1
|
Marie A, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306824. [PMID: 38191978 PMCID: PMC10953559 DOI: 10.1002/advs.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Protein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time-consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis-mass spectrometry (CE-MS) method is reported to characterize, under near-physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE-MS method is fast (30 min per run), highly sensitive (low-amol level), and requires ∽10 000-fold fewer samples compared to biochemical/biophysical techniques. The method successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non-covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4-14 and GroES7 (∽876 kDa). Native CE-pseudo-MS3 analyses of wild-type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE-MS performance for multimeric complexes' characterization versus direct infusion ESI-MS. This study shows the CE-MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.
Collapse
Affiliation(s)
- Anne‐Lise Marie
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Florian Georgescauld
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - John R. Engen
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| |
Collapse
|
2
|
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: A review. Electrophoresis 2022; 43:2302-2323. [PMID: 36250426 PMCID: PMC10098505 DOI: 10.1002/elps.202200191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arden Hatch
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Baron D, Rozsypal J, Michel A, Secret E, Siaugue JM, Pluháček T, Petr J. Study of interactions between carboxylated core shell magnetic nanoparticles and polymyxin B by capillary electrophoresis with inductively coupled plasma mass spectrometry. J Chromatogr A 2020; 1609:460433. [PMID: 31427136 DOI: 10.1016/j.chroma.2019.460433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
In this work, interactions of carboxylated core shell magnetic nanoparticles with polymyxin B sulfate were studied by connecting capillary electrophoresis with inductively coupled plasma mass spectrometry. The interaction was probed by affinity mode of capillary electrophoresis with 25 mM phosphate buffer at physiological pH. 54Fe, 56Fe, 57Fe, 34S, and 12C isotopes were used to monitor the migration of an electroosmotic flow marker and the interaction of the nanoparticles with polymyxin B. The analysis of interaction data showed two distinct interaction regions, one with low polymyxin B concentration, the second with high polymyxin B concentration. These regions differed in the strength of the interaction, 1.49 × 107 M-1 and 1.60 × 104 M-1, and in the stoichiometry of 0.7 and 3.5, respectively. These differences can be explained by the decrease of electrostatic repulsion between nanoparticles caused by polymyxin B. This is also in agreement with the nanoparticles peak shapes: sharp for low polymyxin B concentrations and broad for high polymyxin B concentrations.
Collapse
Affiliation(s)
- Daniel Baron
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jan Rozsypal
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Aude Michel
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Emilie Secret
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Jean-Michel Siaugue
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| | - Jan Petr
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| |
Collapse
|
4
|
Farcaş E, Pochet L, Crommen J, Servais AC, Fillet M. Capillary electrophoresis in the context of drug discovery. J Pharm Biomed Anal 2017; 144:195-212. [DOI: 10.1016/j.jpba.2017.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/04/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
|
5
|
Marie AL, Dominguez-Vega E, Saller F, Plantier JL, Urbain R, Borgel D, Tran NT, Somsen GW, Taverna M. Characterization of conformers and dimers of antithrombin by capillary electrophoresis-quadrupole-time-of-flight mass spectrometry. Anal Chim Acta 2016; 947:58-65. [PMID: 27846990 DOI: 10.1016/j.aca.2016.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/26/2016] [Accepted: 10/09/2016] [Indexed: 11/18/2022]
Abstract
Antithrombin (AT) is a plasma glycoprotein which possesses anticoagulant and anti-inflammatory properties. AT exhibits various forms, among which are native, latent and heterodimeric ones. We studied the potential of capillary electrophoresis-mass spectrometry (CE-MS) using a sheath liquid interface, electrospray ionization (ESI), and a quadrupole-time-of-flight (Q-TOF) mass spectrometer to separate and quantify the different AT forms. For CE separation, a neutral polyvinyl alcohol (PVA) coated capillary was employed. The protein conformation was preserved by using a background electrolyte (BGE) at physiological pH. A sheath liquid of isopropanol-water 50:50 (v/v) with 14 mM ammonium acetate delivered at a flow rate of 120 μL h-1 resulted in optimal signal intensities. Each AT form exhibited a specific mass spectrum, allowing unambiguous distinction. Several co-injection experiments proved that latent AT had a higher electrophoretic mobility (μep) than native AT, and that these conformers could associate to form a heterodimer during the CE analysis. The developed CE-MS method enabled the detection and quantitation of latent and heterodimeric forms in a commercial AT preparation stored at room temperature for three weeks.
Collapse
Affiliation(s)
- Anne-Lise Marie
- Institut Galien Paris Sud, UMR8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Elena Dominguez-Vega
- Division of BioAnalytical Chemistry, AIMMS Research Group Biomolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - François Saller
- Université Paris Sud, UMR-S1176, 94276, Le Kremlin-Bicêtre, France; INSERM, U1176, 94276, Le Kremlin-Bicêtre, France
| | | | | | - Delphine Borgel
- Université Paris Sud, UMR-S1176, 94276, Le Kremlin-Bicêtre, France; INSERM, U1176, 94276, Le Kremlin-Bicêtre, France; AP-HP, Hôpital Necker, Service d'Hématologie Biologique, 75015, Paris, France
| | - N Thuy Tran
- Institut Galien Paris Sud, UMR8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, AIMMS Research Group Biomolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Myriam Taverna
- Institut Galien Paris Sud, UMR8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France.
| |
Collapse
|
6
|
Růžička M, Koval D, Vávra J, Reyes-Gutiérrez PE, Teplý F, Kašička V. Interactions of helquats with chiral acidic aromatic analytes investigated by partial-filling affinity capillary electrophoresis. J Chromatogr A 2016; 1467:417-426. [PMID: 27578406 DOI: 10.1016/j.chroma.2016.08.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 01/18/2023]
Abstract
Noncovalent molecular interactions between helquats, a new class of dicationic helical extended diquats, and several chiral acidic aromatic drugs and catalysts have been investigated using partial-filling affinity capillary electrophoresis (PF-ACE). Helquats dissolved at 1mM concentration in the aqueous background electrolyte (40mM Tris, 20mM acetic acid, pH 8.1) were introduced as ligand zones of variable length (0-130mm) into the hydroxypropylcellulose coated fused silica capillary whereas 0.1mM solutions of negatively charged chiral drugs or catalysts (warfarin, ibuprofen, mandelic acid, etodolac, binaphthyl phosphate and 11 other acidic aromatic compounds) were applied as a short analyte zone at the injection capillary end. After application of electric field, analyte and ligand migrated against each other and in case of their interactions, migration time of the analyte was increasing with increasing length of the ligand zone. From the tested compounds, only isomers of those exhibiting helical chirality and/or possessing conjugated aromatic systems were enantioselectively separated through their differential interactions with helquats. Some compounds with conjugated aromatic groups interacted with helquats moderately strongly but non-enantiospecifically. Small compounds with single benzene ring exhibited no or very weak non-enantiospecific interactions. PF-ACE method allowed to determine binding constants of the analyte-helquat complexes from the changes of migration times of the analytes. Binding constants of the weakest complexes of the analytes with helquats were less than 50L/mol, whereas binding constants of the strongest complexes were in the range 1 000-1 400L/mol.
Collapse
Affiliation(s)
- Martin Růžička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic; Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Dušan Koval
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic
| | - Jan Vávra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic
| | - Paul E Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic
| | - Filip Teplý
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|