1
|
Liu H, Lu M, Hu J, Fu G, Feng Q, Sun S, Chen C. Medications and Food Interfering with the Bioavailability of Levothyroxine: A Systematic Review. Ther Clin Risk Manag 2023; 19:503-523. [PMID: 37384019 PMCID: PMC10295503 DOI: 10.2147/tcrm.s414460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Purpose Levothyroxine is a common prescribed drug. Many medications and food, however, can interfere with its bioavailability. The aim of this review was to summarize the medications, food and beverages that interact with levothyroxine and to assess their effects, mechanisms and treatments. Methods A systematic review on interfering substances that interact with levothyroxine was performed. Web of Science, Embase, PubMed, the Cochrane library, grey literature from other sources and the lists of references were searched for human studies comparing the levothyroxine efficacy with and without interfering substances. The patient characteristics, drug classes, effects and mechanism were extracted. The NHLBI study quality assessment tools and the JBI critical appraisal checklist were used to assess the quality of included studies. Results A total of 107 articles with 128 studies were included. Drugs interactions were revealed in calcium and iron supplements, proton pump inhibitors, bile acid sequestrants, phosphate binders, sex hormones, anticonvulsants and other drugs. Some food and beverage could also induce malabsorption. Proposed mechanisms included direct complexing, alkalization, alteration of serum thyroxine-binding globulin levels and acceleration of levothyroxine catabolism via deiodination. Dose adjustment, administration separation and discontinuation of interfering substances can eliminate the interactions. Liquid solutions and soft-gel capsules could eliminate the malabsorption due to chelation and alkalization. The qualities of most included studies were moderate. Conclusion Lots of medications and food can impair the bioavailability of levothyroxine. Clinicians, patients and pharmaceutical companies should be aware of the possible interactions. Further well-designed studies are needed to provide more solid evidence on treatment and mechanisms.
Collapse
Affiliation(s)
- Hanqing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Man Lu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Guangzhao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Qinyu Feng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People’s Republic of China
| |
Collapse
|
2
|
Thermodynamic insight in dissolution, distribution and permeation processes for some benzimidazoles in biologically relevant solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Inclusion complexation of the anticancer drug pomalidomide with cyclodextrins: fast dissolution and improved solubility. Heliyon 2021; 7:e07581. [PMID: 34355087 PMCID: PMC8321930 DOI: 10.1016/j.heliyon.2021.e07581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022] Open
Abstract
Pomalidomide (POM), a potent anticancer thalidomide analogue was characterized in terms of cyclodextrin complexation to improve its aqueous solubility and maintain its anti-angiogenic activity. The most promising cyclodextrin derivatives were selected by phase-solubility studies. From the investigated nine cyclodextrins - differing in cavity size, nature of substituents, degree of substitution and charge - the highest solubility increase was observed with sulfobutylether-β-cyclodextrin (SBE-β-CD). The inclusion complexation between POM and SBE-β-CD was further characterized with a wide variety of state-of-the-art analytical techniques, such as nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), circular dichroism spectroscopy, fluorescence spectroscopy as well as X-ray powder diffraction method (XRD). Job plot titration by NMR and the AL-type phase-solubility diagram indicated 1:1 stoichiometry in a liquid state. Complementary analytical methods were employed for the determination of the stability constant of the complex; the advantages and disadvantages of the different approaches are also discussed. Inclusion complex formation was also assessed by molecular modelling study. Solid state complexation in a 1:1 M ratio was carried out by lyophilization and investigated by IR and XRD. The complex exhibited fast-dissolution with immediate release of POM, when compared to the pure drug at acidic and neutral pH. Kinetic analysis of POM release from lyophilized complex shows that Korsmeyer-Peppas and Weibull model described the best the dissolution kinetics. The cytotoxicity of the complex was tested against the LP-1 human myeloma cell line which revealed that supramolecular interactions did not significantly affect the anti-cancer activity of the drug. Overall, our results suggest that the inclusion complexation of POM with SBE-β-CD could be a promising approach for developing more effective POM formulations with increased solubility.
Collapse
|
4
|
El Mansouri AE, Oubella A, Dânoun K, Ahmad M, Neyts J, Jochmans D, Snoeck R, Andrei G, Morjani H, Zahouily M, Lazrek HB. Discovery of novel furo[2,3-d]pyrimidin-2-one-1,3,4-oxadiazole hybrid derivatives as dual antiviral and anticancer agents that induce apoptosis. Arch Pharm (Weinheim) 2021; 354:e2100146. [PMID: 34128255 DOI: 10.1002/ardp.202100146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 01/12/2023]
Abstract
A new series of furo[2,3-d]pyrimidine-1,3,4-oxadiazole hybrid derivatives were synthesized via an environmentally friendly, multistep synthetic tool and a one-pot Songoashira-heterocyclization protocol using, for the first time, nanostructured palladium pyrophosphate (Na2 PdP2 O7 ) as a heterogeneous catalyst. Compounds 9a-c exhibited broad-spectrum activity with low micromolar EC50 values toward wild and mutant varicella-zoster virus (VZV) strains. Compound 9b was up to threefold more potent than the reference drug acyclovir against thymidine kinase-deficient VZV strains. Importantly, derivative 9b was not cytostatic at the maximum tested concentration (CC50 > 100 µM) and had an acceptable selectivity index value of up to 7.8. Moreover, all synthesized 1,3,4-oxadiazole hybrids were evaluated for their cytotoxic activity in four human cancer cell lines: fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A549). Data showed that compound 8f exhibits moderate cytotoxicity, with IC50 values ranging from 13.89 to 19.43 µM. Besides, compound 8f induced apoptosis through caspase 3/7 activation, cell death independently of the mitochondrial pathway, and cell cycle arrest in the S phase for HT1080 cells and the G1/M phase for A549 cells. Finally, the molecular docking study confirmed that the anticancer activity of the synthesized compounds is mediated by the activation of caspase 3.
Collapse
Affiliation(s)
- Az-Eddine El Mansouri
- Laboratory of Biomolecular and Medicinal Chemistry, Chemistry Department, Faculty of Science Semlalia, University Cadi Ayyad, Marrakesh, Morocco.,Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Department de chimie, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
| | - Ali Oubella
- Laboratoire de Synthese Organique et de Physico-Chimie Moleculaire, Departement de Chimie, Faculté des Sciences Semlalia, Marrakech, Morocco
| | - Karim Dânoun
- MASCIR Foundation, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco, Rabat, Morocco
| | - Mehdi Ahmad
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | | | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Department de chimie, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
| | - Hassan B Lazrek
- Laboratory of Biomolecular and Medicinal Chemistry, Chemistry Department, Faculty of Science Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| |
Collapse
|
5
|
Pagnin M, Kondos-Devcic D, Chincarini G, Cumberland A, Richardson SJ, Tolcos M. Role of thyroid hormones in normal and abnormal central nervous system myelination in humans and rodents. Front Neuroendocrinol 2021; 61:100901. [PMID: 33493504 DOI: 10.1016/j.yfrne.2021.100901] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (THs) are instrumental in promoting the molecular mechanisms which underlie the complex nature of neural development and function within the central nervous system (CNS) in vertebrates. The key neurodevelopmental process of myelination is conserved between humans and rodents, of which both experience peak fetal TH concentrations concomitant with onset of myelination. The importance of supplying adequate levels of THs to the myelin producing cells, the oligodendrocytes, for promoting their maturation is crucial for proper neural function. In this review we examine the key TH distributor and transport proteins, including transthyretin (TTR) and monocarboxylate transporter 8 (MCT8), essential for supporting proper oligodendrocyte and myelin health; and discuss disorders with impaired TH signalling in relation to abnormal CNS myelination in humans and rodents. Furthermore, we explore the importance of using novel TH analogues in the treatment of myelination disorders associated with abnormal TH signalling.
Collapse
Affiliation(s)
- Maurice Pagnin
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Delphi Kondos-Devcic
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Ginevra Chincarini
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | | | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| |
Collapse
|
6
|
Physicochemical Properties of Zwitterionic Drugs in Therapy. ChemMedChem 2020; 15:1102-1110. [DOI: 10.1002/cmdc.202000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 01/24/2023]
|
7
|
Rodríguez-Rodríguez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, Charli JL. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front Endocrinol (Lausanne) 2019; 10:401. [PMID: 31293518 PMCID: PMC6603095 DOI: 10.3389/fendo.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of β2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, β2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making β2-tanycytes a hub for energy-related regulation of HPT axis activity. β2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of β2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, β2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.
Collapse
Affiliation(s)
- Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Constantinescu T, Lungu CN, Lung I. Lipophilicity as a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives. Molecules 2019; 24:molecules24081505. [PMID: 30999606 PMCID: PMC6515054 DOI: 10.3390/molecules24081505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Lipophilcity is an important physico-chemical parameter that influences membrane transport and binding ability to action. Migration distance following complete elution of compounds was used to calculate different lipophilicity-related parameters. The aim of this study is to show that lipophilicity is a central component of thiazole chalcones and flavonoid derivatives regarding their drug-like properties. Experimental and computational methods were used. This study considers 44 previously synthesized compounds (thiazole chalcones, flavanones, flavones, 3-hydroxyflavones, and their acetylated derivatives). The concerned compounds have shown antitumoral hallmarks and antibacterial activity in vitro. The experimental method used to determine compounds’ lipophilicity was the reverse-phase thin layer chromatography (RP-TLC). Lipophilicity related parameters—isocratic retention factor (RM), relative lipophily (RM0), slope (b), chromatographic hydrophobic index (φ0), scores of principal components (PC1/RM)—were determined based on reverse-phase chromatography results.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania.
| | - Claudiu Nicolae Lungu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania.
| | - Ildiko Lung
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donath street, 400293 Cluj-Napoca, Romania.
| |
Collapse
|
9
|
Köhrle J, Biebermann H. 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocr Rev 2019; 40:602-630. [PMID: 30649231 DOI: 10.1210/er.2018-00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
The rediscovery of the group of thyronamines (TAMs), especially the first detailed description of their most prominent congener 3-iodothyronamine (3T1AM) 14 years ago, boosted research on this thyroid hormone metabolite tremendously. TAMs exert actions partly opposite to and distinct from known functions of thyroid hormones. These fascinating metabolic, anapyrexic, cytoprotective, and brain effects quickly evoked the hope to use hormone-derived TAMs as a therapeutic option. The G protein-coupled receptor (GPCR) TAAR1, a member of the trace amine-associated receptor (TAAR) family, was identified as the first target and effector of TAM action. The initial enthusiasm on pharmacological actions of exogenous TAMs elicited many questions, such as sites of biosynthesis, analytics, modes of action, inactivation, and role of TAMs in (patho)physiology. Meanwhile, it became clear that TAMs not only interact with TAAR1 or other TAAR family members but also with several aminergic receptors and non-GPCR targets such as transient receptor potential channels, mitochondrial proteins, and the serum TAM-binding protein apolipoprotein B100, thus classifying 3T1AM as a multitarget ligand. The physiological mode of action of TAMs is still controversial because regulation of endogenous TAM production and the sites of its biosynthesis are not fully elucidated. Methods for 3T1AM analytics need further validation, as they revealed different blood and tissue concentrations depending on detection principles used such as monoclonal antibody-based immunoassay vs liquid chromatography- matrix-assisted laser desorption/ionization mass spectrometry or time-of-flight mass spectrometry. In this review, we comprehensively summarize and critically evaluate current basic, translational, and clinical knowledge on 3T1AM and its main metabolite 3-iodothyroacetic acid, focusing on endocrine-relevant aspects and open but highly challenging issues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Virili C, Antonelli A, Santaguida MG, Benvenga S, Centanni M. Gastrointestinal Malabsorption of Thyroxine. Endocr Rev 2019; 40:118-136. [PMID: 30476027 DOI: 10.1210/er.2018-00168] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023]
Abstract
Levothyroxine, a largely prescribed drug with a narrow therapeutic index, is often a lifelong treatment. The therapeutic efficacy of T4 may be marred by behavioral, pharmacologic, and pathologic issues acting as interfering factors. Despite a continuous search for an optimal T4 treatment, a significant number of patients fail to show a complete chemical and/or clinical response to this reference dose of T4. Gastrointestinal malabsorption of oral T4 represents an emerging cause of refractory hypothyroidism and may be more frequent than previously reputed. In this review, we examine the pharmacologic features of T4 preparations and their linkage with the intestinal absorption of the hormone. We have stressed the major biochemical and pharmacologic characteristics of T4 and its interaction with the putative transporter at the intestinal level. We have examined the interfering role of nutrients, foods, and drugs on T4 absorption at the gastric and intestinal levels. The impact of gastrointestinal disorders on T4 treatment efficacy has been also analyzed, in keeping with the site of action and the interfering mechanisms. Based on the evidence obtained from the literature, we also propose a schematic diagnostic workup for the most frequent and often hidden gastrointestinal diseases impairing T4 absorption.
Collapse
Affiliation(s)
- Camilla Virili
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Giulia Santaguida
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy.,Endocrinology Unit, AUSL Latina, Latina, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario G. Martino, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Policlinico Universitario G. Martino, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| | - Marco Centanni
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy.,Endocrinology Unit, AUSL Latina, Latina, Italy
| |
Collapse
|
11
|
Mazák K, Noszál B. Passive Membrane Penetration of the Serotonin Precursor 5-Hydroxytryptophan is Controlled by Its Zwitterion. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/11/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Károly Mazák
- Department of Pharmaceutical Chemistry; Semmelweis University; Hőgyes E. u. 9. H-1092 Budapest Hungary
| | - Béla Noszál
- Department of Pharmaceutical Chemistry; Semmelweis University; Hőgyes E. u. 9. H-1092 Budapest Hungary
| |
Collapse
|
12
|
Hinz KM, Neef D, Rutz C, Furkert J, Köhrle J, Schülein R, Krause G. Molecular features of the L-type amino acid transporter 2 determine different import and export profiles for thyroid hormones and amino acids. Mol Cell Endocrinol 2017; 443:163-174. [PMID: 28108384 DOI: 10.1016/j.mce.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
The L-type amino acid transporter 2 (LAT2) imports amino acids (AA) and also certain thyroid hormones (TH), e.g. 3,3'-T2 and T3, but not rT3 and T4. We utilized LAT2 mutations (Y130A, N133S, F242W) that increase 3,3'-T2 import and focus here on import and export capacity for AA, T4, T3, BCH and derivatives thereof to delineate molecular features. Transport studies and analysis of competitive inhibition of import by radiolabelled TH and AA were performed in Xenopus laevis oocytes. Only Y130A, a pocket widening mutation, enabled import for T4 and increased it for T3. Mutant F242W showed increased 3,3'-T2 import but no import rates for other TH derivatives. No export was detected for any TH by LAT2-wild type (WT). Mutations Y130A and N133S enabled only the export of 3,3'-T2, while N133S also increased AA export. Thus, distinct molecular LAT2-features determine bidirectional AA transport but only an unidirectional 3,3'-T2 and T3 import.
Collapse
Affiliation(s)
- Katrin M Hinz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dominik Neef
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Claudia Rutz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jens Furkert
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Schülein
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
13
|
Bernal J. Thyroid hormone regulated genes in cerebral cortex development. J Endocrinol 2017; 232:R83-R97. [PMID: 27852726 DOI: 10.1530/joe-16-0424] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
Abstract
The physiological and developmental effects of thyroid hormones are mainly due to the control of gene expression after interaction of T3 with the nuclear receptors. To understand the role of thyroid hormones on cerebral cortex development, knowledge of the genes regulated by T3 during specific stages of development is required. In our laboratory, we previously identified genes regulated by T3 in primary cerebrocortical cells in culture. By comparing these data with transcriptomics of purified cell types from the developing cortex, the cellular targets of T3 can be identified. In addition, many of the genes regulated transcriptionally by T3 have defined roles in cortex development, from which the role of T3 can be derived. This review analyzes the specific roles of T3-regulated genes in the different stages of cortex development within the physiological frame of the developmental changes of thyroid hormones and receptor concentrations in the human cerebral cortex during fetal development. These data indicate an increase in the sensitivity to T3 during the second trimester of fetal development. The main cellular targets of T3 appear to be the Cajal-Retzius and the subplate neurons. On the other hand, T3 regulates transcriptionally genes encoding extracellular matrix proteins, involved in cell migration and the control of diverse signaling pathways.
Collapse
Affiliation(s)
- Juan Bernal
- Instituto de Investigaciones BiomédicasConsejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, and Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Physicochemical Characterization and Cyclodextrin Complexation of the Anticancer Drug Lapatinib. J CHEM-NY 2017. [DOI: 10.1155/2017/4537632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lapatinib (LAP), the tyrosine kinase inhibitor drug with moderate bioavailability, was characterized in terms of physicochemical properties: acid-base characteristics, lipophilicity, and solubility. The highly lipophilic nature of the drug and its extremely low water solubility (S0=0.82 nM) limit the development of a parenteral formulation. In order to enhance solubility and bioavailability, inclusion complex formation with cyclodextrins (CDs) is a promising method of choice. Therefore, LAP-CD interactions were also studied by a multianalytical approach. The stability constants of LAP with native cyclodextrins, determined by UV spectroscopy, identified the seven-membered β-CD as the most suitable host. Continuous variation method (Job’s plot) by 1H NMR showed a 1 : 1 stoichiometry for the complexes. The geometry of the complex was elucidated by 2D ROESY NMR measurements and molecular modeling, indicating that the partial molecular encapsulation includes the fluorophenyl ring of LAP. Phase-solubility studies with four CDs, β-CD, (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), randomly methylated-β- (RAMEB-) cyclodextrin, and sulfobutylether-β-cyclodextrin (SBE-β-CD), show an AL type diagram and highly increased solubility via CD complexation. The results are especially promising with SBE-β-CD, exerting more than 600-fold gain in solubility. The equilibrium and structural information presented herein can offer the molecular basis for an improved drug formulation with enhanced bioavailability.
Collapse
|
15
|
Mazák K, Noszál B. Advances in microspeciation of drugs and biomolecules: Species-specific concentrations, acid-base properties and related parameters. J Pharm Biomed Anal 2016; 130:390-403. [PMID: 27066736 DOI: 10.1016/j.jpba.2016.03.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/14/2023]
Abstract
The pharmacokinetic and pharmacodynamic behaviour of drugs and the interacting biomolecules are highly influenced by their species-specific physico-chemical properties. The first of such bio-relevant, structure-dependent properties were the species-specific acid-base constants and the co-dependent concentrations, but the past decade brought significant advances to previously uncharted territories, including the experimental determination of species-specific partition coefficients, solubilities and redox equilibrium constants. This review gives an overview of the types and definitions of species-specific physico-chemical and analytical properties. We survey the pertinent literature, the fundamental relationships, and summarize some of our recent work that enabled the determination of species-specific partition coefficients for coexisting, inseparable protonation isomers and pH-independent, microscopic redox equilibrium constants. The thorough insight provided by these species-specific properties improves our understanding of the submolecular mechanism of pharmacokinetic processes. As a result, there are some pieces of clear-cut evidence of practical significance. A few of them are as follows: - passive diffusion into lipophilic media is not necessarily predominated by the non-charged species, contrary to the widespread misbelief. - the reactive microspecies in structure-controlled, highly specific biochemical reactions is not necessarily the major one. - a preventive defence system against oxidative stress can be based upon thiol-disulfide equilibria of custom-tailored redox potentials.
Collapse
Affiliation(s)
- Károly Mazák
- Semmelweis University, Department of Pharmaceutical Chemistry, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences Hőgyes E. u. 9., H-1092 Budapest, Hungary
| | - Béla Noszál
- Semmelweis University, Department of Pharmaceutical Chemistry, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences Hőgyes E. u. 9., H-1092 Budapest, Hungary.
| |
Collapse
|
16
|
Tóth G, Jánoska Á, Szabó ZI, Völgyi G, Orgován G, Szente L, Noszál B. Physicochemical characterisation and cyclodextrin complexation of erlotinib. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Ádám Jánoska
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Zoltán-István Szabó
- Department of Drugs Industry and Pharmaceutical Management, University of Medicine and Pharmacy, Tîrgu Mures, Romania
| | - Gergely Völgyi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Gábor Orgován
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin Research & Development Ltd, Budapest, Hungary
| | - Béla Noszál
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Drug delivery: A process governed by species-specific lipophilicities. Eur J Pharm Sci 2014; 62:96-104. [DOI: 10.1016/j.ejps.2014.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/24/2022]
|
18
|
Testa B, Vistoli G, Pedretti A. Small Molecules as Exemplars of Emergent Properties and Diversification into the ‘Adjacent Possible’. Chem Biodivers 2014; 11:1309-29. [DOI: 10.1002/cbdv.201400177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Indexed: 11/11/2022]
|
19
|
Fuenzalida JP, Flores ME, Móniz I, Feijoo M, Goycoolea F, Nishide H, Moreno-Villoslada I. Immobilization of hydrophilic low molecular-weight molecules in nanoparticles of chitosan/poly(sodium 4-styrenesulfonate) assisted by aromatic-aromatic interactions. J Phys Chem B 2014; 118:9782-91. [PMID: 25054833 DOI: 10.1021/jp5037553] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immobilization of the hydrophilic low molecular-weight cationic molecules rhodamine 6G, methylene blue, and citidine in nanoparticles composed of two opposite charged polyelectrolytes, poly(sodium 4-styrenesulfonate) and chitosan, is studied, and the results correlated with their physicochemical properties. Nanoparticles containing both polyelectrolytes have been synthesized showing hydrodynamic diameters of around 200 nm and tunable zeta potential. It was found that the strength of binding of the cationic molecules to the polyanion bearing charged aromatic groups poly(sodium 4-styrenesulfonate) by means of short-range aromatic-aromatic interactions increases with their hydrophobicity and polarizability, as seen by (1)H NMR and UV-vis spectroscopies, and diafiltration. Consequently, association efficiencies of 45, 21, and 12% have been found for the three molecules, respectively, revealing the different ability of the molecules to be immobilized in the nanoparticles. These results provide a proof of concept on a new strategy of immobilization of hydrophilic low molecular-weight molecules based on aromatic-aromatic interactions between polyelectrolytes and their aromatic counterions.
Collapse
Affiliation(s)
- Juan Pablo Fuenzalida
- IBBP, Westfälische Wilhelms-Universität Münster , Schlossgarten 3, 48149 - Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Tóth G, Baska F, Schretner A, Rácz Á, Noszál B. Site-specific basicities regulate molecular recognition in receptor binding: in silico docking of thyroid hormones. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:721-30. [DOI: 10.1007/s00249-013-0921-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/09/2013] [Accepted: 07/16/2013] [Indexed: 12/20/2022]
|