1
|
Xie F, Feng Z, Xu B. Metabolic Characteristics of Gut Microbiota and Insomnia: Evidence from a Mendelian Randomization Analysis. Nutrients 2024; 16:2943. [PMID: 39275260 PMCID: PMC11397146 DOI: 10.3390/nu16172943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Insomnia is a common sleep disorder that significantly impacts individuals' sleep quality and daily life. Recent studies have suggested that gut microbiota may influence sleep through various metabolic pathways. This study aims to explore the causal relationships between the abundance of gut microbiota metabolic pathways and insomnia using Mendelian randomization (MR) analysis. This two-sample MR study used genetic data from the OpenGWAS database (205 gut bacterial pathway abundance) and the FinnGen database (insomnia-related data). We identified single nucleotide polymorphisms (SNPs) associated with gut bacterial pathway abundance as instrumental variables (IVs) and ensured their validity through stringent selection criteria and quality control measures. The primary analysis employed the inverse variance-weighted (IVW) method, supplemented by other MR methods, to estimate causal effects. The MR analysis revealed significant positive causal effects of specific carbohydrate, amino acid, and nucleotide metabolism pathways on insomnia. Key pathways, such as gluconeogenesis pathway (GLUCONEO.PWY) and TCA cycle VII acetate producers (PWY.7254), showed positive associations with insomnia (B > 0, p < 0.05). Conversely, pathways like hexitol fermentation to lactate, formate, ethanol and acetate pathway (P461.PWY) exhibited negative causal effects (B < 0, p < 0.05). Multivariable MR analysis confirmed the independent causal effects of these pathways (p < 0.05). Sensitivity analyses indicated no significant pleiotropy or heterogeneity, ensuring the robustness of the results. This study identifies specific gut microbiota metabolic pathways that play critical roles in the development of insomnia. These findings provide new insights into the biological mechanisms underlying insomnia and suggest potential targets for therapeutic interventions. Future research should further validate these causal relationships and explore how modulating gut microbiota or its metabolic products can effectively improve insomnia symptoms, leading to more personalized and precise treatment strategies.
Collapse
Affiliation(s)
- Fuquan Xie
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Fernández-Felipe J, Sanz-Martos AB, Marcos A, Lorenzo MP, Cano V, Merino B, Ambrosio E, Del Olmo N, Ruiz-Gayo M. Saturated and unsaturated triglyceride-enriched diets modify amino acid content in the mice hippocampus. Neurosci Lett 2023; 793:136972. [PMID: 36414132 DOI: 10.1016/j.neulet.2022.136972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Elevated intake of fat modulates l-glutamate (l-Glu) turnover within the hippocampus (HIP). Our aim has been to investigate the effect of saturated vs unsaturated fat on the content of l-Glu and other amino acids involved in synaptic transmission within the HIP. The study was carried out in male mice fed (2 h or 8 weeks) with standard chow or with diets enriched either with saturated (SOLF) or unsaturated triglycerides (UOLF). An in vitro assay was performed in HIP slices incubated with palmitic (PA), oleic (OA), or lauric acid (LA). Amino acids were quantified by capillary electrophoresis. While both diets increased the amount of l-Glu and l-aspartate and decreased l-glutamine levels, only UOLF affected d-serine and taurine levels. γ-Aminobutyric acid was specifically decreased by SOLF. In vitro assays revealed that PA and OA modified l-Glu, glycine, l-serine and d-serine concentration. Our results suggest that fatty acids contained in SOLF and UOLF have an impact on HIP amino acid turnover that may account, at least partially, for the functional changes evoked by these diets.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ana B Sanz-Martos
- Department of Psychobiology, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Alberto Marcos
- Department of Psychobiology, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - María P Lorenzo
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| |
Collapse
|
3
|
Huang B, Xu L, Zhao Z, Wang N, Zhao Y, Huang S. Simultaneous analysis of amino acids based on discriminative 19F NMR spectroscopy. Bioorg Chem 2022; 124:105818. [PMID: 35489271 DOI: 10.1016/j.bioorg.2022.105818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/02/2022]
Abstract
The simultaneous analysis of amino acids (AAs) is crucial for human health, diagnosis and treatment of disease, and nutritional quality evaluation in foodstuffs. Here, we establish an easy and rapid method for the simultaneous analysis of AAs using a single reagent 2-(trifluoromethyl)benzaldehyde (oTFMBA) based on spectral-separation-enabled 19F NMR spectroscopy. oTFMBA, a highly sensitive chemosensor, is capable of analyzing 19 proteinogenic AAs or non-amino acid amines (non-AAs) in a complex mixture by adjusting the pH in a toilless way. The 19F signals of oTFMBA-labeled AAs are distributed over a wide range of ∼ 0.7 ppm, demonstrating oTFMBA with higher resolution for simultaneous analysis of AAs compared to the o-phthaldialdehyde (OPA) method (<0.6 ppm). Additionally, 12 AAs were unambiguously identified in human urine, including Asp, Ser, Gly, Thr, Glu, Arg, Ala, Val, Ile, Tyr, His, and Phe. Furthermore, our method's detection limit for AAs is 5.83 μM, illustrating sensitivity with an ∼100-fold improvement over the OPA method. This work represents an approach to the analysis of AAs or non-AAs in a complicated mixture (even biofluid) using a 19F NMR probe with high sensitivity, which is of great significance for the simultaneous analysis of multiple analytes.
Collapse
Affiliation(s)
- Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Lihua Xu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhao Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
4
|
Öztürk Er E, Erarpat S, Bodur S, Günkara ÖT, Özbek B, Bakırdere S. Accurate Determination of Amino Acids by Quadruple Isotope Dilution-Reverse Phase Liquid Chromatography-Tandem Mass Spectrometry after Derivatization with 2-Naphthoyl Chloride. J Chromatogr A 2022; 1667:462870. [DOI: 10.1016/j.chroma.2022.462870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
5
|
Mass spectrometry based metabolomics of volume-restricted in-vivo brain samples: Actual status and the way forward. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Li L, Gu X, Wang J, Chen Z. Amino Acid Detection with Bare Eyes Based on Two Different Concentrations of Iodides as Sensor Receptors. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Optimization and validation of a chiral CE-LIF method for quantitation of aspartate, glutamate and serine in murine osteocytic and osteoblastic cells. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122259. [DOI: 10.1016/j.jchromb.2020.122259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
|
8
|
Niu B, Zheng FH, Xu JP. Protective effect of gui zhi (Ramulus Cinnamomi) on abnormal levels of four amino acid neurotransmitters by chronically ma huang (Herb Ephedra) intoxicated prefrontal cortex in rats treated with a ma huang-gui zhi herb pair. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112408. [PMID: 31751653 DOI: 10.1016/j.jep.2019.112408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Herb Ephedra (Ma Huang in Chinese)-Ramulus Cinnamomi (Gui Zhi in Chinese) herb pair is a classic traditional Chinese herb pair used to treat asthma, nose and lung congestion, and fever with anhidrosis. In previous study, we found that chronic administration of ma huang induced obvious neurodegeneration in rat brains, with the prefrontal cortex showing the greatest effect. Gui zhi decreased hyperactivity produced by repeated ma huang administration, and attenuated oxidative stress in rat prefrontal cortex induced by ma huang. AIM OF THE STUDY The study was aimed to investigate the protective effect of gui zhi on ma huang-induced abnormal levels of four amino acid neurotransmitters in rat prefrontal cortex. MATERIALS AND METHODS All ma huang and ma huang-gui zhi herb pair extracts were prepared using methods of traditional Chinese medicine and were normalized based on the ephedrine content. Two-month-old male Sprague-Dawley rats (6 rats/group) were administered ma huang or ma huang-gui zhi herb pair extracts for 1, 3, 5 or 7 days (ephedrine = 48 mg/kg). The contents of ephedrine, glutamate (Glu), aspartic acid (Asp), glycine (Gly), and gamma-aminobutyric acid (GABA) in the prefrontal cortex were determined using ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) at 0.5, 1.0, 5.0 h after administration. RESULTS Ma huang significantly enhanced the levels of GABA, Gly, Glu and Asp in the prefrontal cortex, while gui zhi partially abolished the effects. CONCLUSIONS Ma huang-induced neurotoxicity may be associated with its effects on amino acid neurotransmitters. Gui zhi is a promising neuroprotective agent against for ma huang-induced neurotoxicity. The information presented in this study will help supplement the available data for future ma huang-gui zhi herb pair compatibility studies.
Collapse
Affiliation(s)
- Bo Niu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Fang-Hao Zheng
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, PR China.
| | - Jiang-Ping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
9
|
Roura‐Martínez D, Ucha M, Orihuel J, Ballesteros‐Yáñez I, Castillo CA, Marcos A, Ambrosio E, Higuera‐Matas A. Central nucleus of the amygdala as a common substrate of the incubation of drug and natural reinforcer seeking. Addict Biol 2020; 25:e12706. [PMID: 30623520 DOI: 10.1111/adb.12706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023]
Abstract
Relapse into drug use is a major problem faced by recovering addicts. In humans, an intensification of the desire for the drug induced by environmental cues-incubation of drug craving-has been observed. In rodents, this phenomenon has been modeled by studying drug seeking under extinction after different times of drug withdrawal (or using a natural reinforcer). Although much progress has been made, an integrated approach simultaneously studying different drug classes and natural reward and examining different brain regions is lacking. Lewis rats were used to study the effects of cocaine, heroin, and sucrose seeking incubation on six key brain regions: the nucleus accumbens shell/core, central/basolateral amygdala, and dorsomedial/ventromedial prefrontal cortex. We analyzed PSD95 and gephyrin protein levels, gene expression of glutamatergic, GABAergic and endocannabinoid elements, and amino acid transmitter levels. The relationships between the areas studied were examined by Structural Equation Modelling. Pathways from medial prefrontal cortex and basolateral complex of the amygdala to central nucleus of the amygdala, but not to the nucleus accumbens, were identified as common elements involved in the incubation phenomenon for different substances. These results suggest a key role for the central nucleus of amygdala and its cortical and amygdalar afferences in the incubation phenomenon, and we suggest that by virtue of its regulatory effects on glutamatergic and GABAergic dynamics within amygdalar circuits, the endocannabinoid system might be a potential target to develop medications that are effective in the context of relapse.
Collapse
Affiliation(s)
| | - Marcos Ucha
- Department of PsychobiologySchool of Psychology, UNED Madrid Spain
| | - Javier Orihuel
- Department of PsychobiologySchool of Psychology, UNED Madrid Spain
| | | | - Carlos Alberto Castillo
- School of Occupational TherapySpeech Therapy and Nursing, University of Castilla‐La Mancha Talavera de la Reina Spain
| | - Alberto Marcos
- Department of PsychobiologySchool of Psychology, UNED Madrid Spain
| | - Emilio Ambrosio
- Department of PsychobiologySchool of Psychology, UNED Madrid Spain
| | | |
Collapse
|
10
|
Zhou W, Wang Y, Yang F, Dong Q, Wang H, Hu N. Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method. Molecules 2019; 24:E1665. [PMID: 31035340 PMCID: PMC6539371 DOI: 10.3390/molecules24091665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022] Open
Abstract
Amino acids are indispensable components of living organisms. The high amino acid content in Nitraria tangutorum Bobr. fruit distinguishes it from other berry plants and is of great significance to its nutritional value. Herein, using 10-ethyl-acridine-3-sulfonyl chloride as a fluorescent pre-column labeling reagent, a method for the efficient and rapid determination of amino acid content in N. tangutorum by pre-column fluorescence derivatization and on-line mass spectrometry was established and further validated. The limits of detection (signal-to-noise ratio = 3) were between 0.13 and 1.13 nmol/L, with a linear coefficient greater than 0.997 and a relative standard deviation between 1.37% and 2.64%. In addition, the method required a short analysis time, separating 19 amino acids within 20 min. Subsequently, the method was used to analyze the amino acid content of Nitraria tangutorum Bobr. from tissues retrieved from seven regions of the Qinghai-Tibet Plateau. Nitraria tangutorum Bobr. was shown to contain a large amount of amino acids, with the total content and main amino acid varying between the different tissues. This research supports the nutritional evaluation, quality control, and development and utilization of Nitraria tangutorum Bobr.
Collapse
Affiliation(s)
- Wu Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Yuwei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| | - Fang Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| | - Qi Dong
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810008, China.
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810008, China.
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810008, China.
| |
Collapse
|
11
|
Advances in capillary electrophoresis for the life sciences. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:116-136. [PMID: 31035134 DOI: 10.1016/j.jchromb.2019.04.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
Capillary electrophoresis (CE) played an important role in developments in the life sciences. The technique is nowadays used for the analysis of both large and small molecules in applications where it performs better than or is complementary to liquid chromatographic techniques. In this review, principles of different electromigration techniques, especially capillary isoelectric focusing (CIEF), capillary gel (CGE) and capillary zone electrophoresis (CZE), are described and recent developments in instrumentation, with an emphasis on mass spectrometry (MS) coupling and microchip CE, are discussed. The role of CE in the life sciences is shown with applications in which it had a high impact over the past few decades. In this context, current practice for the characterization of biopharmaceuticals (therapeutic proteins) is shown with CIEF, CGE and CZE using different detection techniques, including MS. Subsequently, the application of CGE and CZE, in combination with laser induced fluorescence detection and CZE-MS are demonstrated for the analysis of protein-released glycans in the characterization of biopharmaceuticals and glycan biomarker discovery in biological samples. Special attention is paid to developments in capillary coatings and derivatization strategies for glycans. Finally, routine CE analysis in clinical chemistry and latest developments in metabolomics approaches for the profiling of small molecules in biological samples are discussed. The large number of CE applications published for these topics in recent years clearly demonstrates the established role of CE in life sciences.
Collapse
|
12
|
Huang D, Jiang QS, Yang JQ, Cui T, Wang NR, Du TT, Jiang XH. Simultaneous determination of nine analytes related to the pathogenesis of diabetic encephalopathy in diabetic rat cortex and hippocampus by HPLC-FLD. Biomed Chromatogr 2018; 32:e4338. [PMID: 30003560 DOI: 10.1002/bmc.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
The determination of amino acids and monoamine with actions like neurotransmitters or modulators has become increasingly important for studying the relationship between the dysfunction of neurotransmitters and the pathogenesis of diabetic encephalopathy. Here, a high-performance liquid chromatography with fluorescence detection method was developed to simultaneously determine nine monoamines and amino acids including three excitatory neurotransmitters (aspartate, glutamate, and serotonin), four inhibitory neurotransmitters (glycine, γ-aminobutyric acid, taurine, dopamine), a precursor of 5-HT (tryptophan) and methionine using homoserine as the internal standard. The separation was performed on a BDS column with methanol-buffer solution of 35 mmol/L sodium acetate and 5 mmol/L citric acid (pH 6.0) using a simple gradient elution. Several parameters including specificity, precision, and recovery were validated after optimization of the analytical conditions. The developed method was successfully applied to determine the cortex and the hippocampus samples from Sprague-Dawley rats. Our results showed that various neurotransmitters involved in diabetes mellitus may tend to be differentially modulated and present a different alteration tendency at different time course, which might be associated with the duration of diabetes mellitus.
Collapse
Affiliation(s)
- Dan Huang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qing-Song Jiang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun-Qing Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ting Cui
- Zunyi Medical and Pharmaceutical College, Zunyi, China
| | | | - Ting-Ting Du
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xin-Hui Jiang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Song Y, Xu C, Kuroki H, Liao Y, Tsunoda M. Recent trends in analytical methods for the determination of amino acids in biological samples. J Pharm Biomed Anal 2017; 147:35-49. [PMID: 28927726 DOI: 10.1016/j.jpba.2017.08.050] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022]
Abstract
Amino acids are widely distributed in biological fluids and involved in many biological processes, such as the synthesis of proteins, fatty acids, and ketone bodies. The altered levels of amino acids in biological fluids have been found to be closely related to several diseases, such as type 2 diabetes, kidney disease, liver disease, and cancer. Therefore, the development of analytical methods to measure amino acid concentrations in biological samples can contribute to research on the physiological actions of amino acids and the prediction, diagnosis and understanding of diseases. This review describes the analytical methods reported in 2012-2016 that utilized liquid chromatography and capillary electrophoresis coupled with ultraviolet, fluorescence, mass spectrometry, and electrochemical detection. Additionally, the relationship between amino acid concentrations and several diseases is also summarized.
Collapse
Affiliation(s)
- Yanting Song
- Key Laboratory of Tropic Biological Resources, Minister of Education, Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Chang Xu
- Key Laboratory of Tropic Biological Resources, Minister of Education, Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Hiroshi Kuroki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 1130033, Japan
| | - Yiyi Liao
- Key Laboratory of Tropic Biological Resources, Minister of Education, Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 1130033, Japan.
| |
Collapse
|
14
|
An K, Duong HD, Rhee JI. Ratiometric fluorescent l-arginine and l-asparagine biosensors based on the oxazine 170 perchlorate-ethyl cellulose membrane. Eng Life Sci 2017; 17:847-856. [PMID: 32624832 DOI: 10.1002/elsc.201700033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/01/2017] [Accepted: 05/17/2017] [Indexed: 11/07/2022] Open
Abstract
Ratiometric fluorescent l-arginine (Arg) and l-asparagine (Asn) biosensors were developed using an oxazine 170 perchlorate (O17) ethyl cellulose (EC) membrane and the enzymes entrapped into the matrix of EC and hydrogel polyurethane. The sensing principles were based on the hydrolysis reactions of urea and l-Arg under the catalysis of the urease and arginase to produce ammonia in the case of an l-Arg-sensing membrane and also on the hydrolysis reaction of l-Asn under the catalysis of asparaginase in the case of an l-Asn-sensing membrane. The O17-EC membrane reacted with the ammonia produced from the hydrolysis reactions and changed the fluorescence intensities at λ em = 565 and 625 nm. The ratio of the fluorescence intensities at λ em = 565 and 625 nm was proportional to the concentrations of l-Arg or l-Asn in the range of 0.1-10 mM. The LOD of the l-Arg- and l-Asn-sensing membranes was 0.082 ± 0.0014 and 0.074 ± 0.0023 mM, respectively. The sensing membranes also showed good quality in terms of response time, reversibility, and stability. The interference study demonstrated that some components such as amino acids had little negative effects on the performance of the sensing membranes for the detection of l-Arg and l-Asn. These simple and sensitive ratiometric fluorescent sensing membranes provide a basic or comprehensive method for detecting l-Arg and l-Asn in blood and urine samples as well as in the fermentation processes.
Collapse
Affiliation(s)
- Kido An
- School of Chemical Engineering Chonnam National University Gwangju Republic of Korea
| | - Hong Dinh Duong
- School of Chemical Engineering Chonnam National University Gwangju Republic of Korea
| | - Jong Il Rhee
- School of Chemical Engineering Chonnam National University Gwangju Republic of Korea
| |
Collapse
|
15
|
Cui T, Qiu HM, Huang D, Zhou QX, Fu XY, Li HY, Jiang XH. Abnormal levels of seven amino neurotransmitters in depressed rat brain and determination by HPLC-FLD. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ting Cui
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Hong-Mei Qiu
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Dan Huang
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Qi-Xin Zhou
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Xiao-Yan Fu
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Hai-Yan Li
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Xin-Hui Jiang
- School of Pharmacy; Chongqing Medical University; Chongqing China
| |
Collapse
|
16
|
Begou O, Gika HG, Wilson ID, Theodoridis G. Hyphenated MS-based targeted approaches in metabolomics. Analyst 2017; 142:3079-3100. [DOI: 10.1039/c7an00812k] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Review of targeted metabolomics, with a focus on the description of analytical methods.
Collapse
Affiliation(s)
- O. Begou
- Department of Chemistry
- Aristotle University
- 54124 Thessaloniki
- Greece
| | - H. G. Gika
- Department of Medicine
- Aristotle University
- 54124 Thessaloniki
- Greece
| | - I. D. Wilson
- Division of Computational and Systems Medicine
- Department of Surgery and Cancer
- Imperial College
- London
- UK
| | - G. Theodoridis
- Department of Chemistry
- Aristotle University
- 54124 Thessaloniki
- Greece
| |
Collapse
|
17
|
Omar MMA, Elbashir AA, Schmitz OJ. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food. Food Chem 2017; 214:300-307. [DOI: 10.1016/j.foodchem.2016.07.060] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/14/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022]
|
18
|
González Paredes RM, García Pinto C, Pérez Pavón JL, Moreno Cordero B. Derivatization coupled to headspace programmed-temperature vaporizer gas chromatography with mass spectrometry for the determination of amino acids: Application to urine samples. J Sep Sci 2016; 39:3375-83. [DOI: 10.1002/jssc.201600186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Rosa María González Paredes
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas; Universidad de Salamanca; Salamanca Spain
| | - Carmelo García Pinto
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas; Universidad de Salamanca; Salamanca Spain
| | - José Luis Pérez Pavón
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas; Universidad de Salamanca; Salamanca Spain
| | - Bernardo Moreno Cordero
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas; Universidad de Salamanca; Salamanca Spain
| |
Collapse
|
19
|
Harstad RK, Bowser MT. High-Speed Microdialysis-Capillary Electrophoresis Assays for Measuring Branched Chain Amino Acid Uptake in 3T3-L1 cells. Anal Chem 2016; 88:8115-22. [PMID: 27398773 DOI: 10.1021/acs.analchem.6b01846] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have developed a high-throughput microdialysis-capillary electrophoresis (MD-CE) assay for monitoring branched chain amino acid (BCAA) uptake/release dynamics in 3T3-L1 cells. BCAAs (i.e., isoleucine, leucine, and valine) and their downstream metabolites (i.e., alanine, glutamine, and glutamate) are important indicators of adipocyte lipogenesis. To perform an analysis, amino acids were sampled using microdialysis, fluorescently labeled in an online reaction, separated using CE, and detected using laser-induced fluorescence (LIF) in a sheath flow cuvette. Separation conditions were optimized for the resolution of the BCAAs isoleucine, leucine, and valine, as well as 13 other amino acids, including ornithine, alanine, glutamine, and glutamate. CE separations were performed in <30 s, and the temporal resolution of the online MD-CE assay was <60 s. Limits of detection (LOD) were 400, 200, and 100 nM for isoleucine, leucine, and valine, respectively. MD-CE dramatically improved throughput in comparison to traditional offline CE methods, allowing 8 replicates of 15 samples (i.e., 120 analyses) to be assayed in <120 min. The MD-CE assay was used to assess the metabolism dynamics of 3T3-L1 cells over time, confirming the utility of the assay.
Collapse
Affiliation(s)
- Rachel K Harstad
- Department of Chemistry, University of Minnesota 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T Bowser
- Department of Chemistry, University of Minnesota 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Denoroy L, Parrot S. Analysis of Amino Acids and Related Compounds by Capillary Electrophoresis. SEPARATION AND PURIFICATION REVIEWS 2016. [DOI: 10.1080/15422119.2016.1212378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Rodrigues KT, Mekahli D, Tavares MFM, Van Schepdael A. Development and validation of a CE-MS method for the targeted assessment of amino acids in urine. Electrophoresis 2016; 37:1039-47. [PMID: 26826549 DOI: 10.1002/elps.201500534] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 12/14/2022]
Abstract
A CE-ESI-MS method was developed and validated for the separation and quantitative analysis of amino acids (AA) in urine. Experimental parameters related to the CE-MS interface, BGE, and mass spectrometer (MS) settings were optimized providing a good separation of 27 AA, including the isomers L-leucine, L-isoleucine, and L-alloisoleucine, in less than 30 min. The sheath liquid was composed by 0.50% formic acid in 60% (v,v) methanol-water delivered at a flow rate of 5 μL/min. The BGE consisted of 0.80 mol/L formic acid at pH 1.96 and 15% methanol. A pH stacking procedure was implemented to enhance sensitivity (a 12.5% NH4 OH solution was injected at 0.5 psi/9 s prior to samples injected at 0.6 psi/20 s). The proposed method was validated according to FDA and ICH protocols exhibiting acceptable parameters. Analytical curves presented coefficients of determination from 0.996 to 0.9997 (with large F statistics and low p-values). LODs and quantification ranged from 0.63 to 29 μmol/L and from 1.9 to 86 μmol/L, respectively. Practical repeatability was obtained for all AA with coefficients of variation better than 0.55% CV (migration time) and 1.7% CV (peak area ratios; methionine sulfone as internal standard). Recoveries of AA in spiked urine ranged from 92.0 to 123% with few exceptions. Moreover, a successful quantification of AA in pooled control and test urine samples, which compose a vesicoureteral reflux cohort, was achieved showing the potential applicability of the proposed method for targeted metabolomics studies using CE-ESI-MS with an Ion Trap as mass analyzer.
Collapse
Affiliation(s)
- Karina T Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven-University of Leuven, Leuven, Belgium.,Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Djalila Mekahli
- Department of Development and Regeneration, Molecular and Cellular Signal Transduction, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
OBORNY NJ, COSTA EEM, SUNTORNSUK L, ABREU FC, LUNTE SM. Evaluation of a Portable Microchip Electrophoresis Fluorescence Detection System for the Analysis of Amino Acid Neurotransmitters in Brain Dialysis Samples. ANAL SCI 2016; 32:35-40. [PMID: 26753703 PMCID: PMC4875779 DOI: 10.2116/analsci.32.35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
A portable fluorescence detection system for use with microchip electrophoresis was developed and compared to a benchtop system. Using this system, six neuroactive amines commonly found in brain dialysate (arginine, citrulline, taurine, histamine, glutamate, and aspartate) were derivatized offline with naphthalene-2,3-dicarboxaldehyde/cyanide, separated electrophoretically, and detected by fluorescence. The limits of detection for the analytes of interest were 50 - 250 nM for the benchtop system and 250 nM - 1.3 μM for the portable system, both of which were adequate for most analyte detection in brain microdialysis samples. The portable system was then demonstrated for the detection of the same six amines in a rat brain microdialysis sample.
Collapse
Affiliation(s)
- Nathan J. OBORNY
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Elton E. Melo COSTA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Alagoas, Brazil
| | - Leena SUNTORNSUK
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Fabiane C. ABREU
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Alagoas, Brazil
| | - Susan M. LUNTE
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
23
|
Fico D, Pennetta A, De Benedetto GE. Bioanalytical Application of Amino Acid Detection by Capillary Electrophoresis. Methods Mol Biol 2016; 1483:249-276. [PMID: 27645741 DOI: 10.1007/978-1-4939-6403-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter illustrates the usefulness of capillary electrophoresis (CE) for the analysis of amino acids, and both normal and chiral separations are covered. In order to provide a general description of the main results and challenges in the biomedical field, some relevant applications and reviews on CE of amino acids are tabulated. Furthermore, some detailed experimental procedures are shown, regarding the CE analysis of amino acids in body fluids, in microdialysate, and released upon hydrolysis of proteins. In particular, the protocols will deal with the following compounds: (1) underivatized aminoacids in blood; (2) γ-Aminobutyric acid, glutamate, and L-Aspartate derivatized with Naphthalene-2,3-dicarboxaldehyde; (3) hydrolysate from bovine serum albumine derivatized with phenylisothiocyanate. By examining these applications on real matrices, the capillary electrophoresis efficiency as tool for Amino Acid analysis can be ascertained.
Collapse
Affiliation(s)
- Daniela Fico
- Laboratorio di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di Beni Culturali, Università degli Studi del Salento, Edificio M, Campus Ecotekne, S.P. Lecce-Monteroni, Lecce, 73100, Italy
| | - Antonio Pennetta
- Laboratorio di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di Beni Culturali, Università degli Studi del Salento, Edificio M, Campus Ecotekne, S.P. Lecce-Monteroni, Lecce, 73100, Italy
| | - Giuseppe E De Benedetto
- Laboratorio di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di Beni Culturali, Università degli Studi del Salento, Edificio M, Campus Ecotekne, S.P. Lecce-Monteroni, Lecce, 73100, Italy.
| |
Collapse
|
24
|
Affiliation(s)
- Rachel K Harstad
- University of Minnesota , Department of Chemistry, 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Alexander C Johnson
- University of Minnesota , Department of Chemistry, 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Megan M Weisenberger
- University of Minnesota , Department of Chemistry, 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Michael T Bowser
- University of Minnesota , Department of Chemistry, 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Joyce R, Kuziene V, Zou X, Wang X, Pullen F, Loo RL. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine. Amino Acids 2015; 48:219-34. [PMID: 26319643 PMCID: PMC4710665 DOI: 10.1007/s00726-015-2076-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022]
Abstract
An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (<15 %) and precision (<15 %) were observed using three quality control samples at a concentration of low, medium and high range of the calibration curve. The limits of detection (LOD) and lower limit of quantification of our method were ranging from approximately 1-300 nM and 0.01-0.5 µM, respectively. The stability of amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.
Collapse
Affiliation(s)
- Richard Joyce
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
- RJMS Consultancy, Rochester, Kent, UK
| | - Viktorija Kuziene
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Xin Zou
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Xueting Wang
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Frank Pullen
- Medway Metabonomics Research Group, School of Science, University of Greenwich, Kent, UK
| | - Ruey Leng Loo
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK.
| |
Collapse
|
26
|
Evaluation of sample preparation and chromatographic separation for the parallel determination of taurine and edaravone in rat tissues using HILIC-MS/MS. Anal Bioanal Chem 2015; 407:4143-53. [DOI: 10.1007/s00216-015-8635-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
|
27
|
|
28
|
Şanlı N, Tague SE, Lunte C. Analysis of amino acid neurotransmitters from rat and mouse spinal cords by liquid chromatography with fluorescence detection. J Pharm Biomed Anal 2015; 107:217-22. [DOI: 10.1016/j.jpba.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/10/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
|
29
|
Turkia H, Sirén H, Penttilä M, Pitkänen JP. Capillary electrophoresis with laser-induced fluorescence detection for studying amino acid uptake by yeast during beer fermentation. Talanta 2015; 131:366-71. [DOI: 10.1016/j.talanta.2014.07.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
|
30
|
Dziomba S, Bekasiewicz A, Prahl A, Bączek T, Kowalski P. Improvement of derivatized amino acid detection sensitivity in micellar electrokinetic capillary chromatography by means of acid-induced pH-mediated stacking technique. Anal Bioanal Chem 2014; 406:6713-21. [PMID: 25146356 PMCID: PMC4182592 DOI: 10.1007/s00216-014-8104-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/05/2022]
Abstract
Derivatization is a frequently used sample preparation procedure applicable to the enhancement of analyte detection sensitivity. Amino acids mostly require derivatization prior to electrophoretic or chromatographic analysis, especially if spectrophotometric detection is used. This study presents an on-line preconcentration technique for derivatized amino acids. The sensitivity of the method was improved by the utilization of the proposed acid-induced pH-mediated stacking mechanism. The method is demonstrated by preconcentration of amino acids labeled with 2,4-dinitrofluorobenzene. Use of optimized conditions for a large sample volume injection (40 s, 13.8 kPa) followed by electrokinetic injection of 0.1 M HCl (20 s, 10 kV) gave a 20- to 30-fold enhancement of sensitivity. The significance of the sweeping mechanism and pseudo-isotachophoresis for the on-line sample focusing and the influence of parameters on the preconcentration process were discussed. The applicability of the elaborated method was demonstrated using human urine samples.
Collapse
Affiliation(s)
- Szymon Dziomba
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, 107 Hallera Street, 80-416, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
31
|
Escuder-Gilabert L, Martín-Biosca Y, Medina-Hernández MJ, Sagrado S. Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 2014; 1357:2-23. [PMID: 24947884 DOI: 10.1016/j.chroma.2014.05.074] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite the fact that extensive research in the field of separations by capillary electrophoresis (CE) has been carried out and many reviews have been published in the last years, a specific review on the use and future potential of cyclodextrins (CDs) in CE is not available. This review focuses the attention in the CD-CE topic over the January 2013-February 2014 period (not covered by previous more general CE-reviews). Recent contributions (reviews and research articles) including practical uses (e.g. solute-CD binding constant estimation and further potentials; 19% of publications), developments and applications (mainly chiral and achiral analysis; 38 and 24% of publications, respectively) are summarized in nine comprehensive tables and are commented. Statistics and predictions related to the CD-CE publications are highlighted in order to infer the current and expected research interests. Finally, trends and initiatives on CD-CE attending to real needs or practical criteria are outlined.
Collapse
Affiliation(s)
- L Escuder-Gilabert
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Y Martín-Biosca
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - M J Medina-Hernández
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - S Sagrado
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain; Centro Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
32
|
Recent advances in development and application of derivatization reagents having a benzofurazan structure: a brief overview. Biomed Chromatogr 2014; 28:760-6. [DOI: 10.1002/bmc.3115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Casado M, Molero M, Sierra C, García-Cazorla A, Ormazabal A, Artuch R. Analysis of cerebrospinal fluid γ-aminobutyric acid by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 2014; 35:1181-7. [PMID: 24338894 DOI: 10.1002/elps.201300261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 01/04/2023]
Abstract
The measurement of γ-aminobutyric acid (GABA) is suitable for investigating various neurological disorders. In this study, a sensitive and selective method for free GABA quantification in cerebrospinal fluid (CSF) has been standardised. This method is based on CE with LIF detection using 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-F) as a derivatisating agent. The reaction conditions (NBD-F concentration, pH, temperature and reaction time) and the electrophoretic parameters (run buffer composition and pH and separation voltage) were optimised to obtain the maximum derivatisation efficiency and electrophoretic resolution. The best resolution was obtained using 200 mM sodium borate, 10 mM SDS, 8.5 mM β-CD, pH 10 and 20 kV voltage. The method was linear in the concentration range of 2.5-1000 nM with good inter- and intra-assay precision values. The effects of CSF handling on free GABA concentrations were also evaluated. Our results show that the time delay between CSF collection and freezing strongly increases the CSF GABA values. Age-related reference values were established in 55 paediatric controls. The influence of antiepileptic therapy on free CSF GABA was studied in 38 neuropaediatric patients. Significantly, higher GABA values were obtained in patients taking valproic acid or vigabatrin therapy, which are antiepileptic drugs that modulate GABA metabolism.
Collapse
Affiliation(s)
- Mercedes Casado
- Department of Clinical Biochemistry and Neuropaediatrics, Hospital Sant Joan de Déu-CIBERER-ISCIII, Barcelona, Spain; Department of Biochemistry and Molecular Biology, UAB, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Tagore S, De RK. Simulating an infection growth model in certain healthy metabolic pathways of Homo sapiens for highlighting their role in Type I Diabetes mellitus using fire-spread strategy, feedbacks and sensitivities. PLoS One 2013; 8:e69724. [PMID: 24039701 PMCID: PMC3767837 DOI: 10.1371/journal.pone.0069724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
Disease Systems Biology is an area of life sciences, which is not very well understood to date. Analyzing infections and their spread in healthy metabolite networks can be one of the focussed areas in this regard. We have proposed a theory based on the classical forest fire model for analyzing the path of infection spread in healthy metabolic pathways. The theory suggests that when fire erupts in a forest, it spreads, and the surrounding trees also catch fire. Similarly, when we consider a metabolic network, the infection caused in the metabolites of the network spreads like a fire. We have constructed a simulation model which is used to study the infection caused in the metabolic networks from the start of infection, to spread and ultimately combating it. For implementation, we have used two approaches, first, based on quantitative strategies using ordinary differential equations and second, using graph-theory based properties. Furthermore, we are using certain probabilistic scores to complete this task and for interpreting the harm caused in the network, given by a 'critical value' to check whether the infection can be cured or not. We have tested our simulation model on metabolic pathways involved in Type I Diabetes mellitus in Homo sapiens. For validating our results biologically, we have used sensitivity analysis, both local and global, as well as for identifying the role of feedbacks in spreading infection in metabolic pathways. Moreover, information in literature has also been used to validate the results. The metabolic network datasets have been collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Collapse
Affiliation(s)
- Somnath Tagore
- Department of Biotechnology and Bioinformatics, Padmashree Dr. D. Y. Patil University, Navi Mumbai, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
35
|
Lorenzo MP, Villaseñor A, Ramamoorthy A, Garcia A. Optimization and validation of a capillary electrophoresis laser-induced fluorescence method for amino acids determination in human plasma: application to bipolar disorder study. Electrophoresis 2013; 34:1701-9. [PMID: 23512402 DOI: 10.1002/elps.201200632] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/05/2022]
Abstract
Quantitative and qualitative analysis of amino acids in biofluids offers relevant information in diagnosis of diseases, evaluation of nutritional state, and in elucidating metabolic influences on physiology. A simple, rapid, and robust procedure in terms of sample treatment, separation, and quantitation based on CE-LIF has been optimized for use in human plasma samples. Time required for derivatization was 15 min and analysis time was 35 min. 4-Fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) was the labeling agent used for obtaining fluorescent derivatives. Electrophoretic conditions were: 175 mM borate buffer at pH 10.25 prepared with 12.5 mM β-cyclodextrin. The voltage applied was +21 kV. Fourteen amino acids could be quantified: L-proline, L-phenylalanine, L-leucine, L-isoleucine, L-ornithine, D-ornithine, L-glutamine, L-alanine, L-threonine, glycine, L-serine, D-serine, taurine and L-glutamate. With this chiral CE-LIF method, L- and D-amino acids are adequately separated. The method was validated for a representative group of amino acids in human plasma: L-proline, L-isoleucine, L-ornithine, L-glutamine, L-alanine L-threonine, glycine, L-serine, D-serine, and glutamate. The method has been successfully applied to human plasma from patients with bipolar disorder, all of whom were taking lithium as a mood stabilizer. Eleven amino acids were quantified in plasma from nine patients, aged 24-55 years. The results were in accordance to published values for the bipolar patients. The method is useful particularly in studies where plasma amino acid levels can be used as biomarkers for diagnosis of diseases, evaluating the disease progression, and monitoring response to drug therapy.
Collapse
Affiliation(s)
- Ma Paz Lorenzo
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | | | | | | |
Collapse
|