1
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
2
|
Ai F, Huang X, Wu Y, Ji C, Gao Y, Yu T, Yan F. Alleviative effects of a novel strain Bacillus coagulans XY2 on copper-induced toxicity in zebrafish larvae. J Environ Sci (China) 2023; 125:750-760. [PMID: 36375957 DOI: 10.1016/j.jes.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is a kind of micronutrient element that is essential for human metabolism. However, it is also considered as an environmental pollutant which is toxic to organisms at a high concentration level. Probiotics, regarded as beneficial microorganisms for promoting human health, have functions of antioxidant capacity, immune-enhancing properties, intestinal barrier protection and regulation. Several studies have reported that probiotics show positive effects on alleviating and intervening heavy metals toxicity. However, evidence for relieving copper-induced toxicity by probiotics is still limited. In this study, we firstly conducted a zebrafish larvae model to screen out microorganisms which are helpful for CuSO4 toxicity resistance and one novel strain named as Bacillus coagulans XY2 was discovered with the best protective activity. B. coagulans XY2 significantly reduced the mortality of zebrafish larvae exposed to 10 µmol/L CuSO4 for 96 hr, as well as alleviated the neutrophils infiltration in the larvae lateral line under a 2 hr exposure. B. coagulans XY2 exhibited a high in vitro antioxidant activity and against CuSO4-induced oxidative stress in zebrafish larvae by up-regulating sod1, gstp1 and cat gene transcriptional levels and relevant enzymatic activities. CuSO4 stimulated the inflammation process resulting in obvious increases of gene il-1β and il-10 transcription, which were suppressed by B. coagulans XY2 intervention. Overall, our results underline the bio-function of B. coagulans XY2 on protecting zebrafish larvae from copper toxicity, suggesting the potential application values of probiotics in copper toxicity alleviation on human and the environment.
Collapse
Affiliation(s)
- Fang Ai
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yalan Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Ji
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Fujie Yan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Cheng JH, Zhang XY, Wang Z, Zhang X, Liu SC, Song XY, Zhang YZ, Ding JM, Chen XL, Xu F. Potential of Thermolysin-like Protease A69 in Preparation of Bovine Collagen Peptides with Moisture-Retention Ability and Antioxidative Activity. Mar Drugs 2021; 19:md19120676. [PMID: 34940675 PMCID: PMC8708487 DOI: 10.3390/md19120676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
Bovine bone is rich in collagen and is a good material for collagen peptide preparation. Although thermolysin-like proteases (TLPs) have been applied in different fields, the potential of TLPs in preparing bioactive collagen peptides has rarely been evaluated. Here, we characterized a thermophilic TLP, A69, from a hydrothermal bacterium Anoxybacillus caldiproteolyticus 1A02591, and evaluated its potential in preparing bioactive collagen peptides. A69 showed the highest activity at 60 °C and pH 7.0. We optimized the conditions for bovine bone collagen hydrolysis and set up a process with high hydrolysis efficiency (99.4%) to prepare bovine bone collagen peptides, in which bovine bone collagen was hydrolyzed at 60 °C for 2 h with an enzyme-substrate ratio of 25 U/g. The hydrolysate contained 96.5% peptides that have a broad molecular weight distribution below 10000 Da. The hydrolysate showed good moisture-retention ability and a high hydroxyl radical (•OH) scavenging ratio of 73.2%, suggesting that the prepared collagen peptides have good antioxidative activity. Altogether, these results indicate that the thermophilic TLP A69 has promising potential in the preparation of bioactive collagen peptides, which may have potentials in cosmetics, food and pharmaceutical industries. This study lays a foundation for the high-valued utilization of bovine bone collagen.
Collapse
Affiliation(s)
- Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao 266102, China; (X.Z.); (S.-C.L.)
| | - Shi-Cheng Liu
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao 266102, China; (X.Z.); (S.-C.L.)
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun-Mei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- Correspondence: (J.-M.D.); (X.-L.C.); (F.X.)
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (J.-M.D.); (X.-L.C.); (F.X.)
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (J.-H.C.); (X.-Y.Z.); (Z.W.); (X.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (J.-M.D.); (X.-L.C.); (F.X.)
| |
Collapse
|
4
|
Assessment of the Substance Antioxidative Profile by Hyaluronan, Cu(II) and Ascorbate. Pharmaceutics 2021; 13:pharmaceutics13111815. [PMID: 34834230 PMCID: PMC8617742 DOI: 10.3390/pharmaceutics13111815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
In the minireview presented here, the authors discuss the evaluation of inhibitory effect of substances in the phases of initiation and propagation of high-molar-mass hyaluronan oxidative degradation. The experimental approach should be considered as original since on using a simple experimental assay it is possible to prove both the so-called “preventive” and “chain-breaking” antioxidant activity of investigated water-soluble endo- or exogenous substances.
Collapse
|
5
|
Valachová K, Rapta P, Moura NMM, Batinic-Haberle I, Šoltés L. Ortho Isomeric Mn(III) N-Alkyl- and Alkoxyalkylpyridylporphyrins-Enhancers of Hyaluronan Degradation Induced by Ascorbate and Cupric Ions. Int J Mol Sci 2021; 22:ijms22168608. [PMID: 34445313 PMCID: PMC8395334 DOI: 10.3390/ijms22168608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
High levels of hyaluronic acid (HA) in tumors correlate with poor outcomes with several types of cancers due to HA-driven support of adhesion, migration and proliferation of cells. In this study we explored how to enhance the degradation of HA into low-molecular fragments, which cannot prevent the immune system to fight tumor proliferation and metastases. The physiological solution of HA was exposed to oxidative degradation by ascorbate and cupric ions in the presence of either one of three ortho isomeric Mn(III) substituted N-alkyl- and alkoxyalkylpyridylporphyrins or para isomeric Mn(III) N-methylpyridyl analog, commonly known as mimics of superoxide dismutase. The changes in hyaluronan degradation kinetics by four Mn(III) porphyrins were monitored by measuring the alteration in the dynamic viscosity of the HA solution. The ortho compounds MnTE-2-PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001) and MnTnHex-2-PyP5+ are able to redox cycle with ascorbate whereby producing H2O2 which is subsequently coupled with Cu(I) to produce the •OH radical essential for HA degradation. Conversely, with the para analog, MnTM-4-PyP5+, no catalysis of HA degradation was demonstrated, due to its inertness towards redox cycling with ascorbate. The impact of different Mn(III)-porphyrins on the HA decay was further clarified by electron paramagnetic resonance spectrometry. The ability to catalyze the degradation of HA in a biological milieu, in the presence of cupric ions and ascorbate under the conditions of high tumor oxidative stress provides further insight into the anticancer potential of redox-active ortho isomeric Mn(III) porphyrins.
Collapse
Affiliation(s)
- Katarína Valachová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava, Slovakia;
- Correspondence: (K.V.); (P.R.)
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
- Correspondence: (K.V.); (P.R.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Ladislav Šoltés
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava, Slovakia;
| |
Collapse
|
6
|
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 2019; 121:556-571. [DOI: 10.1016/j.ijbiomac.2018.10.049] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
|
7
|
Kyriakidou M, Anastassopoulou J, Tsakiris A, Koui M, Theophanides T. FT-IR Spectroscopy Study in Early Diagnosis of Skin Cancer. ACTA ACUST UNITED AC 2018; 31:1131-1137. [PMID: 29102935 DOI: 10.21873/invivo.11179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/14/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Mid-infrared spectroscopy (4000-500 cm-1) was used to analyze the spectral changes and differences of the characteristic absorption bands of the skin components due to cancer development for early clinical diagnosis. MATERIALS AND METHODS Human biopsies from basal cell carcinoma, malignant melanoma, and nevus were used, while normal skin tissue served as a control. RESULTS The high quality of Fourier-transform infrared (FT-IR) spectra showed that upon cancer development the intensity of the absorption band at approximately 3062 cm-1 was increased, indicating that most of the proteins had the configuration of amide B and the β-sheet protein structure predominated. The stretching vibration bands of vCH2 in the region 2950-2850 cm-1 were increased in melanoma and nevus, while were less pronounced in basal cell carcinoma due to the increased lipophilic environment. In addition, the intensity of a new band at 1744 cm-1, which is assigned to aldehyde, was increased in melanoma and nevus and appeared as a shoulder in the spectra of normal skin. The absorption band of amide I at 1650 cm-1 was split into two bands, at 1650 cm-1 and 1633 cm-1, due to the presence of both α-helix and random coil protein conformations for melanoma and nevus. This was confirmed from the amide II band at 1550 cm-1, which shifted to lower frequencies at 1536 cm-1 and 1540 cm-1 for basal cell carcinoma and melanoma, respectively, indicating a damage of the native structure of proteins. The bands at 841 and 815 cm-1, which are assigned to B-DNA and Z-DNA, respectively, indicated that only the bands of the cancerous Z-DNA form are pronounced in melanoma, while in BCC both the characteristic bands of B-DNA and Z-DNA forms are found. CONCLUSION It is proposed that the bands described above could be used as "diagnostic marker" bands for DNA forms, in the diagnosis of skin cancer.
Collapse
Affiliation(s)
- Maria Kyriakidou
- Laboratory of Radiation Chemistry & Biospectroscopy, Chemical Engineering School, National Technical University of Athens, Athens, Greece
| | - Jane Anastassopoulou
- Laboratory of Radiation Chemistry & Biospectroscopy, Chemical Engineering School, National Technical University of Athens, Athens, Greece
| | - Aristeidis Tsakiris
- Laboratory of Radiation Chemistry & Biospectroscopy, Chemical Engineering School, National Technical University of Athens, Athens, Greece.,Department of Plastic and Reconstructive Surgery, 401 General Military Hospital of Athens, Athens, Greece
| | - Maria Koui
- Laboratory of Radiation Chemistry & Biospectroscopy, Chemical Engineering School, National Technical University of Athens, Athens, Greece
| | - Theophile Theophanides
- Laboratory of Radiation Chemistry & Biospectroscopy, Chemical Engineering School, National Technical University of Athens, Athens, Greece
| |
Collapse
|
8
|
Tamer TM, Valachová K, Hassan MA, Omer AM, El-Shafeey M, Mohy Eldin MS, Šoltés L. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: In vitro and in vivo evaluation studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:227-235. [PMID: 29853086 DOI: 10.1016/j.msec.2018.04.053] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
A novel wound healing material composed of chitosan (Ch) and hyaluronan (HA) boosted with edaravone (Ed) as an anti-inflammatory drug was developed. The fabricated membranes were verified using FT-IR, and the thermal properties were estimated employing TGA instrument. Moreover, Physical characterizations of the prepared membranes demonstrated a decrease in the membrane wettability, whereas an increase in membrane roughness was monitored due to the effect of edaravone supplementation. A comparative study of free-radical scavenging activity of edaravone itself was carried out by two in vitro approaches: uninhibited/inhibited hyaluronan degradation and decolorization of ABTS methods in normal and simulated inflammation condition (acidic condition). Accordingly, the scavenging activity of edaravone was significantly diminished to OH and peroxy-/alkoxy-type radicals in acidic conditions in compared to the neutral reactions. The biochemical studies evidenced the haemocompatibility of the examined membranes. The consequence of membranes composed of Ch/HA/Ed on the wound healing of the rat's skin was studied, and the macroscopic and microscopic investigations revealed remarkable healing at 21st day post-surgery compared with injuries treated with cotton gauze as a negative control in addition to Ch/HA membrane without edaravone. For these reasons, the Ch/HA/Ed membrane could be implemented as wound dressing material.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt; Laboratory of Bioorganic Chemistry of Drugs, Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 84104 Bratislava, Slovakia.
| | - Katarína Valachová
- Laboratory of Bioorganic Chemistry of Drugs, Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 84104 Bratislava, Slovakia
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Muhammad El-Shafeey
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Mohamed S Mohy Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Ladislav Šoltés
- Laboratory of Bioorganic Chemistry of Drugs, Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 84104 Bratislava, Slovakia
| |
Collapse
|
9
|
Sun ML, Zhao F, Shi M, Zhang XY, Zhou BC, Zhang YZ, Chen XL. Characterization and Biotechnological Potential Analysis of a New Exopolysaccharide from the Arctic Marine Bacterium Polaribacter sp. SM1127. Sci Rep 2015; 5:18435. [PMID: 26688201 PMCID: PMC4685270 DOI: 10.1038/srep18435] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
Although many kinds of exopolysaccharides (EPSs) from microorganisms have been used in industry, the exploration and utilization of EPSs from polar microorganisms is still rather rare. In this study, a flavobacterial strain, SM1127, from the Arctic brown alga Laminaria, was screened for its high EPS production (2.11 g/l) and was identified as belonging to the genus Polaribacter. The EPS secreted by strain SM1127 has a molecular mass of 220 kDa, and it mainly comprises N-acetyl glucosamine, mannose and glucuronic acid residues bound by heterogeneous linkages. Rheological studies on the aqueous EPS showed that it had a high viscosity and good shear-thinning property. Moreover, the EPS showed a high tolerance to high salinity and a wide pH range. The EPS also had good antioxidant activity. Particularly, its moisture-retention ability was superior to that of any other reported EPS or functional ingredient generally used in cosmetics. The EPS also showed a protective effect on human dermal fibroblasts at low temperature (4 °C). Safety assessment indicated that the EPS is safe for oral administration and external use. These results indicate the promising potential of the EPS from strain SM1127 in the food, cosmetic, pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Mei-Ling Sun
- State Key Laboratory of Microbial Technology, Jinan 250100, China
- Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Fang Zhao
- State Key Laboratory of Microbial Technology, Jinan 250100, China
- Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Jinan 250100, China
- Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Jinan 250100, China
- Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Jinan 250100, China
- Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Jinan 250100, China
- Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Valachová K, Baňasová M, Topoľská D, Sasinková V, Juránek I, Collins MN, Šoltés L. Influence of tiopronin, captopril and levamisole therapeutics on the oxidative degradation of hyaluronan. Carbohydr Polym 2015; 134:516-23. [DOI: 10.1016/j.carbpol.2015.07.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022]
|
11
|
Parsons BJ. Oxidation of glycosaminoglycans by free radicals and reactive oxidative species: A review of investigative methods. Free Radic Res 2015; 49:618-32. [PMID: 25410647 DOI: 10.3109/10715762.2014.985220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosaminoglycans, in particular hyaluronan (HA), and proteoglycans are components of the extracellular matrix (ECM). The ECM plays a key role in the regulation of cellular behaviour and alterations to it can modulate both the development of human diseases as well as controlling normal biochemical processes such as cell signalling and pro-inflammatory responses. For these reasons, in vitro fragmentation studies of glycosaminoglycans by free radicals and oxidative species are seen to be relevant to the understanding of in vivo studies of damage to the ECM. A wide range of investigative techniques have therefore been applied to gain insights into the relative fragmentation effects of several reactive oxidative species with the ultimate goal of determining mechanisms of fragmentation at the molecular level. These methods are reviewed here.
Collapse
Affiliation(s)
- B J Parsons
- Health and Social Sciences, Leeds Beckett University , Leeds , UK
| |
Collapse
|
12
|
A novel oxido-viscosifying Hyaluronic Acid-antioxidant conjugate for osteoarthritis therapy: Biocompatibility assessments. Eur J Pharm Biopharm 2015; 90:70-9. [DOI: 10.1016/j.ejpb.2014.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 02/01/2023]
|
13
|
Juranek I, Stern R, Soltes L. Hyaluronan peroxidation is required for normal synovial function: an hypothesis. Med Hypotheses 2014; 82:662-6. [PMID: 24655797 DOI: 10.1016/j.mehy.2014.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/14/2014] [Accepted: 02/23/2014] [Indexed: 12/11/2022]
Abstract
Despite widespread use of antioxidants, reactive oxygen species have important functions in normal tissues. Herein, we present an example of a physiological role for free radicals, and in particular, reactive oxygen species, that are suppressed by anti-oxidants. Free radicals catalyze the degradation of hyaluronan in synovial fluid, a tissue in which hyaluronidase activity is barely detectable. Articular cartilage requires a low oxygen environment. The process of hyaluronan peroxidation consumes significant amounts of molecular oxygen, thus keeping the tension of oxygen in the joint at a low but physiologically critical level. One concern is the change in physical activity between day and night, with periods of joint hyperemia and ischemia, respectively. Increased oxygen and the resulting oxidative stress would lead to chondrocyte dysfunction and cartilage damage. A mechanism for keeping oxygen levels low is required. We postulate that a mechanism indeed exists for the removal of excess oxygen. High-molar-mass hyaluronan turnover in synovial fluid utilizes peroxidative degradation, during which oxygen is massively consumed. The peroxidation itself may be initiated by hydrogen peroxide, which is produced by chondrocyte mitochondria, that can diffuse into the synovial fluid. The resulting decrease in available oxygen down-regulates hyaluronan peroxidation. This in turn prevents excessive oxygen consumption. It appears that free radicals and reactive oxygen species may be components of normal physiology, particularly in the synovial fluid of joints and articular cartilage. It is suggested therefore that indiscriminate use of anti-oxidants, vigorously promoted currently by health professionals and the health industry, be approached with caution.
Collapse
Affiliation(s)
- I Juranek
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84104 Bratislava, Slovakia
| | - R Stern
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, 230 West-125th St., New York, NY 10027, USA.
| | - L Soltes
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84104 Bratislava, Slovakia
| |
Collapse
|
14
|
Tamer TM. Hyaluronan and synovial joint: function, distribution and healing. Interdiscip Toxicol 2013; 6:111-25. [PMID: 24678248 PMCID: PMC3967437 DOI: 10.2478/intox-2013-0019] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/25/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022] Open
Abstract
Synovial fluid is a viscous solution found in the cavities of synovial joints. The principal role of synovial fluid is to reduce friction between the articular cartilages of synovial joints during movement. The presence of high molar mass hyaluronan (HA) in this fluid gives it the required viscosity for its function as lubricant solution. Inflammation oxidation stress enhances normal degradation of hyaluronan causing several diseases related to joints. This review describes hyaluronan properties and distribution, applications and its function in synovial joints, with short review for using thiol compounds as antioxidants preventing HA degradations under inflammation conditions.
Collapse
Affiliation(s)
- Tamer Mahmoud Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
- Laboratory of Bioorganic Chemistry of Drugs, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|