality.
Collapse
Affiliation(s)
- Guolin Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Gongsen Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yanqiu Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
13
|
Tackling quantitative polymorphic analysis through fixed-dose combination tablets production. Pyrazinamide polymorphic assessment. J Pharm Biomed Anal 2020; 194:113786. [PMID: 33281002 DOI: 10.1016/j.jpba.2020.113786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022]
Abstract
Pyrazinamide (PZA), Rifampicin (RIF), Isoniazid (ISH) and Ethambutol (ETB) form the core for the treatment of Tuberculosis, today a devastating disease in low-income populations around the world. These drugs are usually administrated by fixed-dose combination (FDC) products, to favour the patient compliance and prevent bacterial resistance. PZA exists in four enantiotropically-related polymorphs (Forms α, δ, β and γ), but only Form α is considered suitable for pharmaceutical products due to its stability and bioavailability properties. The classical approaches to address solid-state (microscopy, X-ray diffraction and calorimetry) shows limitations for quantification of polymorphs in the presence of excipients and other active components, as in the case of FDC tablets. In this work, an overall strategy was developed using near infrared spectroscopy (NIR) coupled to partial least squares regression (PLS) to quantify Form α of PZA in drug substance (raw material) and PZA/RIF/ISH-FDC tablets. For this purpose, two PLS models were constructed, one for drug substance preparing training (n = 30) and validation (n = 18) samples with a ternary composition (Form α/Form δ/Form γ), and other for FDC drug products, also including the appropriate amount of RIF, ISH and the matrix of excipients in order to simulate the environment of PZA/RIF/ISH association. The NIR-PLS models were optimized using a novel smart approach based on radial optimization (full range, 3 L V and MSC-D' and SNV-D' as pre-treatment, for raw material and FDC tablets, respectively). During the validation step, both methods showed no bias or systematic errors and yielded satisfactory recoveries (102.5 ± 3.1 % for drug substance and 98.7 ± 1.5 % for FDC tablets). When commercial drug substance was tested, NIR-PLS was able to predict the content of Form α (0.98 ± 0.01 w/w). The model for FDC tablets allowed estimating polymorphic purity in intact (0.984 ± 0.003 w/w), sectioned (0.986 ± 0.002 w/w), and powered (0.985 ± 0.004 w/w) tablets, showing the methodology could be applied to a different stage of the process (i.e premixed-powders or granulates). The suitability of the method was also verified when Form α was satisfactorily analysed in FDC fortified with Form δ and Form γ to reach 0.78, 0.88 and 0.98 w/w, Form α. This strategy results in an excellent alternative to ensure the polymorphic purity of PZA throughout the overall pharmaceutical manufacturing process.
Collapse
|
14
|
Sierra-Vega NO, Romañach RJ, Méndez R. Real-time quantification of low-dose cohesive formulations within a sampling interface for flowing powders. Int J Pharm 2020; 588:119726. [DOI: 10.1016/j.ijpharm.2020.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/27/2022]
|
15
|
Zhong L, Gao L, Li L, Zang H. Trends-process analytical technology in solid oral dosage manufacturing. Eur J Pharm Biopharm 2020; 153:187-199. [DOI: 10.1016/j.ejpb.2020.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022]
|
16
|
Bowler AL, Bakalis S, Watson NJ. A review of in-line and on-line measurement techniques to monitor industrial mixing processes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Fujii MY, Yamamoto Y, Koide T, Hamaguchi M, Onuki Y, Suzuki N, Suzuki T, Fukami T. Imaging Analysis Enables Differentiation of the Distribution of Pharmaceutical Ingredients in Tacrolimus Ointments. APPLIED SPECTROSCOPY 2019; 73:1183-1192. [PMID: 31271295 DOI: 10.1177/0003702819863441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrated the difference in the distribution state of pharmaceutical ingredients between tacrolimus (TCR) original ointment and six kinds of generic medicines. Two-dimensional imaging and depth analysis using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy and confocal Raman microscopy were used, in addition to the evaluation of pharmaceutical properties, including spreading properties, rheological properties, and amount of solvent. The solvents, such as propylene carbonate and triacetin, in TCR ointments formed liquid droplets and dispersed in hydrocarbon oils. Waxes, white beeswax and beeswax, formed other domains. Confocal Raman microscopy could detect liquid droplet size without coalescence of that on germanium or glass surfaces. The combination of ATR FT-IR and confocal Raman imaging would be a powerful tool to reveal the size and shape of liquid droplets of pharmaceutical ingredients in semisolid formulations.
Collapse
Affiliation(s)
| | - Yoshihisa Yamamoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, Kawasaki, Japan
| | - Masashi Hamaguchi
- Faculty of Pharmacy and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Yoshinori Onuki
- Faculty of Pharmacy and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Naoto Suzuki
- School of Pharmacy, Nihon University, Funabashi, Japan
| | | | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, Kiyose, Japan
| |
Collapse
|
18
|
Variographic analysis: A new methodology for quality assurance of pharmaceutical blending processes. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Crouter A, Briens L. Methods to Assess Mixing of Pharmaceutical Powders. AAPS PharmSciTech 2019; 20:84. [PMID: 30673887 DOI: 10.1208/s12249-018-1286-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022] Open
Abstract
The pharmaceutical manufacturing process consists of several steps, each of which must be monitored and controlled to ensure quality standards are met. The level of blending has an impact on the final product quality; therefore, it is important to be able to monitor blending progress and identify an end-point. Currently, the pharmaceutical industry assesses blend content and uniformity through the extraction of samples using thief probes followed by analytical methods, such as spectroscopy, to determine the sample composition. The development of process analytical technologies (PAT) can improve product monitoring with the aim of increasing efficiency, product quality and consistency, and creating a better understanding of the manufacturing process. Ideally, these are inline methods to remove issues related to extractive sampling and allow direct monitoring of the system using various sensors. Many technologies have been investigated, including spectroscopic techniques such as near-infrared spectroscopy, velocimetric techniques that may use tracers, tomographic techniques, and acoustic emissions monitoring. While some techniques have demonstrated potential, many have significant disadvantages including the need for equipment modification, specific requirements of the material, expensive equipment, extensive analysis, the location of the probes may be critical and/or invasive, and lastly, the technique may only be applicable to the development phase. Both the advantages and disadvantages of the technologies should be considered in application to a specific system.
Collapse
|
20
|
Sebastian Escotet-Espinoza M, Moghtadernejad S, Oka S, Wang Y, Roman-Ospino A, Schäfer E, Cappuyns P, Van Assche I, Futran M, Ierapetritou M, Muzzio F. Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.10.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Opportunities for Process Control and Quality Assurance Using Online NIR Analysis to a Continuous Wet Granulation Tableting Line. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9364-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Hirschberg C, Schmidt Larsen M, Bøtker JP, Rantanen J. Additive manufacturing of prototype elements with process interfaces for continuously operating manufacturing lines. Asian J Pharm Sci 2018; 13:575-583. [PMID: 32104431 PMCID: PMC7032261 DOI: 10.1016/j.ajps.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022] Open
Abstract
Rapid prototyping based on in silico design and 3D printing enables fast customization of complex geometries to multiple needs. This study utilizes, additive manufacturing for rapid prototyping of elements for continuously operating mixing geometries including interfaces with process analytical technology (PAT) tools, to show that 3D printing can be used for prototyping of both parts of production line and PAT interfacing solution. An additional setup was designed for measuring the dynamic calibration samples for a semi-quantitative near infrared (NIR) spectroscopic model. The powder was filled in a small calibration chamber and in-line NIR spectra of calibration samples were collected from moving material while mimicking the powder flow dynamics in a typical continuous mixer. This dynamic powder mixing system was compared with a static powder calibration model where the NIR probe was placed at different positions on a static sample. Principal component analysis (PCA) revealed that the 3D printed device with dynamic measurement of the NIR spectra had more potential for quantitative analysis. With the prototype continuous mixer, two differently placed process interfaces for NIR spectroscopic monitoring of the powder mixing were evaluated. With this approach, the importance of positioning the process analytical tools to assess the blend uniformity could be demonstrated. It was also observed that with the longer mixing geometry, a better mixing result was achieved due to a larger hold up volume and increased residence time.
Collapse
Affiliation(s)
| | | | | | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2300 Copenhagen, Denmark
| |
Collapse
|
23
|
Hilden J, Sullivan M, Polizzi M, Wade J, Greer J, Keeney M. Power consumption during oscillatory mixing of pharmaceutical powders. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
|
25
|
|
26
|
Mohan S, Momose W, Katz JM, Hossain MN, Velez N, Drennen JK, Anderson CA. A robust quantitative near infrared modeling approach for blend monitoring. J Pharm Biomed Anal 2018; 148:51-57. [DOI: 10.1016/j.jpba.2017.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
27
|
Hetrick EM, Shi Z, Barnes LE, Garrett AW, Rupard RG, Kramer TT, Cooper TM, Myers DP, Castle BC. Development of Near Infrared Spectroscopy-based Process Monitoring Methodology for Pharmaceutical Continuous Manufacturing Using an Offline Calibration Approach. Anal Chem 2017; 89:9175-9183. [DOI: 10.1021/acs.analchem.7b01907] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evan M. Hetrick
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Zhenqi Shi
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lukas E. Barnes
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Aaron W. Garrett
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Robert G. Rupard
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | | | - Tony M. Cooper
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David P. Myers
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Bryan C. Castle
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
28
|
Alam MA, Shi Z, Drennen JK, Anderson CA. In-line monitoring and optimization of powder flow in a simulated continuous process using transmission near infrared spectroscopy. Int J Pharm 2017; 526:199-208. [DOI: 10.1016/j.ijpharm.2017.04.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
|
29
|
Evaluation of Analytical and Sampling Errors in the Prediction of the Active Pharmaceutical Ingredient Concentration in Blends From a Continuous Manufacturing Process. J Pharm Innov 2017. [DOI: 10.1007/s12247-017-9273-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Wahl P, Pucher I, Scheibelhofer O, Kerschhaggl M, Sacher S, Khinast J. Continuous monitoring of API content, API distribution and crushing strength after tableting via near-infrared chemical imaging. Int J Pharm 2017; 518:130-137. [DOI: 10.1016/j.ijpharm.2016.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/18/2016] [Accepted: 12/02/2016] [Indexed: 12/01/2022]
|
31
|
Colón YM, Vargas J, Sánchez E, Navarro G, Romañach RJ. Assessment of Robustness for a Near-Infrared Concentration Model for Real-Time Release Testing in a Continuous Manufacturing Process. J Pharm Innov 2016. [DOI: 10.1007/s12247-016-9265-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Tao L, Liu B, Jin Y, Sun D, Liu X, Chen Y, Wu Y. Characterization of Toad Skin for Traditional Chinese Medicine by Near-Infrared Spectroscopy and Chemometrics. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1220562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lingyan Tao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bowen Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ye Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Di Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Fonteyne M, Vercruysse J, De Leersnyder F, Besseling R, Gerich A, Oostra W, Remon JP, Vervaet C, De Beer T. Blend uniformity evaluation during continuous mixing in a twin screw granulator by in-line NIR using a moving F-test. Anal Chim Acta 2016; 935:213-23. [PMID: 27543030 DOI: 10.1016/j.aca.2016.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/18/2016] [Indexed: 11/25/2022]
Abstract
This study focuses on the twin screw granulator of a continuous from-powder-to-tablet production line. Whereas powder dosing into the granulation unit is possible from a container of preblended material, a truly continuous process uses several feeders (each one dosing an individual ingredient) and relies on a continuous blending step prior to granulation. The aim of the current study was to investigate the in-line blending capacity of this twin screw granulator, equipped with conveying elements only. The feasibility of in-line NIR (SentroPAT, Sentronic GmbH, Dresden, Germany) spectroscopy for evaluating the blend uniformity of powders after the granulator was tested. Anhydrous theophylline was used as a tracer molecule and was blended with lactose monohydrate. Theophylline and lactose were both fed from a different feeder into the twin screw granulator barrel. Both homogeneous mixtures and mixing experiments with induced errors were investigated. The in-line spectroscopic analyses showed that the twin screw granulator is a useful tool for in-line blending in different conditions. The blend homogeneity was evaluated by means of a novel statistical method being the moving F-test method in which the variance between two blocks of collected NIR spectra is evaluated. The α- and β-error of the moving F-test are controlled by using the appropriate block size of spectra. The moving F-test method showed to be an appropriate calibration and maintenance free method for blend homogeneity evaluation during continuous mixing.
Collapse
Affiliation(s)
- Margot Fonteyne
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium.
| | - Jurgen Vercruysse
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Fien De Leersnyder
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | | | | | | | - Jean Paul Remon
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium.
| |
Collapse
|
34
|
Cama-Moncunill R, Markiewicz-Keszycka M, Dixit Y, Cama-Moncunill X, Casado-Gavalda MP, Cullen PJ, Sullivan C. Multipoint NIR spectroscopy for gross composition analysis of powdered infant formula under various motion conditions. Talanta 2016; 154:423-30. [DOI: 10.1016/j.talanta.2016.03.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 11/25/2022]
|
35
|
Hernández E, Pawar P, Rodriguez S, Lysenko S, Muzzio FJ, Romañach RJ. Effect of Shear Applied During a Pharmaceutical Process on Near Infrared Spectra. APPLIED SPECTROSCOPY 2016; 70:455-466. [PMID: 26968455 DOI: 10.1177/0003702815626669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study describes changes observed in the near-infrared (NIR) diffuse reflectance (DR) spectra of pharmaceutical tablets after these tablets were subjected to different levels of strain (exposure to shear) during the mixing process. Powder shearing is important in the mixing of powders that are cohesive. Shear stress is created in a system by moving one surface over another causing displacements in the direction of the moving surface and is part of the mixing dynamics of particulates in many industries including the pharmaceutical industry. In continuous mixing, shear strain is developed within the process when powder particles are in constant movement and can affect the quality attributes of the final product such as dissolution. These changes in the NIR spectra could affect results obtained from NIR calibration models. The aim of the study was to understand changes in the NIR diffuse reflectance spectra that can be associated with different levels of strain developed during blend shearing of laboratory samples. Shear was applied using a Couette cell and tablets were produced using a tablet press emulator. Tablets with different shear levels were measured using NIR spectroscopy in the diffuse reflectance mode. The NIR spectra were baseline corrected to maintain the scattering effect associated with the physical properties of the tablet surface. Principal component analysis was used to establish the principal sources of variation within the samples. The angular dependence of elastic light scattering shows that the shear treatment reduces the size of particles and produces their uniform and highly isotropic distribution. Tablet compaction further reduces the diffuse component of scattering due to realignment of particles.
Collapse
Affiliation(s)
- Eduardo Hernández
- Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, Puerto Rico
| | - Pallavi Pawar
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Sandra Rodriguez
- Department of Physics, University of Puerto Rico, Mayaguez Campus, Mayaguez, Puerto Rico
| | - Sergiy Lysenko
- Department of Physics, University of Puerto Rico, Mayaguez Campus, Mayaguez, Puerto Rico
| | - Fernando J Muzzio
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, Puerto Rico
| |
Collapse
|
36
|
Li J, Xu B, Zhang Y, Dai S, Sun F, Shi X, Qiao Y. Determination of Geniposide inGardenia jasminoidesEllis Fruit by Near-Infrared Spectroscopy and Chemometrics. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1130714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
|
38
|
|
39
|
Shi Z, McGhehey KC, Leavesley IM, Manley LF. On-line monitoring of blend uniformity in continuous drug product manufacturing process—The impact of powder flow rate and the choice of spectrometer: Dispersive vs. FT. J Pharm Biomed Anal 2016; 118:259-266. [DOI: 10.1016/j.jpba.2015.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 11/29/2022]
|
40
|
Bakri B, Weimer M, Hauck G, Reich G. Assessment of powder blend uniformity: Comparison of real-time NIR blend monitoring with stratified sampling in combination with HPLC and at-line NIR Chemical Imaging. Eur J Pharm Biopharm 2015; 97:78-89. [DOI: 10.1016/j.ejpb.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/17/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
|
41
|
Besseling R, Damen M, Tran T, Nguyen T, van den Dries K, Oostra W, Gerich A. An efficient, maintenance free and approved method for spectroscopic control and monitoring of blend uniformity: The moving F-test. J Pharm Biomed Anal 2015; 114:471-81. [DOI: 10.1016/j.jpba.2015.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/10/2015] [Accepted: 06/14/2015] [Indexed: 10/23/2022]
|
42
|
Scheibelhofer O, Grabner B, Bondi RW, Igne B, Sacher S, Khinast JG. Designed Blending for Near Infrared Calibration. J Pharm Sci 2015; 104:2312-22. [PMID: 25980978 DOI: 10.1002/jps.24488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/20/2015] [Accepted: 04/17/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Otto Scheibelhofer
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
- Institute of Process and Particle Engineering, University of Technology, Graz, Austria
| | - Bianca Grabner
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | - Benoît Igne
- GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Johannes G Khinast
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
- Institute of Process and Particle Engineering, University of Technology, Graz, Austria
| |
Collapse
|
43
|
Khorasani M, Amigo JM, Bertelsen P, Van Den Berg F, Rantanen J. Detecting Blending End-Point Using Mean Squares Successive Difference Test and Near-Infrared Spectroscopy. J Pharm Sci 2015; 104:2541-9. [PMID: 26094601 DOI: 10.1002/jps.24533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 11/08/2022]
Abstract
An algorithm based on mean squares successive difference test applied to near-infrared and principal component analysis scores was developed to monitor and determine the blending profile and to assess the end-point in the statistical stabile phase. Model formulations consisting of an active compound (acetylsalicylic acid), together with microcrystalline cellulose and two grades of calcium carbonate with dramatically different particle shapes, were prepared. The formulation comprising angular-shaped calcium carbonate reached blending end-point slower when compared with the formulation comprising equant-shaped calcium carbonate. Utilizing the ring shear test, this distinction in end-point could be related to the difference in flowability of the formulations. On the basis of the two model formulations, a design of experiments was conducted to characterize the blending process by studying the effect of CaCO3 grades and fill level of the bin on blending end-point. Calcium carbonate grades, fill level, and their interaction were shown to have a significant impact on the blending process.
Collapse
Affiliation(s)
- Milad Khorasani
- Faculty of Health and Medical Sciences, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - José M Amigo
- Faculty of Science, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Frans Van Den Berg
- Faculty of Science, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jukka Rantanen
- Faculty of Health and Medical Sciences, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Momose W, Katz JM, Drennen JK, Anderson CA. Development of NIR Methods for Blend Analysis Using Small Quantities of Materials. J Pharm Innov 2014. [DOI: 10.1007/s12247-014-9204-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Analysis of powder phenomena inside a Fette 3090 feed frame using in-line NIR spectroscopy. J Pharm Biomed Anal 2014; 100:40-49. [DOI: 10.1016/j.jpba.2014.07.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022]
|
46
|
Modeling strategies for pharmaceutical blend monitoring and end-point determination by near-infrared spectroscopy. Int J Pharm 2014; 473:219-31. [DOI: 10.1016/j.ijpharm.2014.06.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/06/2014] [Accepted: 06/25/2014] [Indexed: 11/21/2022]
|
47
|
|
48
|
Yamamoto Y, Fukami T, Koide T, Onuki Y, Suzuki T, Metori K, Katori N, Hiyama Y, Tomono K. Comparative pharmaceutical evaluation of brand and generic clobetasone butyrate ointments. Int J Pharm 2014; 463:62-7. [DOI: 10.1016/j.ijpharm.2013.12.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/04/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
|
49
|
Blending process modeling and control by multivariate curve resolution. Talanta 2013; 117:492-504. [DOI: 10.1016/j.talanta.2013.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/12/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022]
|
50
|
Nie P, Wu D, Sun DW, Cao F, Bao Y, He Y. Potential of visible and near infrared spectroscopy and pattern recognition for rapid quantification of notoginseng powder with adulterants. SENSORS 2013; 13:13820-34. [PMID: 24129019 PMCID: PMC3859093 DOI: 10.3390/s131013820] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022]
Abstract
Notoginseng is a classical traditional Chinese medical herb, which is of high economic and medical value. Notoginseng powder (NP) could be easily adulterated with Sophora flavescens powder (SFP) or corn flour (CF), because of their similar tastes and appearances and much lower cost for these adulterants. The objective of this study is to quantify the NP content in adulterated NP by using a rapid and non-destructive visible and near infrared (Vis-NIR) spectroscopy method. Three wavelength ranges of visible spectra, short-wave near infrared spectra (SNIR) and long-wave near infrared spectra (LNIR) were separately used to establish the model based on two calibration methods of partial least square regression (PLSR) and least-squares support vector machines (LS-SVM), respectively. Competitive adaptive reweighted sampling (CARS) was conducted to identify the most important wavelengths/variables that had the greatest influence on the adulterant quantification throughout the whole wavelength range. The CARS-PLSR models based on LNIR were determined as the best models for the quantification of NP adulterated with SFP, CF, and their mixtures, in which the rP values were 0.940, 0.939, and 0.867 for the three models respectively. The research demonstrated the potential of the Vis-NIR spectroscopy technique for the rapid and non-destructive quantification of NP containing adulterants.
Collapse
Affiliation(s)
- Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (P.N.); (D.W.); (F.C.); (Y.B.)
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (P.N.); (D.W.); (F.C.); (Y.B.)
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), Agriculture & Food Science Centre, School of Biosystems Engineering, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland; E-Mail:
| | - Fang Cao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (P.N.); (D.W.); (F.C.); (Y.B.)
| | - Yidan Bao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (P.N.); (D.W.); (F.C.); (Y.B.)
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (P.N.); (D.W.); (F.C.); (Y.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-571-8898-2143
| |
Collapse
|