1
|
Dos Santos L, Carbone F, Pacreau E, Diarra S, Luka M, Pigat N, Baures M, Navarro E, Anract J, Barry Delongchamps N, Cagnard N, Bost F, Nemazanyy I, Petitjean O, Hamaï A, Ménager M, Palea S, Guidotti JE, Goffin V. Cell Plasticity in a Mouse Model of Benign Prostate Hyperplasia Drives Amplification of Androgen-Independent Epithelial Cell Populations Sensitive to Antioxidant Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:30-51. [PMID: 37827216 DOI: 10.1016/j.ajpath.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH. Herein, these alterations parallel urodynamic disturbance reminiscent of lower urinary tract symptoms. Single-cell RNA-sequencing analysis of Pb-PRL mouse prostates revealed that their epithelium mainly includes low-androgen signaling cell populations analogous to Club/Hillock cells enriched in the aged human prostate. These intermediate cells are predicted to result from the reprogramming of androgen-dependent luminal cells. Pb-PRL mouse prostates exhibited increased vulnerability to oxidative stress due to reduction of antioxidant enzyme expression. One-month treatment of Pb-PRL mice with anethole trithione (ATT), a specific inhibitor of mitochondrial ROS production, reduced prostate weight and voiding frequency. In human BPH-1 epithelial cells, ATT decreased mitochondrial metabolism, cell proliferation, and stemness features. ATT prevented the growth of organoids generated by sorted Pb-PRL basal and LSCmed cells, the two major BPH-associated, androgen-independent epithelial cell compartments. Taken together, these results support cell plasticity as a driver of BPH progression and therapeutic resistance to androgen signaling inhibition, and identify antioxidant therapy as a promising treatment of BPH.
Collapse
Affiliation(s)
- Leïla Dos Santos
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Francesco Carbone
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Emeline Pacreau
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Sekou Diarra
- Humana Biosciences SAS, Prologue Biotech, Labège, France
| | - Marine Luka
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Natascha Pigat
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Manon Baures
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Emilie Navarro
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Julien Anract
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Barry Delongchamps
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Cagnard
- Bioinformatics Core Platform, Université Paris Cité, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Frédéric Bost
- C3M, INSERM U1065, Université Côte d'Azur, Equipe Labélisée Ligue Nationale contre le Cancer, Nice, France
| | - Ivan Nemazanyy
- Metabolomics Core Facility, Université de Paris-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | | | - Ahmed Hamaï
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Mickaël Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stefano Palea
- Humana Biosciences SAS, Prologue Biotech, Labège, France
| | - Jacques-Emmanuel Guidotti
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Vincent Goffin
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France.
| |
Collapse
|
2
|
Huang S, Dong R, Xu G, Liu J, Gao X, Yu S, Qie P, Gou G, Hu M, Wang Y, Peng J, Guang B, Xu Y, Yang T. Synthesis, Characterization, and In Vivo Evaluation of Desmethyl Anethole Trithione Phosphate Prodrug for Ameliorating Cerebral Ischemia-Reperfusion Injury in Rats. ACS OMEGA 2020; 5:4595-4602. [PMID: 32175506 PMCID: PMC7066653 DOI: 10.1021/acsomega.9b04129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Anethol trithione (ATT) has a wide range of physiological activities, but its use is limited due to its poor water solubility. To improve the solubility of ATT, we synthesized and characterized a novel phosphate prodrug (ATXP) relying on the availability of the hydroxy group in 5-(4-hydroxyphenyl)-3H-1,2-dithiole3-thione (ATX), which was transformed from ATT rapidly and extensively in vivo. Our results showed that ATXP significantly improved drug solubility. ATXP was rapidly converted to ATX and reached a maximum plasma concentration with a T max of approximately 5 min after intravenous (iv) administration. Furthermore, after the oral administration of ATXP, the C max was 3326.30 ± 566.50 ng/mL, which was approximately 5-fold greater than that of the parent drug form, indicating that ATXP has greater absorption than that of ATT. Additionally, the oral phosphate prodrug ATXP increased the ATX in the area under the plasma concentration vs time curves (AUC0-t = 3927.40 ± 321.50 and AUC0-∞ = 4579.0 ± 756.30), making its use in practical applications more meaningful. Finally, compared to the vehicle, ATXP was confirmed to maintain the bioactivity of the parent drug for a significant reduction in infarct volume 24 h after reperfusion. Based on these findings, the phosphate prodrug ATXP is a potentially useful water-soluble prodrug with improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Sheng Huang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Renhan Dong
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
- Chengdu
Beinuokecheng Biotechnology Co., Ltd., No. 88, Keyuan South Road, New and High-Tech Zone, Chengdu 610094, Sichuan, China
| | - Gaojie Xu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Jin Liu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Xiaofang Gao
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Siqi Yu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Pengfan Qie
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Gang Gou
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Min Hu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Yu Wang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Jian Peng
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Bing Guang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
- Chengdu
Beinuokecheng Biotechnology Co., Ltd., No. 88, Keyuan South Road, New and High-Tech Zone, Chengdu 610094, Sichuan, China
| | - Ying Xu
- The
First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Tai Yang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| |
Collapse
|