1
|
Su GZ, Li M, Wang XJ, Wang RB, Ma SG, Zhang D, Wang XL, Li L, Liu YB, Qu J, Li YH, Li Y, Yu SS. Chemical constituents from the fruits of Illicium simonsii and their antiviral activity and neuroprotective effect. PHYTOCHEMISTRY 2022; 202:113323. [PMID: 35835233 DOI: 10.1016/j.phytochem.2022.113323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
One undescribed diterpenoid illisimonone A, four undescribed sesquiterpenes named (±)-simonones A, simonterpenoids A and B, and two undescribed lignans, illisimonins A and B, along with five known compounds were isolated from the fruits of Illicium simonsii. Their structures were elucidated by extensive spectroscopic data. The absolute configuration of illisimonone A was determined by single-crystal X-ray diffraction analysis. Illisimonone A showed potential antiviral activity against the Coxsackie B3 virus, with an IC50 value of 3.70 μM. Illisimonin B and henrylactone A showed potential neuroprotective effects against oxygen-glucose deprivation induced cell injury in SK-N-SH cells, with survival rates of 57.6%, 58.0%, respectively.
Collapse
Affiliation(s)
- Guo-Zhu Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Liang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu-Huan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Lun J, Zhang W, Zhao Y, Song Y, Guo X. Enantiomeric Separation of Dioxopromethazine and its Stereoselective Pharmacokinetics in Rats by HPLC-MS/MS. J Pharm Sci 2021; 110:3082-3090. [PMID: 33940025 DOI: 10.1016/j.xphs.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Dioxopromethazine (DPZ) is a popular phenothiazine antihistamine that is widely used as a racemic drug in clinical to cure respiratory illness. In our work, a reliable, specific, and rapid enantioselective HPLC-MS/MS method has been established and fully validated for the quantification of R- and S-DPZ in rat plasma. After plasma alkalization (with 1 M Na2CO3), DPZ enantiomers and diphenhydramine (IS) were extracted using ethyl acetate. Completely separation of R- and S-DPZ (Rs = 2.8) within 12 min was implemented on Chiralpak AGP column (100 × 4.0 mm i.d., 5 μm) employing ammonium acetate (10 mM; pH 4.5) - methanol (90:10, v/v) as mobile phase. Themultiple reaction monitoring (MRM) mode was used for the detection of DPZ enantiomers and IS. The transitions of m/z 317.2 → 86.1 and 256.2 → 167.1 werechosen for monitoring DPZ enantiomers and IS, respectively. Good linearity (r2 > 0.995) was achieved for each DPZ enantiomer over the linear ranges of 1.00 - 80.00 ng/mL, with the lower limit of quantitation (LLOQ) of 1.00 ng/mL. The intra-day and inter-day precisions (RSDs,%) were below 12.3%, and accuracies (REs,%) were in the scope of-10.5% to 6.6%, which were within the admissible criteria. The validated bioanalytical approach was applied to the stereoselective pharmacokinetic (PK) research of DPZ in rat plasma for the first time. It was found that significant differences (p < 0.05) exist between the main PK parameters of R- and S-DPZ, indicating the pharmacokinetic behaviors of DPZ enantiomers in rats were stereoselective. The chiral inversion of the enantiomers did not occur during the assay.
Collapse
Affiliation(s)
- Jia Lun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Wenying Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Yu Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China
| | - Yongbo Song
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China.
| | - Xingjie Guo
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, P. R. China.
| |
Collapse
|
3
|
Xiong F, Yang BB, Zhang J, Li L. Enantioseparation, Stereochemical Assignment and Chiral Recognition Mechanism of Sulfoxide-Containing Drugs. Molecules 2018; 23:molecules23102680. [PMID: 30340337 PMCID: PMC6222453 DOI: 10.3390/molecules23102680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
The distinct pharmacodynamic and pharmacokinetic properties of enantiopure sulfoxide drugs have stimulated us to systematically investigate their chiral separation, stereochemical assignment, and chiral recognition mechanism. Herein, four clinically widely-used sulfoxide drugs were chosen and optically resolved on various chiral stationary phases (CSPs). Theoretical simulations including electronic circular dichroism (ECD) calculation and molecular docking were adopted to assign the stereochemistry and reveal the underlying chiral recognition mechanism. Our results showed that the sequence of calculated mean binding energies between each pair of enantiomers and CSP matched exactly with experimentally observed enantiomeric elution order (EEO). It was also found that the length of hydrogen bond might contribute dominantly the interaction between two enantiomers and CSP. We hope our study could provide a fresh perspective to explore the stereochemistry and chiral recognition mechanism of chiral drugs.
Collapse
Affiliation(s)
- Fei Xiong
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jie Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Luchian R, Vinţeler E, Chiş C, Vasilescu M, Leopold N, Prates Ramalho JP, Chiş V. Conformational Preference and Spectroscopical Characteristics of the Active Pharmaceutical Ingredient Levetiracetam. J Pharm Sci 2017; 106:3564-3573. [PMID: 28842298 DOI: 10.1016/j.xphs.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
Abstract
The analysis of the possible conformers and the conformational change between solid and liquid states of a particular drug molecule are mandatory not only for describing reliably its spectroscopical properties but also for understanding the interaction with the receptor and its mechanism of action. Therefore, here we investigated the free-energy conformational landscape of levetiracetam (LEV) in gas phase as well as in water and ethanol, aiming to describe the 3-dimensional structure and energetic stability of its conformers. Twenty-two unique conformers were identified, and their energetic stability was determined at density functional theory B3LYP/6-31+G(2d,2p) level of theory. The 6 most stable monomers in water, within a relative free-energy window of 0.71 kcal mol-1 and clearly separated in energy from the remaining subset of 16 conformers, as well as the 3 most stable dimers were then used to compute the Boltzmann populations-averaged UV-Vis and NMR spectra of LEV. The conformational landscape in solution is distinctly different from that corresponding to gas phase, particularly due to the relative orientations of the butanamide group. Aiming to clarify the stability of the possible dimers of LEV, we also investigated computationally the structure of a set of 11 nonhydrated and hydrated homochiral hydrogen-bonded LEV dimers.
Collapse
Affiliation(s)
- Raluca Luchian
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania
| | - Emil Vinţeler
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania
| | - Cosmina Chiş
- Pediatric Neurology Department, Children Emergency Hospital, Cluj-Napoca, Romania
| | - Mihai Vasilescu
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania
| | - João P Prates Ramalho
- Department of Chemistry, School of Science and Technology, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; CGE-Centro de Geofisica de Evora, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Vasile Chiş
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Claoxylones A–I, prenylbisabolane diterpenoids with anti-Coxsackie B virus activity from the branches and leaves of Claoxylon polot. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Li L, Wang L, Si Y. Electronic circular dichroism behavior of chiral Phthiobuzone. Acta Pharm Sin B 2014; 4:167-71. [PMID: 26579380 PMCID: PMC4590302 DOI: 10.1016/j.apsb.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/10/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022] Open
Abstract
Phthiobuzone is a bis(thiosemicarbazone) derivative with a single chiral center which has been used as a racemate in the clinical treatment of herpes and trachoma diseases. In this study, its two enantiomers were prepared from chiral amino acids and their absolute configurations were investigated by electronic circular dichroism (ECD) combined with modern quantum-chemical calculations using time-dependent density functional theory. It was found that solvation changed both the conformational distribution and the ECD spectrum of each conformer. The theoretical ECD spectra of the two enantiomers were in good agreement with the experimentally determined spectra of the corresponding isomers in dimethyl sulfoxide. The ECD behavior of the bis(thiosemicarbazone) chromophore in a chiral environment is also discussed. Our results indicate that ECD spectroscopy may be a useful tool for the stereochemical evaluation of chiral drugs.
Collapse
|
7
|
Absolute configuration of Buagafuran: An experimental and theoretical electronic circular dichroism study. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li L, Liu YF, Si YK, Yu DQ. Chiroptical properties of ajugol investigated by quantum chemical calculation using time-dependent density functional theory. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2013; 15:670-679. [PMID: 23777271 DOI: 10.1080/10286020.2013.802691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The chiroptical properties of an iridoid glycoside ajugol were fully investigated by quantum chemical calculations of specific optical rotation at the sodium D line ([α]D value), optical rotatory dispersion (ORD), and electronic circular dichroism (ECD) using time-dependent density functional theory (TDDFT). TDDFT calculations of the [α]D value and ORD of ajugol over the range of 365-633 nm were in good agreement with the experimental data. The predicted ECD spectrum of ajugol was also consistent with the experiment, showing a strong negative Cotton effect (CE) at around 190 nm and a weak positive CE at around 220 nm. Our results unambiguously determined the absolute configuration (AC) of the aglycone part of ajugol as (1S, 5R, 6R, 8S, 9S) and supported the generally accepted AC assignments of iridoid glycosides. Semi-empirical rule for the enol ether chromophore, basis set selection, and effect of glucose group on ECD spectra were also discussed in the case of ajugol.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | |
Collapse
|
9
|
Amagata T, Xiao J, Chen YP, Holsopple N, Oliver AG, Gokey T, Guliaev AB, Minoura K. Creation of an HDAC-based yeast screening method for evaluation of marine-derived actinomycetes: discovery of streptosetin A. JOURNAL OF NATURAL PRODUCTS 2012; 75:2193-2199. [PMID: 23167691 PMCID: PMC3532527 DOI: 10.1021/np300640g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A histone deacetylase (HDAC)-based yeast assay employing a URA3 reporter gene was applied as a primary screen to evaluate a marine-derived actinomycete extract library and identify human class III HDAC (SIRT) inhibitors. On the basis of the bioassay-guided purification, a new compound designated as streptosetin A (1) was obtained from one of the active strains identified through the yeast assay. The gross structure of the new compound was elucidated from the 1D and 2D NMR data. The absolute stereostructure of 1 was determined based on X-ray crystal structure analysis and simulation of ECD spectra using time-dependent density functional theory calculations. This compound showed weak inhibitory activity against yeast Sir2p and human SIRT1 and SIRT2.
Collapse
Affiliation(s)
- Taro Amagata
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang X, Li L, Si YK, Yin DL. ECD spectrometric methods for detecting the enantioselective enzymatic hydrolysis of racemic 3-acetoxy-4-phenyl-β-lactam. CHINESE CHEM LETT 2012. [DOI: 10.1016/j.cclet.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Studies on the conformational transformations of l-arginine molecule in aqueous solution with temperature changing by circular dichroism spectroscopy and optical rotations. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|