1
|
Andre C, Guillaume YC. Development of an organic polymer monolith column for the nano liquid chromatography fast analysis of monoclonal antibody in infusion bags prepared in a hospital pharmacy. Biomed Chromatogr 2024; 38:e5940. [PMID: 38923002 DOI: 10.1002/bmc.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Poly(butyl methacrylate-co-ethylene dimethacrylate) monolith was in situ prepared in a liquid chromatography capillary column with a 75 μm internal diameter. This monolith offered high permeability (5.3 ± 10-14 m2) and good peak capacity (140 for a 15 cm column length at 300 nl/min with a 20 min gradient time). This is exemplified by its separation ability in reversed mode for subunit analysis of monoclonal antibodies after IdeS digestion (middle-up analysis). The potential of this column was also illustrated for the fast analytical control of therapeutic monoclonal antibodies in standardized infusion bags prepared in advance in a pharmacy department. Linearity analysis revealed the column's capability for accurate quantification analysis of the different dose bandings (in mg) of monoclonal antibodies in <2 min. In addition, lifetime analysis data indicated that the column can be highly reproducible and has a long lifetime with stable and low back pressure. The variations observed on the peak shape and area between unstressed (intact) and stressed monoclonal antibodies indicated that our nano liquid chromatographic method was stability indicating. In addition, using a gradient elution mode, the presence of minor components in the infusion bags was visualized.
Collapse
Affiliation(s)
- Claire Andre
- Pôle Chimie Analytique Bio analytique et Physique, UFR Santé, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Yves Claude Guillaume
- Pôle Chimie Analytique Bio analytique et Physique, UFR Santé, Besançon, France
- Université de Franche-Comté, Besançon, France
- Pôle Pharmaceutique, CHU Jean-Minjoz, Besançon, France
| |
Collapse
|
2
|
Ewonde Ewonde R, Molenaar SRA, Broeckhoven K, Eeltink S. Advancing HIC method development: Retention-time modeling and tuning selectivity with ternary mobile-phase systems. J Chromatogr A 2024; 1730:465133. [PMID: 38996515 DOI: 10.1016/j.chroma.2024.465133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
The use of a ternary mobile-phase system comprising ammonium sulphate, sodium chloride, and phosphate buffer was explored to tune retention and enhance selectivity in hydrophobic interaction chromatography. The accuracy of the linear solvent-strength model to predict protein retention with the ternary mobile-phase system based on isocratic scouting runs is limited, as the extrapolated retention factor at aqueous buffer conditions (k0) cannot be reliably established. The Jandera retention model utilizing a salt concentration averaged retention factor (k¯0) in aqueous buffer for ternary systems overcomes this bottleneck. Gradient retention factors were derived based on isocratic scouting runs after numerical integration of the isocratic Jandera model, leading to retention-time prediction errors below 11 % for linear gradients. Furthermore, an analytical expression was formulated to predict HIC retention for both linear and segmented linear gradients, considering the linear solvent-strength (LSS) model within ternary salt systems, relying on a fixed k0. The approach involved conducting two gradient scouting runs for each of the two binary salt systems to determine model parameters. Retention-time prediction errors for linear gradients were below 12 % for lysozyme and 3 % for trypsinogen and α-chymotrypsinogen A. Finally, the analytical expression for a ternary mobile-phase system was used in combination with a genetic algorithm to tune the HIC selectivity. With an optimized segmented ternary gradient, a critical-pair separation for a mixture of 7 proteins was achieved within 15 min with retention-time prediction errors ranging between 0.7 and 15.7 %.
Collapse
Affiliation(s)
- Raphael Ewonde Ewonde
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium
| | - Stef R A Molenaar
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences, Division of Bioanalytical Chemistry, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Ken Broeckhoven
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium.
| |
Collapse
|
3
|
Tang L, Geng H, Zhang L, Wang X, Fei M, Yang B, Sun H, Zhang Z. In-Depth Characterization for Methionine Oxidization in Complementary Domain Region by Hydrophobic Interaction Chromatography. ACS Pharmacol Transl Sci 2024; 7:2476-2483. [PMID: 39144558 PMCID: PMC11320724 DOI: 10.1021/acsptsci.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
The oxidation of the complementarity-determining region (CDR) in monoclonal antibodies (mAbs) is a critical quality attribute that can affect the clinical efficacy and safety of recombinant mAb therapeutics. In this study, a robust hydrophobic interaction chromatography (HIC) method was developed to quantify and characterize CDR oxidation variants in mAb-A by using a Proteomix Butyl-NP5 column. The HIC analysis revealed oxidation variants that eluted earlier than the main species with weaker hydrophobicity. It was found that Met105 in the CDR was more susceptible to oxidation. Additionally, it was noted that the oxidation of Met105 on a single heavy chain resulted in elution at a distinct position compared to the oxidation on two heavy chains. This observation led to the fractionation and enrichment of the oxidized variants for further evaluation of their biofunction. The study also demonstrated that the oxidation of Met105 did not impact the antigen-binding capacity but significantly reduced the PD-1/PD-L1 blockade activity of mAb-A. The HIC method, which was employed to quantify CDR oxidation, underwent validation and was subsequently utilized for stability studies as well as for assessing the similarity between mAb-A and its reference product.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Xinyi Wang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Mengdan Fei
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Boyuan Yang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Haijie Sun
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Zhongli Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| |
Collapse
|
4
|
Hemida M, Haidar Ahmad IA, Barrientos RC, Regalado EL. Computer-assisted multifactorial method development for the streamlined separation and analysis of multicomponent mixtures in (Bio)pharmaceutical settings. Anal Chim Acta 2024; 1293:342178. [PMID: 38331548 DOI: 10.1016/j.aca.2023.342178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 02/10/2024]
Abstract
The (bio)pharmaceutical industry is rapidly moving towards complex drug modalities that require a commensurate level of analytical enabling technologies that can be deployed at a fast pace. Unsystematic method development and unnecessary manual intervention remain a major barrier towards a more efficient deployment of meaningful analytical assay across emerging modalities. Digitalization and automation are key to streamline method development and enable rapid assay deployment. This review discusses the use of computer-assisted multifactorial chromatographic method development strategies for fast-paced downstream characterization and purification of biopharmaceuticals. Various chromatographic techniques such as reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), ion exchange chromatography (IEX), hydrophobic interaction chromatography (HIC), and supercritical fluid chromatography (SFC) are addressed and critically reviewed. The most significant parameters for retention mechanism modelling, as well as mapping the separation landscape for optimal chromatographic selectivity and resolution are also discussed. Furthermore, several computer-assisted approaches for optimization and development of chromatographic methods of therapeutics, including linear, nonlinear, and multifactorial modelling are outlined. Finally, the potential of the chromatographic modelling and computer-assisted optimization strategies are also illustrated, highlighting substantial productivity improvements, and cost savings while accelerating method development, deployment and transfer processes for therapeutic analysis in industrial settings.
Collapse
Affiliation(s)
- Mohamed Hemida
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, United States.
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, United States.
| | - Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, United States
| |
Collapse
|
5
|
Fekete S, Guillarme D. Ultra-short columns for the chromatographic analysis of large molecules. J Chromatogr A 2023; 1706:464285. [PMID: 37562104 DOI: 10.1016/j.chroma.2023.464285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Today, reverse phase liquid chromatography (RPLC) analysis of proteins is almost exclusively performed on conventional columns (100-150 mm) in gradient elution mode. However, it was shown many years ago that large molecules present an on/off retention mechanism, and that only a very short inlet segment of the chromatographic column retains effectively the large molecules. Much shorter columns - like only a few centimetres or even a few millimetres - can therefore be used to efficiently analyse such macromolecules. The aim of this review is to summarise the historical and more recent works related to the use of very short columns for the analysis of model and therapeutic proteins. To this end, we have outlined the theoretical concepts behind the use of short columns, as well as the instrumental limitations and potential applications. Finally, we have shown that these very short columns were also possibly interesting for other chromatographic modes, such as ion exchange chromatography (IEX), hydrophilic interaction chromatography (HILIC) or hydrophobic interaction chromatography (HIC), as analyses in these chromatographic modes are performed in gradient elution mode.
Collapse
Affiliation(s)
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
6
|
Aebischer MK, Bouvarel T, Barrozo E, Kochardt D, Elger C, Haindl M, Ruppert R, Guillarme D, D'Atri V. Boosting the Separation of Adeno-Associated Virus Capsid Proteins by Liquid Chromatography and Capillary Electrophoresis Approaches. Int J Mol Sci 2023; 24:ijms24108503. [PMID: 37239849 DOI: 10.3390/ijms24108503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The purity of the three capsid proteins that make up recombinant adeno-associated virus (rAAV) is considered a critical quality attribute of gene therapy products. As such, there is a clear need to develop separation methods capable of rapidly characterizing these three viral proteins (VPs). In this study, the potential benefits and limitations of different electrophoretic and chromatographic methods were evaluated, including capillary electrophoresis-sodium dodecyl sulfate (CE-SDS), reversed phase liquid chromatography (RPLC), hydrophilic interaction chromatography (HILIC), and hydrophobic interaction chromatography (HIC), for the analysis of VPs obtained from different serotypes (i.e., AAV2, AAV5, AAV8, and AAV9). CE-SDS is considered to be the reference method and provides a suitable separation of VP1-3 proteins using generic conditions and laser induced fluorescence detection. However, the characterization of post-translational modifications (i.e., phosphorylation, oxidation) remains difficult, and species identification is almost impossible due to the lack of compatibility between CE-SDS and mass spectrometry (MS). In contrast, RPLC and HILIC were found to be less generic than CE-SDS and require tedious optimization of the gradient conditions for each AAV serotype. However, these two chromatographic approaches are inherently compatible with MS, and were shown to be particularly sensitive in detecting capsid protein variants resulting from different post-translational modifications. Finally, despite being non-denaturing, HIC offers disappointing performance for viral capsid proteins characterization.
Collapse
Affiliation(s)
- Megane K Aebischer
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Thomas Bouvarel
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Emmalyn Barrozo
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | | | - Carsten Elger
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Markus Haindl
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Raphael Ruppert
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
7
|
Mohamed HE, Al-Ghobashy MA, Abbas SS, Boltia SA. Stability assessment of Polatuzumab vedotin and Brentuximab vedotin using different analytical techniques. J Pharm Biomed Anal 2023; 228:115249. [PMID: 36827859 DOI: 10.1016/j.jpba.2023.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Antibody-drug conjugates (ADC) are considered to be fast-growing innovative biopharmaceuticals. The science used for conjugating potent cytotoxic payload to the targeted monoclonal antibody through a chemical linker has played a great value in the area of oncology treatment. In this study; Polatuzumab vedotin (POLA) and Brentuximab vedotin (SGN-35) were subjected to various stress conditions enclosing different pH, thermal stress, agitation, and successive cycles of freeze and thaw in order to produce potential degradation by-products and guarantee the appropriateness of the applied testing protocol. Different analytical techniques were established and validated to be used in the quantitation of the degraded products from different perspectives. The formation of ADC aggregates and fragments was monitored using SE-HPLC as well as dynamic light scattering (DLS). The drug antibody ratio (DAR) and ADC conjugation profile were determined using hydrophobic interaction chromatography (HIC-HPLC). In addition to performing a statistical interpretation of HIC-HPLC results by principal component analysis (PCA) to explicate the obtained data. Also, the quantity of the unconjugated toxic drug was quantified using RP-HPLC. Testing the binding activity of ADC to their target receptor ADC was conducted using ELISA. Results presented that used assay protocol had worked as a complementary design for characterization and stability assessment of the used ADC. Variances in the stability profile of both products were observed which could be attributed to the usage of different formulation buffers. This highlighted the importance of using multiple techniques for the assessment of the quality attributes of such sophisticated products. The analytical assay protocol should be used for the evaluation of the quality and stability of several ADC.
Collapse
Affiliation(s)
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, New Giza University, Egypt
| | - Samah S Abbas
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Shereen A Boltia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
8
|
Barrientos RC, Losacco GL, Azizi M, Wang H, Nguyen AN, Shchurik V, Singh A, Richardson D, Mangion I, Guillarme D, Regalado EL, Haidar Ahmad IA. Automated Hydrophobic Interaction Chromatography Screening Combined with In Silico Optimization as a Framework for Nondenaturing Analysis and Purification of Biopharmaceuticals. Anal Chem 2022; 94:17131-17141. [PMID: 36441925 DOI: 10.1021/acs.analchem.2c03453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mounting complexity of new modalities in the biopharmaceutical industry entails a commensurate level of analytical innovations to enable the rapid discovery and development of novel therapeutics and vaccines. Hydrophobic interaction chromatography (HIC) has become one of the widely preferred separation techniques for the analysis and purification of biopharmaceuticals under nondenaturing conditions. Inarguably, HIC method development remains very challenging and labor-intensive owing to the numerous factors that are typically optimized by a "hit-or-miss" strategy (e.g., the nature of the salt, stationary phase chemistry, temperature, mobile phase additive, and ionic strength). Herein, we introduce a new HIC method development framework composed of a fully automated multicolumn and multieluent platform coupled with in silico multifactorial simulation and integrated fraction collection for streamlined method screening, optimization, and analytical-scale purification of biopharmaceutical targets. The power and versatility of this workflow are showcased by a wide range of applications including trivial proteins, monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), oxidation variants, and denatured proteins. We also illustrate convenient and rapid HIC method development outcomes from the effective combination of this screening setup with computer-assisted simulations. HIC retention models were built using readily available LC simulator software outlining less than a 5% difference between experimental and simulated retention times with a correlation coefficient of >0.99 for pharmaceutically relevant multicomponent mixtures. In addition, we demonstrate how this approach paves the path for a straightforward identification of first-dimension HIC conditions that are combined with mass spectrometry (MS)-friendly reversed-phase liquid chromatography (RPLC) detection in the second dimension (heart-cutting two-dimensional (2D)-HIC-RPLC-diode array detector (DAD)-MS), enabling the analysis and purification of biopharmaceutical targets.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mohammadmehdi Azizi
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Anh Nguyet Nguyen
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Vladimir Shchurik
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Douglas Richardson
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 11 Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
9
|
Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021; 13:1951427. [PMID: 34291723 PMCID: PMC8300931 DOI: 10.1080/19420862.2021.1951427] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to shape the future development of ADCs. This review highlights the current status of marketed ADCs and those under clinical investigation with a focus on translational strategies to improve product quality, safety, and efficacy.
Collapse
Affiliation(s)
- Alexis Q. Dean
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Julianne D. Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
10
|
Matsuda Y, Mendelsohn BA. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2020; 21:963-975. [PMID: 33141625 DOI: 10.1080/14712598.2021.1846714] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: We discuss chemical conjugation strategies for antibody-drug conjugates (ADCs) from an industrial perspective and compare three promising chemical conjugation technologies to produce site-specific ADCs.Areas covered: Currently, nine ADCs are commercially approved and all are produced by chemical conjugation technology. However, seven of these ADCs contain a relatively broad drug distribution, potentially limiting their therapeutic indices. In 2019, the first site-specific ADC was launched on the market by Daiichi-Sankyo. This achievement, and an analysis of clinical trials over the last decade, indicates that current industrial interest in the ADC field is shifting toward site-specific conjugation technologies. From an industrial point of view, we aim to provide guidance regarding established conjugation methodologies that have already been applied to scale-up stages. With an emphasis on highly productive, scalable, and synthetic process robustness, conjugation methodologies for ADC production is discussed herein.Expert opinion: All three chemical conjugation technologies described in this review have various advantages and disadvantages, therefore drug developers can utilize these depending on their biological and/or protein targets. The future landscape of the ADC field is also discussed.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Brian A Mendelsohn
- Process Development & Tech Transfer, Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA 92121, United States
| |
Collapse
|
11
|
Wagner E, Colas O, Chenu S, Goyon A, Murisier A, Cianferani S, François Y, Fekete S, Guillarme D, D’Atri V, Beck A. Determination of size variants by CE-SDS for approved therapeutic antibodies: Key implications of subclasses and light chain specificities. J Pharm Biomed Anal 2020; 184:113166. [DOI: 10.1016/j.jpba.2020.113166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
|
12
|
Müller E, Sevilla M, Endres P. Evaluation of hydrophobic-interaction chromatography resins for purification of antibody-drug conjugates using a mimetic model with adjustable hydrophobicity. J Sep Sci 2020; 43:2255-2263. [PMID: 32160397 PMCID: PMC7318155 DOI: 10.1002/jssc.201900895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibody drug conjugates are cytotoxic pharmaceuticals, designed to destroy malignant cells. A cytotoxic molecule is attached to an antibody that binds specific to a cancer‐cell surface. Given the high toxicity of the drugs, strict safety standards have to be kept. For this reason, an antibody drug conjugates model was developed with fluorescein 5‐isothiocyanate as the nontoxic payload surrogate. Due to the similar hydrophobicity, this model is used to establish a suitable purification process and characterization method for antibody drug conjugates. Because of the pH dependent solubility of fluorescein, the hydrophobicity of conjugates can be modulated by the pH value. Based on the complex heterogeneity and hydrophobicity of the conjugates a chromatographic purification is challenging. Hydrophobic interaction chromatography is used for analytical as well as for preparative separation. Because of the increased hydrophobicity of the conjugates compared to native antibody, hydrophobic interaction chromatography often suffer from resolution and recovery problems. Conjugates were separated differing on the number of payloads attached to the antibody. For this matter, the drug–antibody ratio is determined and used as a quantitative term. The conjugates are purified at high recoveries and resolution by step gradients using suitable resins, allowing the separation of the target drug–antibody ratio.
Collapse
Affiliation(s)
- Egbert Müller
- Tosoh Bioscience GmbH, Im Leuschnerpark 4, Griesheim, 64347, Germany
| | - Manuela Sevilla
- Tosoh Bioscience GmbH, Im Leuschnerpark 4, Griesheim, 64347, Germany
| | - Patrick Endres
- Tosoh Bioscience GmbH, Im Leuschnerpark 4, Griesheim, 64347, Germany
| |
Collapse
|
13
|
Abstract
Hydrophobic interaction chromatography (HIC) is a traditional technique used for the separation, purification, and characterization of proteins. As the number of antibody-drug conjugates (ADCs) continues to increase in clinical trials, HIC and other orthogonal methods utilizing changes in hydrophobicity are being used for ADC characterization and analysis. Unlike other techniques, HIC uniquely allows for protein analysis under mild nondenaturing conditions that preserve the native structure and activity of the molecules. Analysis of the ADC in its native form is advantageous. Herein, we describe a generic HIC protocol for the screening, analysis, and characterization of ADCs using an ammonium sulfate buffer and a high-pressure liquid chromatography system. Parameters affecting data quality and interpretation are addressed. In addition, several recommendations are included for method optimization and troubleshooting.
Collapse
Affiliation(s)
- Ryan Fleming
- Antibody Discovery and Protein Engineering, Biologic Therapeutics, AstraZeneca, Gaithersburg, MD, USA.
| |
Collapse
|
14
|
Hydrophobic interaction chromatography (HIC) method development and characterization of resolved drug-load variants in site-specifically conjugated pyrrolobenzodiazepine dimer-based antibody drug conjugates (PBD-ADCs). J Pharm Biomed Anal 2019; 179:113027. [PMID: 31830625 DOI: 10.1016/j.jpba.2019.113027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/29/2022]
Abstract
Antibody drug conjugates (ADCs) are heterogeneous biopharmaceutical products that demand extensive characterization to ensure batch consistency, safety, and efficacy. Hydrophobic interaction chromatography (HIC) is the state-of-the-art analytical tool to monitor conjugation-related critical quality attributes (CQAs) e.g. drug-load distribution and Drug-to-Antibody Ratio (DAR). For the next generation site-specific PBD-ADCs (PBD: pyrrolobenzodiazepine dimer), denaturing RP-HPLC (reverse-phase high-performance chromatography) is the current method to determine average DAR. In this manuscript, we have utilized native HIC for the first time to understand conjugation related CQAs in PBD-ADCs. In terms of the method development, the type of stationary phase and salt, coupled with reduction of the reactive imine in the PBD drug-linker to an amine form in the sample preparation, have played a key role in achieving the best HIC resolution for the drug-load variants. The established HIC conditions resolved DAR 0, DAR 1, and two DAR 2 peaks for PBD-ADCs. Extended characterization of the DAR 2 peaks confirmed that they have retained characteristically distinct antibody Fc N-glycan distributions (Fc = Fragment crystallization region). Therefore, the results support that the HIC conditions established for PBD-ADCs is valuable in not only determining DAR values but also other important attributes including native drug-load distribution and unique DAR 2 conformations existed as a result of the N-glycan heterogeneity.
Collapse
|
15
|
Matsuda Y, Robles V, Malinao MC, Song J, Mendelsohn BA. Comparison of Analytical Methods for Antibody–Drug Conjugates Produced by Chemical Site-Specific Conjugation: First-Generation AJICAP. Anal Chem 2019; 91:12724-12732. [DOI: 10.1021/acs.analchem.9b02192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yutaka Matsuda
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Veronica Robles
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | | | - James Song
- Phenomenex, Inc., 411 Madrid Avenue, Torrance, California 90501, United States
| | - Brian A. Mendelsohn
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| |
Collapse
|
16
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
17
|
Is hydrophobic interaction chromatography the most suitable technique to characterize site-specific antibody-drug conjugates? J Chromatogr A 2019; 1586:149-153. [DOI: 10.1016/j.chroma.2018.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022]
|
18
|
Wang L, Marcus RK. Evaluation of protein separations based on hydrophobic interaction chromatography using polyethylene terephthalate capillary-channeled polymer (C-CP) fiber phases. J Chromatogr A 2019; 1585:161-171. [DOI: 10.1016/j.chroma.2018.11.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 11/28/2022]
|
19
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L, Navas N. Validated reverse phase HPLC diode array method for the quantification of intact bevacizumab, infliximab and trastuzumab for long-term stability study. Int J Biol Macromol 2018; 116:993-1003. [DOI: 10.1016/j.ijbiomac.2018.05.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
20
|
Development and validation of a (RP)UHPLC-UV-(HESI/Orbitrap)MS method for the identification and quantification of mixtures of intact therapeutical monoclonal antibodies using a monolithic column. J Pharm Biomed Anal 2018; 159:437-448. [DOI: 10.1016/j.jpba.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
|
21
|
Chen B, Lin Z, Alpert AJ, Fu C, Zhang Q, Pritts WA, Ge Y. Online Hydrophobic Interaction Chromatography-Mass Spectrometry for the Analysis of Intact Monoclonal Antibodies. Anal Chem 2018; 90:7135-7138. [PMID: 29846060 DOI: 10.1021/acs.analchem.8b01865] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) are an important class of drugs for a wide spectrum of human diseases. Liquid chromatography (LC) coupled to mass spectrometry (MS) is one of the techniques in the forefront for comprehensive characterization of analytical attributes of mAbs. Among various protein chromatography modes, hydrophobic interaction chromatography (HIC) is a popular offline nondenaturing separation technique utilized to purify and analyze mAbs, typically with the use of non-MS-compatible mobile phases. Herein we demonstrate for the first time, the application of direct HIC-MS and HIC-tandem MS (MS/MS) with electron capture dissociation (ECD) for analyzing intact mAbs on quadrupole-time-of-flight (Q-TOF) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, respectively. Our method allows for rapid determination of relative hydrophobicity, intact masses, and glycosylation profiles of mAbs as well as sequence and structural characterization of the complementarity-determining regions in an online configuration.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | | | - Cexiong Fu
- Process Analytical , AbbVie Inc , North Chicago , Illinois 60064 , United States
| | - Qunying Zhang
- Process Analytical , AbbVie Inc , North Chicago , Illinois 60064 , United States
| | - Wayne A Pritts
- Process Analytical , AbbVie Inc , North Chicago , Illinois 60064 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| |
Collapse
|
22
|
Buecheler JW, Winzer M, Weber C, Gieseler H. High-throughput oxidation screen of antibody-drug conjugates by analytical protein A chromatography following IdeS digest. ACTA ACUST UNITED AC 2018; 70:625-635. [PMID: 29380379 DOI: 10.1111/jphp.12873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Oxidation of protein therapeutics is a major chemical degradation pathway which may impact bioactivity, serum half-life and stability. Therefore, oxidation is a relevant parameter which has to be monitored throughout formulation development. Methods such as HIC, RPLC and LC/MS achieve a separation of oxidized and non-oxidized species by differences in hydrophobicity. Antibody-drug conjugates (ADC) although are highly more complex due to the heterogeneity in linker, drug, drug-to-antibody ratio (DAR) and conjugation site. The analytical protein A chromatography can provide a simple and fast alternative to these common methods. METHODS A miniature analytical protein A chromatography method in combination with an IdeS digest was developed to analyse ADCs. The IdeS digest efficiency of an IgG1 was monitored using SEC-HPLC and non-reducing SDS-PAGE. An antibody-fluorescent dye conjugate was conjugated at different dye-to-antibody ratios as model construct to mimic an ADC. KEY FINDINGS With IdeS, an almost complete digest of a model IgG1 can be achieved (digested protein amount >98%). This enables subsequent analytical protein A chromatography, which consequently eliminates any interference of payload with the stationary phase. CONCLUSION A novel high-throughput method for an interchain cysteine-linked ADC oxidation screens during formulation development was developed.
Collapse
Affiliation(s)
- Jakob W Buecheler
- Division of Pharmaceutics, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Merck KGaA, Darmstadt, Germany
| | | | | | | |
Collapse
|
23
|
Ehkirch A, D’Atri V, Rouviere F, Hernandez-Alba O, Goyon A, Colas O, Sarrut M, Beck A, Guillarme D, Heinisch S, Cianferani S. An Online Four-Dimensional HIC×SEC-IM×MS Methodology for Proof-of-Concept Characterization of Antibody Drug Conjugates. Anal Chem 2018; 90:1578-1586. [DOI: 10.1021/acs.analchem.7b02110] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anthony Ehkirch
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, 67000 Strasbourg, France
| | - Valentina D’Atri
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Florent Rouviere
- Université de Lyon, Institut des Sciences Analytiques, CNRS UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Oscar Hernandez-Alba
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, 67000 Strasbourg, France
| | - Alexandre Goyon
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Olivier Colas
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Morgan Sarrut
- Université de Lyon, Institut des Sciences Analytiques, CNRS UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Alain Beck
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, CNRS UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Sarah Cianferani
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, 67000 Strasbourg, France
| |
Collapse
|
24
|
Källsten M, Hartmann R, Artemenko K, Lind SB, Lehmann F, Bergquist J. Qualitative analysis of antibody–drug conjugates (ADCs): an experimental comparison of analytical techniques of cysteine-linked ADCs. Analyst 2018; 143:5487-5496. [DOI: 10.1039/c8an01178h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Four different cysteine linked antibody-drug conjugates (ADCs) consisting of Trastuzumab-vc-MMAE were analysed with four common analytical techniques with respect to drug-to-antibody ratio (DAR) and molecular weight.
Collapse
Affiliation(s)
- Malin Källsten
- Department of Chemistry-BMC
- Analytical Chemistry
- Uppsala University
- Uppsala
- Sweden
| | - Rafael Hartmann
- Department of Medicinal Chemistry
- Organic Pharmaceutical Chemistry
- BMC
- Uppsala University
- SE-751 23 Uppsala
| | | | - Sara Bergström Lind
- Department of Chemistry-BMC
- Analytical Chemistry
- Uppsala University
- Uppsala
- Sweden
| | | | - Jonas Bergquist
- Department of Chemistry-BMC
- Analytical Chemistry
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
25
|
Tyteca E, De Vos J, Tassi M, Cook K, Liu X, Kaal E, Eeltink S. Generic approach to the method development of intact protein separations using hydrophobic interaction chromatography. J Sep Sci 2017; 41:1017-1024. [PMID: 29178450 DOI: 10.1002/jssc.201701202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/05/2022]
Abstract
We describe a liquid chromatography method development approach for the separation of intact proteins using hydrophobic interaction chromatography. First, protein retention was determined as function of the salt concentration by isocratic measurements and modeled using linear regression. The error between measured and predicted retention factors was studied while varying gradient time (between 15 and 120 min) and gradient starting conditions, and ranged between 2 and 15%. To reduce the time needed to develop optimized gradient methods for hydrophobic interaction chromatography separations, retention-time estimations were also assessed based on two gradient scouting runs, resulting in significantly improved retention-time predictions (average error < 2.5%) when varying gradient time. When starting the scouting gradient at lower salt concentrations (stronger eluent), retention time prediction became inaccurate in contrast to predictions based on isocratic runs. Application of three scouting runs and a nonlinear model, incorporating the effects of gradient duration and mobile-phase composition at the start of the gradient, provides accurate results (improved fitting compared to the linear solvent-strength model) with an average error of 1.0% and maximum deviation of -8.3%. Finally, gradient scouting runs and retention-time modeling have been applied for the optimization of a critical-pair protein isoform separation encountered in a biotechnological sample.
Collapse
Affiliation(s)
- Eva Tyteca
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium.,University of Liège, Gembloux Agro-BioTech, Department of Agronomy, Bio-engineering and Chemistry, Analytical Chemistry, Gembloux, Belgium
| | - Jelle De Vos
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium
| | - Marco Tassi
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium
| | - Ken Cook
- Thermo Fisher Scientific, Hemel Hempstead, United Kingdom
| | | | - Erwin Kaal
- DSM Biotechnology Center, part of DSM Food Specialties B.V., Delft, The Netherlands
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium
| |
Collapse
|
26
|
Tassi M, De Vos J, Chatterjee S, Sobott F, Bones J, Eeltink S. Advances in native high-performance liquid chromatography and intact mass spectrometry for the characterization of biopharmaceutical products. J Sep Sci 2017; 41:125-144. [DOI: 10.1002/jssc.201700988] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Tassi
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Jelle De Vos
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Sneha Chatterjee
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
- School of Molecular and Cellular Biology; University of Leeds; Leeds UK
| | - Jonathan Bones
- The National Institute for Bioprocessing Research and Training (NIBRT); Dublin Ireland
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| |
Collapse
|
27
|
Bobály B, D’Atri V, Beck A, Guillarme D, Fekete S. Analysis of recombinant monoclonal antibodies in hydrophilic interaction chromatography: A generic method development approach. J Pharm Biomed Anal 2017. [DOI: 10.1016/j.jpba.2017.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Bobály B, Fleury-Souverain S, Beck A, Veuthey JL, Guillarme D, Fekete S. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J Pharm Biomed Anal 2017; 147:493-505. [PMID: 28688616 DOI: 10.1016/j.jpba.2017.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022]
Abstract
Antibody Drug Conjugates (ADCs) are innovative biopharmaceuticals gaining increasing attention over the last two decades. The concept of ADCs lead to new therapy approaches in numerous oncological indications as well in infectious diseases. Currently, around 60 CECs are in clinical trials indicating the expanding importance of this class of protein therapeutics. ADCs show unprecedented intrinsic heterogeneity and address new quality attributes which have to be assessed. Liquid chromatography is one of the most frequently used analytical method for the characterization of ADCs. This review summarizes recent results in the chromatographic characterization of ADCs and supposed to provide a general overview on the possibilities and limitations of current approaches for the evaluation of drug load distribution, determination of average drug to antibody ratio (DARav), and for the analysis of process/storage related impurities. Hydrophobic interaction chromatography (HIC), reversed phase liquid chromatography (RPLC), size exclusion chromatography (SEC) and multidimensional separations are discussed focusing on the analysis of marketed ADCs. Fundamentals and aspects of method development are illustrated with applications for each technique. Future perspectives in hydrophilic interaction chromatography (HILIC), HIC, SEC and ion exchange chromatography (IEX) are also discussed.
Collapse
Affiliation(s)
- Balázs Bobály
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
29
|
Separation of antibody drug conjugate species by RPLC: A generic method development approach. J Pharm Biomed Anal 2017; 137:60-69. [DOI: 10.1016/j.jpba.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/18/2022]
|
30
|
Kormány R, Molnár I, Fekete J. Renewal of an old European Pharmacopoeia method for Terazosin using modeling with mass spectrometric peak tracking. J Pharm Biomed Anal 2017; 135:8-15. [DOI: 10.1016/j.jpba.2016.11.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/21/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
|
31
|
Optimization of non-linear gradient in hydrophobic interaction chromatography for the analytical characterization of antibody-drug conjugates. J Chromatogr A 2017; 1481:82-91. [DOI: 10.1016/j.chroma.2016.12.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/25/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022]
|
32
|
Baca M, De Vos J, Bruylants G, Bartik K, Liu X, Cook K, Eeltink S. A comprehensive study to protein retention in hydrophobic interaction chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:182-188. [DOI: 10.1016/j.jchromb.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 11/27/2022]
|
33
|
Sarrut M, Corgier A, Fekete S, Guillarme D, Lascoux D, Janin-Bussat MC, Beck A, Heinisch S. Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. I − Optimization of separation conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:103-111. [DOI: 10.1016/j.jchromb.2016.06.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/19/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
|
34
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
35
|
Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. J Pharm Biomed Anal 2016; 130:3-18. [DOI: 10.1016/j.jpba.2016.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/20/2022]
|
36
|
Astefanei A, Dapic I, Camenzuli M. Different Stationary Phase Selectivities and Morphologies for Intact Protein Separations. Chromatographia 2016; 80:665-687. [PMID: 28529348 PMCID: PMC5413533 DOI: 10.1007/s10337-016-3168-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
The central dogma of biology proposed that one gene encodes for one protein. We now know that this does not reflect reality. The human body has approximately 20,000 protein-encoding genes; each of these genes can encode more than one protein. Proteins expressed from a single gene can vary in terms of their post-translational modifications, which often regulate their function within the body. Understanding the proteins within our bodies is a key step in understanding the cause, and perhaps the solution, to disease. This is one of the application areas of proteomics, which is defined as the study of all proteins expressed within an organism at a given point in time. The human proteome is incredibly complex. The complexity of biological samples requires a combination of technologies to achieve high resolution and high sensitivity analysis. Despite the significant advances in mass spectrometry, separation techniques are still essential in this field. Liquid chromatography is an indispensable tool by which low-abundant proteins in complex samples can be enriched and separated. However, advances in chromatography are not as readily adapted in proteomics compared to advances in mass spectrometry. Biologists in this field still favour reversed-phase chromatography with fully porous particles. The purpose of this review is to highlight alternative selectivities and stationary phase morphologies that show potential for application in top-down proteomics; the study of intact proteins.
Collapse
Affiliation(s)
- A. Astefanei
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - I. Dapic
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M. Camenzuli
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
37
|
Bobaly B, Beck A, Veuthey JL, Guillarme D, Fekete S. Impact of organic modifier and temperature on protein denaturation in hydrophobic interaction chromatography. J Pharm Biomed Anal 2016; 131:124-132. [PMID: 27589029 DOI: 10.1016/j.jpba.2016.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/16/2023]
Abstract
The goal of this study was to better understand the chromatographic conditions in which monoclonal antibodies (mAbs) of broad hydrophobicity scale and a cysteine conjugated antibody-drug conjugate (ADCs), namely brentuximab-vedotin, could denaturate. For this purpose, some experiments were carried out in HIC conditions using various organic modifier in natures and proportions, different mobile phase temperatures and also different pHs. Indeed, improper analytical conditions in hydrophobic interaction chromatography (HIC) may create reversed-phase (RP) like harsh conditions and therefore protein denaturation. In terms of organic solvents, acetonitrile (ACN) and isopropanol (IPA) were tested with proportions ranging from 0 to 40%. It appeared that IPA was a less denaturating solvent than ACN, but should be used in a reasonable range (10-15%). Temperature should also be kept reasonable (below 40°C), to limit denaturation under HIC conditions. However, the combined increase of temperature and organic content induced denaturation of protein biopharmaceuticals in all cases. Indeed, above 30-40°C and 10-15% organic modifier in mobile phase B, heavy chain (HC) and light chain (LC) fragments dissociated. Mobile phase pH was also particularly critical and denaturation was significant even under moderately acidic conditions (pH of 5.4). Today, HIC is widely used for measuring drug-to-antibody ratio (DAR) of ADCs, which is a critical quality attribute of such samples. Here, we demonstrated that the estimation of average DAR can be dependent on the amount of organic modifier in the mobile phase under HIC conditions, due to the better recovery of the most hydrophobic proteins in presence of organic solvent (IPA). So, special care should be taken when measuring the average DAR of ADCs in HIC.
Collapse
Affiliation(s)
- Balázs Bobaly
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France(1)
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland.
| |
Collapse
|
38
|
Xu Y, Jiang G, Tran C, Li X, Heibeck TH, Masikat MR, Cai Q, Steiner AR, Sato AK, Hallam TJ, Yin G. RP-HPLC DAR Characterization of Site-Specific Antibody Drug Conjugates Produced in a Cell-Free Expression System. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yiren Xu
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Guifeng Jiang
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Cuong Tran
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Xiaofan Li
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Tyler H. Heibeck
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Mary Rose Masikat
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Qi Cai
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Alexander R. Steiner
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Aaron K. Sato
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Trevor J. Hallam
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Gang Yin
- Sutro Biopharma, Inc. 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| |
Collapse
|
39
|
Stoll D, Danforth J, Zhang K, Beck A. Characterization of therapeutic antibodies and related products by two-dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:51-60. [PMID: 27267072 DOI: 10.1016/j.jchromb.2016.05.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 01/08/2023]
Abstract
The development of analytical tools for the characterization of large biomolecules is an emerging and rapidly evolving area. This development activity is motivated largely by the current trend involving the increase in development and use of large biomolecules for therapeutic uses. Given the inherent complexity of these biomolecules, which arises from their sheer size and possibilities for chemical modification as well as changes over time (e.g., through modification in solution, aggregation), two-dimensional liquid chromatography (2D-LC) has attracted considerable interest as an analytical tool to address the challenges faced in characterizing these materials. The immediate potential benefits of 2D-LC over conventional one-dimensional liquid chromatography in this context include: (1) higher overall resolving power; (2) complementary information gained from two dimensions of separation in a single analysis; and (3) enabling indirect coupling of separation modes that are inherently incompatible with mass spectrometric (MS) detection (e.g., ion-exchange, because of high-salt eluents) to MS through a more compatible second dimension separation such as reversed-phase LC. In this review we summarize the work in this area, most of which has occurred in the past five years. Although the future is bright for further development in this area, some challenges have already been addressed through new 2D-LC methods. These include: (1) deep characterization of monoclonal antibodies to understand charge heterogeneity, glycosylation patterns, and other modifications; (2) characterization of antibody-drug conjugates to understand the extent and localization of small molecule conjugation; (3) detailed study of excipients in protein drug formulations; and (4) detection of host-cell proteins on biotherapeutic molecule preparations. We fully expect that in the near future we will see this list expanded, and that continued development will lead to methods with further improved performance metrics.
Collapse
Affiliation(s)
- Dwight Stoll
- Gustavus Adolphus College, Department of Chemistry, St. Peter, MN, USA.
| | - John Danforth
- Gustavus Adolphus College, Department of Chemistry, St. Peter, MN, USA
| | - Kelly Zhang
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| |
Collapse
|