1
|
Yuan S, Cao Y, Jiang J, Chen J, Huang X, Li X, Zhou J, Zhou Y, Zhou J. Xuebijing injection and its bioactive components alleviate nephrotic syndrome by inhibiting podocyte inflammatory injury. Eur J Pharm Sci 2024; 196:106759. [PMID: 38570053 DOI: 10.1016/j.ejps.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Xuebijing injection (XBJ) is widely used to treat nephrotic syndrome (NS) in clinic, but its bioactive components and therapeutic mechanism are still unclear. In this study, the bioactive components of XBJ were determined by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS). The therapeutic effect of XBJ on NS was evaluated in BALB/c mice induced by adriamycin (ADR, 10 mg/kg) via a single tail vein. The protective effect of XBJ and its bioactive components on podocytes was demonstrated using mouse podocytes (MPC-5) induced by lipopolysaccharide (LPS, 4 μg/mL). The results show that 33 components of XBJ were identified. Furthermore, 12 bioactive components were detected in blood, including protocatechuic acid, salvianolic acid C, benzoyloxypaeoniflorin, danshensu, salvianolic acid A, salvianolic acid B, catechin, caffeic acid, galloylpaeoniflorin, oxypaeoniflorin, hydroxysafflor yellow A, rosmarinic acid. The relative content (%) of the bioactive components were 59.32, 16.01, 9.97, 9.73, 8.72, 8.31, 7.92, 6.54, 1.54, 1.30, 0.68 and 0.59 in this order. After XBJ treatment, the renal function, hyperlipidemia and renal pathological damage were improved in NS model mice. Moreover, the levels of nephrin and desmin which are functional proteins in podocytes were reversed, and the levels of pro-inflammatory factors were reduced by XBJ. Interestingly, protocatechuic acid and salvianolic acid C also showed good protective effects on podocyte function and reduced the level of inflammation in LPS-induced MPC-5. The study is the first time to elucidate the bioactive components of XBJ and its potential therapeutic mechanism for treating NS by protecting podocyte function.
Collapse
Affiliation(s)
- Shengliang Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Affiliated Gaozhou People's Hospital, Guangdong Medical University, Gaozhou 525200, China
| | - Yiwen Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiaying Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Junqi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiuye Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaojie Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiuyao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Tsedilin A, Borets L, Riabova O, Kazakova E, Tafeenko V, Makarov V. Determination of alkaloid-inspired molecule vindeburnol in rabbit plasma by UPLC-HRMS and its application to pharmacokinetic studies and preliminary metabolite identification. J Pharm Biomed Anal 2024; 239:115917. [PMID: 38101239 DOI: 10.1016/j.jpba.2023.115917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
The eburnamine-vincamine alkaloids exhibit a range of pharmacological activities. There is a limited understanding of the pharmacokinetics and pharmacodynamics of vindeburnol, a synthetic derivative of this chemical class of alkaloids. A fast and reliable UPLC-HRMS method was developed and validated to quantify vindeburnol in Soviet Chinchilla rabbit plasma from pharmacokinetics studies. An ultra-performance liquid chromatography system equipped with a Waters Acquity UPLC HSS T3 column was used for chromatographic separation by gradient elution with 0.1% (v/v) formic acid in water and acetonitrile. An Impact II QqTOF high-resolution mass spectrometer equipped with an Apollo II electrospray ionization source was used for analysis in positive mode; the ions [M+H]+m/z 269.1648 ± 0.003 and m/z 351.2067 ± 0.003 were monitored for vindeburnol and internal standard (vinpocetine), respectively. Preliminary metabolite profiling was also performed, and the pharmacokinetics of the identified metabolites were evaluated. The mean retention times for vindeburnol and vinpocetine were 2.0 and 3.5 min. The UPLC-HRMS method was validated with accuracy and precision within the 15% acceptance limit (8.2% and 11.0%, respectively). The mean extraction recovery value of vindeburnol from rabbit plasma was 77%. Pharmacokinetic evaluation of vindeburnol revealed that the compound is distributed rapidly with a short elimination half-life. Vindeburnol undergoes extensive first-pass metabolism and is metabolized into hydroxyvindeburnol and vindeburnol glucuronide.
Collapse
Affiliation(s)
- Andrey Tsedilin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-1 Leninsky prospect, 119071 Moscow, Russia
| | - Lyudmila Borets
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-1 Leninsky prospect, 119071 Moscow, Russia
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-1 Leninsky prospect, 119071 Moscow, Russia
| | - Elena Kazakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-1 Leninsky prospect, 119071 Moscow, Russia
| | - Victor Tafeenko
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-1 Leninsky prospect, 119071 Moscow, Russia.
| |
Collapse
|
3
|
Kim C, Sim H, Bae JS. Benzoylpaeoniflorin Activates Anti-Inflammatory Mechanisms to Mitigate Sepsis in Cell-Culture and Mouse Sepsis Models. Int J Mol Sci 2022; 23:ijms232113130. [PMID: 36361915 PMCID: PMC9656632 DOI: 10.3390/ijms232113130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Xuebijing injection (XBJI) (comprising of five herbs) is a widely used traditional Chinese medicine for sepsis treatment. However, the bioactive components of XBJI and the mechanisms responsible for its sepsis-mitigating action have not been experimentally determined. One of the main bioactive compounds in XBJI—benzoylpaeoniflorin (BPF)—inhibits the expressions of key mediators of inflammation such as nuclear factor kappa B (NF-κB), cyclooxygenase-1 (COX-1), and COX-2. However, its effects on sepsis have not been determined yet. Therefore, here, we investigated the immunomodulatory effect of BPF on severely inflamed endothelial cells, THP-1 macrophages, peritoneal macrophages, and mice. Human umbilical vein endothelial cells (HUVECs) and THP-1-macrophages were activated using lipopolysaccharide (LPS) after pretreatment with BPF. Subsequently, changes in the expression profiles of pro-inflammatory molecules including inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were determined using quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. Furthermore, we monitored the phosphorylation of NF-kB and mitogen-activated protein kinases (MAPKs) to determine their activation levels. Using the LPS-induced mouse model of sepsis, we studied the effects of BPF on inflammatory cytokine production, pulmonary histopathology, and survival rates. Finally, we evaluated whether BPF protects against cecal ligation and puncture (CLP)-induced sepsis, as it closely mimics human sepsis. BPF pretreatment inhibited LPS-induced increase in mRNA and protein levels of iNOS, TNF-α, and IL-6 in HUVECs and THP-1-macrophages. It also suppressed LPS-mediated phosphorylation of p65, p38, JNK, and ERK. Mice with LPS-induced-sepsis who were treated with BPF had lower serum levels of IL-6, TNF-α, IL-1β, CXCL1, and CXCL2 than the control mice treated with BPF. Histopathology revealed that BPF treatment alleviated LPS-induced lung damage. In addition, in mice given a lethal dose of LPS, BPF treatment showed a dose-dependent improvement in survival rates. BPF treatment dose-dependently inhibited the LPS-induced IL-6, TNF-α, and CXCL1 production in peritoneal macrophages. BPF treatment also dose-dependently improved the survival rates in mice with CLP-induced sepsis. These results show that BPF alleviates LPS-stimulated septic conditions and protects mice from CLP-induced sepsis. Our research marks BPF as a potential drug in the treatment of sepsis and various inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Jong-Sup Bae
- Correspondence: ; Tel.: +82-53-950-8570; Fax: +82-53-950-8557
| |
Collapse
|
4
|
Xia KY, Zhao Z, Shah T, Wang JY, Baloch Z. Composition, Clinical Efficiency, and Mechanism of NHC-Approved “Three Chinese Medicines and Three Chinese Recipes” for COVID-19 Treatment. Front Pharmacol 2022; 12:781090. [PMID: 35185537 PMCID: PMC8855106 DOI: 10.3389/fphar.2021.781090] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been regularly prescribed to treat and prevent diseases for thousands of years in the eastern part of the Asian continent. Thus, when the coronavirus disease 2019 (COVID-19) epidemic started, TCM was officially incorporated as a strategy by the National Health Commission (NHC) for the treatment of COVID-19 infection. TCMs were used to treat COVID-19 and had a significant effect on alleviating symptoms, delaying disease progression, improving the cure rate, and reducing the mortality rate in China. Therefore, China’s National Health Commission officially approved Qingfei Paidu decoction, Xuanfei Baidu decoction, Huashi Baidu decoction, Lianhua Qingwen capsules, Jinhua Qinggan granules, and Xuebijing for COVID-19 treatment. This review evaluates and summarizes the use of TCMs against infectious diseases and the composition, clinical efficacy, and mechanisms of the NHC-approved “three Chinese medicines and three Chinese recipes” for COVID-19 treatment. The three Chinese medicines and three Chinese recipes have been demonstrated to be highly effective against COVID-19, but there is a lack of in vivo or in vitro evidence. Most of the available data related to the potential mechanism of the three Chinese medicines and three Chinese recipes is based on virtual simulation or prediction, which is acquired via molecular docking and network pharmacology analysis. These predictions have not yet been proven. Therefore, there is a need for high-quality in vivo and in vitro and clinical studies by employing new strategies and technologies such as genomics, metabolomics, and proteomics to verify the predicted mechanisms of these drug’s effects on COVID-19.
Collapse
Affiliation(s)
- Ke-Yao Xia
- Faculty of Traditional Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zeyuan Zhao
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Taif Shah
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jing-Yi Wang
- Faculty of Traditional Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zulqarnain Baloch,
| |
Collapse
|
5
|
Yu X, Niu W, Wang YY, Olaleye OE, Wang JN, Duan MY, Yang JL, He RR, Chu ZX, Dong K, Zhang GP, Liu CX, Cheng C, Li C. Novel assays for quality evaluation of XueBiJing: Quality variability of a Chinese herbal injection for sepsis management. J Pharm Anal 2022; 12:664-682. [PMID: 36105162 PMCID: PMC9463487 DOI: 10.1016/j.jpha.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
XueBiJing is an intravenous five-herb injection used to treat sepsis in China. The study aimed to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS)- or liquid chromatography-ultraviolet (LC-UV)-based assay for quality evaluation of XueBiJing. Assay development involved identifying marker constituents to make the assay therapeutically relevant and building a reliable one-point calibrator for monitoring the various analytes in parallel. Nine marker constituents from the five herbs were selected based on XueBiJing's chemical composition, pharmacokinetics, and pharmacodynamics. A selectivity test (for “similarity of response”) was developed to identify and minimize interference by non-target constituents. Then, an intercept test was developed to fulfill “linearity through zero” for each analyte (absolute ratio of intercept to C response, <2%). Using the newly developed assays, we analyzed samples from 33 batches of XueBiJing, manufactured over three years, and found small batch-to-batch variability in contents of the marker constituents (4.1%–14.8%), except for senkyunolide I (26.5%). To make assays therapeutically relevant, criteria were proposed for defining herbal medicine efficacy & selecting analytes. Two tests were developed to build a one-point assay calibrator for the simultaneous monitoring of various analytes. Variability among 3-year batches of XueBiJing was evaluated for the first time using the therapeutically relevant assays.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Niu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ya-Ya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Olajide E. Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia-Nan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng-Yuan Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Ling Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rong-Rong He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zi-Xuan Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Dong
- Research Institute, Tianjin Chasesun Pharmaceutical Co., Ltd., Tianjin, 301700, China
| | - Gui-Ping Zhang
- Research Institute, Tianjin Chasesun Pharmaceutical Co., Ltd., Tianjin, 301700, China
| | - Chang-Xiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics and Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Corresponding author.
| | - Chuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Corresponding author. State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
6
|
Tu Y, Li L, Wang Z, Yang L. Advances in analytical techniques and quality control of traditional Chinese medicine injections. J Pharm Biomed Anal 2021; 206:114353. [PMID: 34562802 DOI: 10.1016/j.jpba.2021.114353] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/27/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022]
Abstract
Traditional Chinese medicine injections (TCMIs) are a new pharmaceutical form in the modernization of traditional Chinese medicines (TCMs). Its efficacy is rapid, the curative effect is improved, and is widely used in critical and acute diseases, complicated and severe diseases, and other treatment. However, with the broad applications of TCMIs, clinical adverse reactions frequently occur, and safety problems become more prominent. Therefore, the quality control of TCMIs is essential. Chemical analysis methods and biological analysis methods are widely used in the quality control of TCMIs. This article describes the current status of TCMIs, the analytical techniques, and methods currently used, and the quality control of TCMIs. A summary of the advantages and disadvantages of the current analysis methods is presented. An overview of the quality control of TCMIs is introduced. In addition, emerging techniques of the quality control of TCMIs are introduced.
Collapse
Affiliation(s)
- Yujia Tu
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
7
|
Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci 2021; 22:11078. [PMID: 34681737 PMCID: PMC8540716 DOI: 10.3390/ijms222011078] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; the pathophysiology of sepsis is complex. The incidence of sepsis is steadily increasing, with worldwide mortality ranging between 30% and 50%. Current treatment approaches mainly rely on the timely and appropriate administration of antimicrobials and supportive therapies, but the search for pharmacotherapies modulating the host response has been unsuccessful. Chinese herbal medicines, i.e., Chinese patent medicines, Chinese herbal prescriptions, and single Chinese herbs, play an important role in the treatment of sepsis through multicomponent, multipathway, and multitargeting abilities and have been officially recommended for the management of COVID-19. Chinese herbal medicines have therapeutic actions promising for the treatment of sepsis; basic scientific research on these medicines is increasing. However, the material bases of most Chinese herbal medicines and their underlying mechanisms of action have not yet been fully elucidated. This review summarizes the current studies of Chinese herbal medicines used for the treatment of sepsis in terms of clinical efficacy and safety, pharmacological activity, phytochemistry, bioactive constituents, mechanisms of action, and pharmacokinetics, to provide an important foundation for clarifying the pathogenesis of sepsis and developing novel antisepsis drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
| | | |
Collapse
|
8
|
Ma Q, Qi C, Li XL, Shi Q, Xu CY, Jin T, Min JZ. Simultaneous determination of DL-cysteine, DL-homocysteine, and glutathione in saliva and urine by UHPLC-Q-Orbitrap HRMS: Application to studies of oxidative stress. J Pharm Biomed Anal 2021; 196:113939. [PMID: 33578266 DOI: 10.1016/j.jpba.2021.113939] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/25/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
A high-sensitivity and -selectivity mass spectrometry derivatization reagent, (R)-(5-(3-isothiocyanatopyrrolidin-1-yl)-5-oxopentyl) triphenylphosphonium (NCS-OTPP), was developed for the enantiomeric separation of chiral thiol compounds as prospectively important diagnostic markers for oxidative stress-related diseases. Complete separation of GSH, DL-Cys, and DL-Hcy was achieved. The parent ions of all derivatives had a fragment of m/z 473.18 and a structure of m/z 75.95 (R-S = C-S-R'), conducive to qualitative and quantitative analysis. Good linear relationships were obtained for all analytes (R2≥ 0.9995). The intra-day and inter-day precision were 0.82-5.16 % and 1.02-4.18 % in saliva, and 0.81-3.45 % and 0.99-6.47 % in urine, with mean recoveries of 83.31-105.66 % and 84.09-101.11 %, respectively. The limit of detection (S/N = 3) was 19.20-57.60 nM. Free and total GSH, DL-Cys, and DL-Hcy were detected simultaneously in saliva and urine from 10 volunteers in the normal, stressed, and stable states by UHPLC-Q-Orbitrap HRMS. The thiol compounds were quantitatively related to oxidative stress state changes.
Collapse
Affiliation(s)
- Qingkun Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of General Surgery Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Chao Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of General Surgery Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of General Surgery Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Qing Shi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of General Surgery Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Chun-Yan Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of General Surgery Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Toufeng Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of General Surgery Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of General Surgery Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
9
|
Li C, Wang P, Li M, Zheng R, Chen S, Liu S, Feng Z, Yao Y, Shang H. The current evidence for the treatment of sepsis with Xuebijing injection: Bioactive constituents, findings of clinical studies and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113301. [PMID: 32860891 DOI: 10.1016/j.jep.2020.113301] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/16/2019] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuebijing (XBJ) injection is a Chinese medicine containing extracts from Carthamus tinctorius L. (Carthami Flos, hong hua, Asteraceae), Paeonia lactiflora Pall. (Paeoniae radix rubra, chi shao, Ranunculaceae), Ligusticum chuanxiong Hort. (Chuanxiong Rhizoma, chuan xiong, Umbelliferae), Salvia miltiorrhiza Bge. (Salviae miltiorrhizae Radix Et Rhizoma, dan shen, Labiatae) and Angelica sinensis (Oliv.) Diels (Angelicae sinensis Radix, dang gui, Umbelliferae). It has been approved for the treatment of sepsis in China since 2004 and has been widely used as an add-on treatment for sepsis or septic shock with few side effects. AIM OF THE STUDY The aim of the present review was to analyse up-to-date information related to the treatment of sepsis with XBJ, including the bioactive constituents, clinical studies and potential mechanisms, and to discuss possible scientific gaps, to provide a reliable reference for future studies. MATERIALS AND METHODS Scientific resources concentrating on treating sepsis with XBJ were searched through PubMed, the Chinese National Knowledge Infrastructure (CNKI) and WanFang databases from inception to November 2018. Dissertations were also searched, and eligible dissertations were selected. Studies related to the identification of constituents, bioactive components and their targets of action or pathways, clinical trials, and animal or cellular experiments that explored pharmacological mechanisms were manually selected. The quality of reporting and methodology of the included pharmacological experiments were assessed using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines and the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tool. RESULTS A total of 108 relative studies were eventually included, containing 12 bioactivity research studies, 10 systematic reviews on clinical trials and 86 animal or cellular experiments. We noted that as identification methods progressed, further constituents could be detected in XBJ. XBJ was also found to have "multi-ingredient, multi-target and multi-pathway" effects. The systematic review revealed that XBJ could improve the 28-day mortality and other indexes, such as the APACHE II score, body temperature, and white blood cell (WBC) count, to some extent. A major organ protection effect was demonstrated in septic rats. Pharmacological investigations suggested that XBJ acts in both the early and late stages of sepsis by anti-inflammatory, anti-coagulation, immune regulation, vascular endothelial protection, anti-oxidative stress and other mechanisms. However, most of the included studies were poorly reported, and the risk of bias was unclear. CONCLUSIONS With respect to the multiple therapeutic mechanisms contributing to both the early and late stages of sepsis, the multiple effective constituents detected and randomized controlled trials (RCTs) performed to prove its efficacy, XBJ is a promising therapy for the treatment of sepsis. However, although XBJ has shown some efficacy for the treatment of sepsis, there are currently some scientific gaps. More studies concerning the pharmacokinetics, interactions with antibiotics, real-world efficacy and safety, pharmacological mechanisms of the bioactive components and large-scale clinical trials should be conducted in the future.
Collapse
Affiliation(s)
- Chengyu Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| | - Ping Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Fangshan District, Beijing, 102488, China.
| | - Min Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| | - Shiqi Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| | - Si Liu
- Tianjin Chase Sun Pharmaceutical Co. LTD, 20 Quanfa Road, Tianjin Wuqing Development Area, Tianjin, 300170, China.
| | - Zhiqiao Feng
- Tianjin Chase Sun Pharmaceutical Co. LTD, 20 Quanfa Road, Tianjin Wuqing Development Area, Tianjin, 300170, China.
| | - Yongming Yao
- First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 51 Bucheng Road, Haidian District, Beijing, 100048, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
10
|
Li R, Cui Y, Zheng X, Qin X, Cao J, Li Z. Characterization of chemical components in the Guanxinning injection by liquid chromatography-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4662. [PMID: 33166042 DOI: 10.1002/jms.4662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Guanxinning injection (GXNI) is widely used in the treatments of cerebral thrombosis, cerebral hemorrhage, sequela, coronary disease, stenocardia, arrhythmia, and so on. For the herbal injections, more components should be characterized and quantified as much as possible to guarantee the drug safety. However, large numbers of the chemical constituents in the GXNI still remain unknown. In this study, ultrahigh performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry (UHPLC-Q Orbitrap HRMS), in combination of nuclear magnetic resonance (NMR), was used to identify the components in GXNI, which led to the identification of 194 compounds. With the aid of solvent partition, more phthalides, diterpenoid quinines, and salvianolic acids were tentatively identified, and minor compounds with the other structural types were also detected. The structural diversity of phthalides and diterpenoid quinones were revealed by the structural network, and six phthalides and 13 diterpenoid quinones were further detected in GXNI with the help of the characteristic fragmentation pattern and structural network. In addition, NMR also revealed the presence of a series of primary metabolites in the GXNI, which could be used as a complimentary approach for the rapid identification of the chemical components in the traditional Chinese medicines (TCM). However, the unknown NMR signals of GXNI needed to be further identified to guarantee the drug safety.
Collapse
Affiliation(s)
- Rongrong Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Yifan Cui
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Xiaofen Zheng
- Yabao Pharmaceutical Group Ltd., Yuncheng, 044600, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Jianjun Cao
- Yabao Pharmaceutical Group Ltd., Yuncheng, 044600, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
11
|
Wang Y, Zhang L, Gu S, Yin Z, Shi Z, Wang P, Xu C. The Current Application of LC-MS/MS in Pharmacokinetics of Traditional Chinese Medicines (Recent Three Years): A Systematic Review. Curr Drug Metab 2020; 21:969-978. [PMID: 33038908 DOI: 10.2174/1389200221666201009142418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND With significant clinical effects, traditional Chinese medicine (TCM) has been attracting increasing interest of the world's scientific community. However, TCM contains immense amounts of chemical components. It is a great challenge to objectively evaluate the correlation between the in vivo process and the therapeutic effect of TCM. The purpose of this systematic review was to summarize the recent investigation (from 2017 to 2019) on preclinical pharmacokinetics (PK) of TCM via liquid chromatography coupled with mass spectrometry (LC-MS/MS). METHODS We reviewed the published articles regarding the PK of TCM by LC-MS/MS. In addition, we summarized information on PK parameter of bioactive components, single herb and traditional Chinese medicine prescriptions. RESULTS The vast majority of literature on preclinical PK of TCM uses single oral administration, the biological matrix is mostly rat plasma, and the main PK parameters include AUC, Cmax, Tmax and T1/2, etc. Conclusion: Although LC-MS/MS can be used for high-throughput analysis, the characterization of in vivo processes of TCM still has a long way. With the advantages of high sensitivity, high specificity and simple operation, the increasingly mature LC-MS/MS technology will play an important role in the PK study of TCM.
Collapse
Affiliation(s)
- Yang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Lu Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Gu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Zhe Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Ping Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
12
|
Shang T, Yu Q, Ren T, Wang XT, Zhu H, Gao JM, Pan G, Gao X, Zhu Y, Feng Y, Li MC. Xuebijing Injection Maintains GRP78 Expression to Prevent Candida albicans-Induced Epithelial Death in the Kidney. Front Pharmacol 2020; 10:1416. [PMID: 31969817 PMCID: PMC6956827 DOI: 10.3389/fphar.2019.01416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/07/2019] [Indexed: 01/03/2023] Open
Abstract
Sepsis and septic shock threaten the survival of millions of patients in the intensive care unit. Secondary fungal infections significantly increased the risk of mortality in sepsis patients. Chinese medicine Xuebijing injection (XBJ) has been routinely used as an add-on treatment to sepsis and septic shock in China. Our network pharmacology analysis predicted that XBJ also influences fungal infection, consisting with results of pioneer clinical studies. We conducted in vivo and in vitro experiments to verify this prediction. To our surprise, XBJ rescued mice from lethal Candida sepsis in a disseminated Candida albicans infection model and abolished the colonization of C. albicans in kidneys. Although XBJ did not inhibit the growth and the virulence of C. albicans in vitro, it enhanced the viability of 293T cells upon C. albicans insults. Further RNA-seq analysis revealed that XBJ activated the endoplasmic reticulum (ER) stress pathway upon C. albicans infection. Western blot confirmed that XBJ maintained the expression of GRP78 in the presence of C. albicans. Interestingly, key active ingredients in XBJ (C0127) mirrored the effects of XBJ. C0127 not only rescued mice from lethal Candida sepsis and prevented the colonization of C. albicans in kidneys, but also sustained the survival of kidney epithelial cells partially by maintaining the expression of GRP78. These results suggested that XBJ may prevent fungal infection in sepsis patients. Pre-activation of ER stress pathway is a novel strategy to control C. albicans infection. Network pharmacology may accelerate drug development in the field of infectious diseases.
Collapse
Affiliation(s)
- Ting Shang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, TEDA, Tianjin, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xin-Tong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, TEDA, Tianjin, China
| | - Hongyan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, TEDA, Tianjin, China
| | - Jia-Ming Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, TEDA, Tianjin, China
| | - Guixiang Pan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, TEDA, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, TEDA, Tianjin, China
| | - Yuxin Feng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, TEDA, Tianjin, China
| | - Ming-Chun Li
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Wang M, Wang D, Gao C, Li X, Sha L, Zhao Q, Gao H, Wu Z. Pharmacokinetic and tissue distribution studies of cassane diterpenoids, in rats through an ultra-high-performance liquid chromatography-Q exactive hybrid quadrupole-Orbitrap high-resolution accurate mass spectrometry. Biomed Chromatogr 2019; 33:e4610. [PMID: 31145477 DOI: 10.1002/bmc.4610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/27/2019] [Accepted: 05/23/2019] [Indexed: 01/17/2023]
Abstract
Cassane diterpenoids (CA) are considered as the main active constituents of medicinal plants belonging to the Caesalpinia genus. Three cassane derivatives, bonducellpin G (BG), 7-O-acetyl-bonducellpin C (7-O-AC) and caesalmin E (CE), isolated from Caesalpinia minax Hance seeds, showed strong anti-inflammatory activity. In this paper, pharmacokinetics (BG, 7-O-AC, CE) and tissue distribution (7-O-AC, CE) properties were studied for the first time using a reliable, sensitive and rapid UHPLC-Q-Orbitrap HR-MS to develop new anti-inflammatory agents. A novel quantitative method with full scan in positive ion mode was used to determine the contents of compounds. They were separated using acetonitrile-water (0.1% formic acid) as gradient mobile phase. The calibration curve displayed good linearity and the lower limit of quantitation was 0.005-0.02 μg/mL for all analytes. Meanwhile, the absorption, distribution, metabolism, excretion (ADME) property was predicted using PreADMET web. The pharmacokinetic parameters indicated that they were absorbed quickly, eliminated rapidly together with high blood concentration. The results of tissue distribution demonstrated that CE was distributed rapidly and widely among tissues, and stomach was the main tissue site of CE and 7-O-AC, followed by small intestine/liver. This study indicates that the structures and dosages of active CA should be modified to help improve the absorption rate and residence time, and the findings are helpful for the pharmaceutical design of CA derivatives.
Collapse
Affiliation(s)
- Miao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Da Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Changjiu Gao
- Department of Pharmacology, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Xianzhe Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Luping Sha
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Qiang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Huiyuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaohua Wu
- Department of Pharmacology, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| |
Collapse
|
14
|
Lyu M, Zhou Z, Wang X, Lv H, Wang M, Pan G, Wang Y, Fan G, Gao X, Feng Y, Zhu Y. Network Pharmacology-Guided Development of a Novel Integrative Regimen to Prevent Acute Graft-vs.-Host Disease. Front Pharmacol 2018; 9:1440. [PMID: 30618740 PMCID: PMC6300759 DOI: 10.3389/fphar.2018.01440] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Lapses in the graft-vs.-host disease (GVHD) prophylaxis and side effects of current standard care following allogeneic hematopoietic stem cell transplantation (allo-HSCT) call for novel regimens. Traditional approaches targeting T cells showed limited success in preventing acute GVHD (aGVHD). System medicine showed promising results treating complex diseases such as sepsis and multi-organ dysfunction syndrome (MODS). Adapting established network pharmacology analysis methods, we aimed to develop novel integrative regimens to prevent aGVHD. Our network pharmacology analysis predicted that Xuebijing injection (XBJ) targets a series of key node proteins in aGVHD network. It also unveiled that Salviae miltiorrhizae (Danshen), an herb in Xuebijing formula, which prevented aGVHD in rats, shares five out of six key GVHD node proteins targeted by XBJ. Interestingly, network pharmacology analysis indicated Xuebijing may share multiple aGVHD targets with Cyclosporin A (CsA), a first-line drug for preventing aGVHD in the clinic. Based on current information, we hypothesized that combination of XBJ and CsA may yield superior results in aGVHD prevention than either drug alone. We performed in vitro and in vivo assays to validate the predictions by the network pharmacology analysis. In vitro assays revealed XBJ prevented platelet aggregation and NF-κB nuclear translocation in macrophages. XBJ also promoted angiogenesis in tube-formation assay. Importantly, the combination of CsA and XBJ was effective in rescuing mice subjected to lethal GVHD. XBJ contributed to the rescue through preventing NF-κB nuclear translocation, attenuating inflammation and maintaining viability of macrophages. Overall, network pharmacology is a powerful tool to develop novel integrative regimens. Combination of XBJ and CsA may shed light on preventing aGVHD.
Collapse
Affiliation(s)
- Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Zhengcan Zhou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Hong Lv
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Mei Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Guixiang Pan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Feng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| |
Collapse
|
15
|
Zuo L, Sun Z, Wang Z, Ding D, Xu T, Liu L, Gao L, Du S, Kang J, Zhang X. Tissue distribution profiles of multiple major bioactive components in rats after intravenous administration of Xuebijing injection by UHPLC-Q-Orbitrap HRMS. Biomed Chromatogr 2018; 33:e4400. [PMID: 30255561 DOI: 10.1002/bmc.4400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/15/2018] [Accepted: 09/21/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Lihua Zuo
- Department of Pharmacy; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| | - Zhi Sun
- Department of Pharmacy; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| | - Zhenhui Wang
- College of Medicine; Henan Polytechnic University; Jiaozuo People's Republic of China
| | - Daling Ding
- Department of Neurosurgery; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| | - Tanye Xu
- Department of Pharmacy; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| | - Liwei Liu
- Department of Pharmacy; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| | - Li Gao
- Department of Pharmacy; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| | - Shuzhang Du
- Department of Pharmacy; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| | - Jian Kang
- Department of Pharmacy; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| | - Xiaojian Zhang
- Department of Pharmacy; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province People's Republic of China
| |
Collapse
|