1
|
Dong L, Wu J, Zhu X. Preparation of amino acid chiral ionic liquid and visual chiral recognition of glutamine and phenylalanine enantiomers. Chirality 2024; 36:e23665. [PMID: 38570326 DOI: 10.1002/chir.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.
Collapse
Affiliation(s)
- Luzheng Dong
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| | - Jun Wu
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Tan X, Zhang Y, Mao H, Yang J. Recognition of chiral propranolol by fluorescent aptamerlight switch based on GO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123436. [PMID: 37832446 DOI: 10.1016/j.saa.2023.123436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
In this work, specific aptamers with affinity for S-propranolol were screened by SELEX technology based on the graphene oxide (GO) adsorption platform, and a GO-FAM labeled aptamer-propranolol fluorescent optical switch system was constructed for the recognition of chiral propranolol. It was found that the fluorescence quenching of FAM labeled aptamer could be caused by the adsorption of GO. However, when S-propranolol was introduced, S-propranolol could pull out the aptamer adsorbed by GO, and the fluorescence of the system could be restored. But, R-propranolol could not be realized. Therefore, a simple and sensitive fluorescent optical switch system was established to identify chiral propranolol and perform highly sensitive detection of S-propranolol.
Collapse
Affiliation(s)
- Xuanping Tan
- ChongQing Three Gorges University, Chongqing 404000, China
| | - Yuhui Zhang
- ChongQing Three Gorges University, Chongqing 404000, China
| | - Huaping Mao
- ChongQing Three Gorges University, Chongqing 404000, China
| | - Jidong Yang
- ChongQing Three Gorges University, Chongqing 404000, China.
| |
Collapse
|
3
|
Aredes RS, Lima IDP, Faillace AP, Madriaga VGC, Lima TDM, Vaz FAS, Marques FFDC, Duarte LM. From capillaries to microchips, green electrophoretic features for enantiomeric separations: A decade review (2013-2022). Electrophoresis 2023; 44:1471-1518. [PMID: 37667860 DOI: 10.1002/elps.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Enantioseparation by the electromigration-based method is well-established and widely discussed in the literature. Electrophoretic strategies have been used to baseline resolve complex enantiomeric mixtures, typically using a selector substance into the background electrolyte (BGE) from capillaries to microchips. Along with developing new materials/substances for enantioseparations, it is the concern about the green analytical chemistry (GAC) principles for method development and application. This review article brings a last decade's update on the publications involving enantioseparation by electrophoresis for capillary and microchip systems. It also brings a critical discussion on GAC principles and new green metrics in the context of developing an enantioseparation method. Chemical and green features of native and modified cyclodextrins are discussed. Still, given the employment of greener substances, ionic liquids and deep-eutectic solvents are highlighted, and some new selectors are proposed. For all the mentioned selectors, green features about their production, application, and disposal are considered. Sample preparation and BGE composition in GAC perspective, as well as greener derivatization possibilities, were also addressed. Therefore, one of the goals of this review is to aid the electrophoretic researchers to look where they have not.
Collapse
Affiliation(s)
- Rafaella S Aredes
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Isabela de P Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda P Faillace
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Vinicius G C Madriaga
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Thiago de M Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Fernando A S Vaz
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Flávia F de C Marques
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas M Duarte
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Ibrahim AE, El Gohary NA, Aboushady D, Samir L, Karim SEA, Herz M, Salman BI, Al-Harrasi A, Hanafi R, El Deeb S. Recent advances in chiral selectors immobilization and chiral mobile phase additives in liquid chromatographic enantio-separations: A review. J Chromatogr A 2023; 1706:464214. [PMID: 37506464 DOI: 10.1016/j.chroma.2023.464214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
For decades now, the separation of chiral enantiomers of drugs has been gaining the interest and attention of researchers. In 1991, the first guidelines for development of chiral drugs were firstly released by the US-FDA. Since then, the development in chromatographic enantioseparation tools has been fast and variable, aiming at creating a suitable environment where the physically and chemically identical enantiomers can be separated. Among those tools, the immobilization of chiral selectors (CS) on different stationary phases and the chiral mobile phase additives (CMPA) which have been progressed and studied extensively. This review article highlights the major advances in immobilization of CS together with their different recognition mechanisms as well as CMPA as a cheaper and successful alternative for chiral stationary phases. Moreover, the role of molecular modeling tool as a pre-step in the choice of CS for evaluating possible interactions with different ligands has been pointed up. Illustrations of reported methods and updates for immobilized CS and CMPA have been included.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Nesrine Abdelrehim El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina Aboushady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Liza Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shereen Ekram Abdel Karim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Magy Herz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Rasha Hanafi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38092, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Wang Q, Bian Y, Zhang Y, Sun DM, Wang WL, Zhou Y, Liu ZF, Feng XS, He ZW. Development of Sampling, Pretreatment and Detection Methods for Ephedrine and Related Substances in Complex Samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Chiral ionic liquids synthesis and their applications in racemic drug separation and analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Orlandini S, Hancu G, Szabó ZI, Modroiu A, Papp LA, Gotti R, Furlanetto S. New Trends in the Quality Control of Enantiomeric Drugs: Quality by Design-Compliant Development of Chiral Capillary Electrophoresis Methods. Molecules 2022; 27:7058. [PMID: 36296650 PMCID: PMC9607418 DOI: 10.3390/molecules27207058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Capillary electrophoresis (CE) is a potent method for analyzing chiral substances and is commonly used in the enantioseparation and chiral purity control of pharmaceuticals from different matrices. The adoption of Quality by Design (QbD) concepts in analytical method development, optimization and validation is a widespread trend observed in various analytical approaches including chiral CE. The application of Analytical QbD (AQbD) leads to the development of analytical methods based on sound science combined with risk management, and to a well understood process clarifying the influence of method parameters on the analytical output. The Design of Experiments (DoE) method employing chemometric tools is an essential part of QbD-based method development, allowing for the simultaneous evaluation of experimental parameters as well as their interaction. In 2022 the International Council for Harmonization (ICH) released two draft guidelines (ICH Q14 and ICH Q2(R2)) that are intended to encourage more robust analytical procedures. The ICH Q14 guideline intends to harmonize the scientific approaches for analytical procedures' development, while the Q2(R2) document covers the validation principles for the use of analytical procedures including the recent applications that require multivariate statistical analyses. The aim of this review is to provide an overview of the new prospects for chiral CE method development applied for the enantiomeric purity control of pharmaceuticals using AQbD principles. The review also provides an overview of recent research (2012-2022) on the applicability of CE methods in chiral drug impurity profiling.
Collapse
Affiliation(s)
- Serena Orlandini
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| | - Gabriel Hancu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Adriana Modroiu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Lajos-Attila Papp
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sandra Furlanetto
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| |
Collapse
|
8
|
Lis H, Paszkiewicz M, Godlewska K, Maculewicz J, Kowalska D, Stepnowski P, Caban M. Ionic liquid-based functionalized materials for analytical chemistry. J Chromatogr A 2022; 1681:463460. [DOI: 10.1016/j.chroma.2022.463460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
|
9
|
Role of Ionic Liquids in Capillary Electrophoresis. ANALYTICA 2022. [DOI: 10.3390/analytica3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids are a very important class of compounds due to their remarkable properties and wide range of applications. On the other hand, capillary electrophoresis is also gaining importance in separation science because of its fast speed and inexpensive nature. The use of ionic liquids in capillary electrophoresis is gaining importance continuously. The present review article describes the applications of ionic liquids in capillary electrophoresis. This article also describes the general aspects of ionic liquids and capillary electrophoresis. The use of ionic liquids in capillary electrophoresis, optimization of separation, mechanism of separation, and toxicity of ionic liquids, as well as their future perspectives, have also been discussed. It was observed that not much work has been performed in capillary electrophoresis using ionic liquids. It was also realized that the use of ionic liquids in capillary electrophoresis could revolutionize analytical science. Briefly, there is a great need for the use of ionic liquids in capillary electrophoresis for better and more effective separation.
Collapse
|
10
|
Salido-Fortuna S, Fernández-Bachiller MI, Marina ML, Castro-Puyana M. Synthesis and characterization of carnitine-based ionic liquids and their evaluation as additives in cyclodextrin-electrokinetic chromatography for the chiral separation of thiol amino acids. J Chromatogr A 2022; 1670:462955. [DOI: 10.1016/j.chroma.2022.462955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
11
|
|
12
|
Nguyen NVT, Nguyen KNH, Nguyen KT, Kim KH, Aboul-Enein HY. The impact of chirality on the analysis of alkaloids in plant. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e71101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most of the alkaloids are chiral compounds and are clinically administered as the racemic mixture, even though its enantiomers have been known to exert different pharmacological activity. The determination of the enantiomeric composition of alkaloid-containing plants is subject to severe attention from pharmacological and toxicological points of view. This review gives an overview of the chiral analysis of alkaloids that were used in theoretical studies and applications for plants in recent years.
Collapse
|
13
|
Application of Experimental Design Methodologies in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: A Review. Molecules 2021; 26:molecules26154681. [PMID: 34361834 PMCID: PMC8348688 DOI: 10.3390/molecules26154681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chirality is one of the major issues in pharmaceutical research and industry. Capillary electrophoresis (CE) is an interesting alternative to the more frequently used chromatographic techniques in the enantioseparation of pharmaceuticals, and is used for the determination of enantiomeric ratio, enantiomeric purity, and in pharmacokinetic studies. Traditionally, optimization of CE methods is performed using a univariate one factor at a time (OFAT) approach; however, this strategy does not allow for the evaluation of interactions between experimental factors, which may result in ineffective method development and optimization. In the last two decades, Design of Experiments (DoE) has been frequently employed to better understand the multidimensional effects and interactions of the input factors on the output responses of analytical CE methods. DoE can be divided into two types: screening and optimization designs. Furthermore, using Quality by Design (QbD) methodology to develop CE-based enantioselective techniques is becoming increasingly popular. The review presents the current use of DoE methodologies in CE-based enantioresolution method development and provides an overview of DoE applications in the optimization and validation of CE enantioselective procedures in the last 25 years. Moreover, a critical perspective on how different DoE strategies can aid in the optimization of enantioseparation procedures is presented.
Collapse
|
14
|
El Deeb S, Silva CF, Junior CSN, Hanafi RS, Borges KB. Chiral Capillary Electrokinetic Chromatography: Principle and Applications, Detection and Identification, Design of Experiment, and Exploration of Chiral Recognition Using Molecular Modeling. Molecules 2021; 26:2841. [PMID: 34064769 PMCID: PMC8151978 DOI: 10.3390/molecules26102841] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
This work reviews the literature of chiral capillary electrokinetic chromatography from January 2016 to March 2021. This is done to explore the state-of-the-art approach and recent developments carried out in this field. The separation principle of the technique is described and supported with simple graphical illustrations, showing migration under normal and reversed polarity modes of the separation voltage. The most relevant applications of the technique for enantioseparation of drugs and other enantiomeric molecules in different fields using chiral selectors in single, dual, or multiple systems are highlighted. Measures to improve the detection sensitivity of chiral capillary electrokinetic chromatography with UV detector are discussed, and the alternative aspects are explored, besides special emphases to hyphenation compatibility to mass spectrometry. Partial filling and counter migration techniques are described. Indirect identification of the separated enantiomers and the determination of enantiomeric migration order are mentioned. The application of Quality by Design principles to facilitate method development, optimization, and validation is presented. The elucidation and explanation of chiral recognition in molecular bases are discussed with special focus on the role of molecular modeling.
Collapse
Affiliation(s)
- Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Camilla Fonseca Silva
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| | - Clebio Soares Nascimento Junior
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| | - Rasha Sayed Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| |
Collapse
|
15
|
Perovani IS, Serpellone CO, de Oliveira ARM. An appraisal of experimental designs: Application to enantioselective capillary electromigration techniques. Electrophoresis 2021; 42:1726-1743. [PMID: 33544902 DOI: 10.1002/elps.202000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Enantioresolution processes are vital tools for investigating the enantioselectivities of chiral compounds. An analyst resolves to optimize enantioresolution conditions once they are determined. Generally, optimization is conducted by a one-factor-at-a-time (OFAT) approach. Although this approach may determine an adequate condition for the method, it does not often allow the estimation of the real optimum condition. Experimental designs are conducive for the optimization of enantioresolution methods via capillary electromigration techniques (CETs). They can efficiently extract information from the behavior of a method and enable the estimation of the real optimum condition. Furthermore, the application of the analytical quality by design (AQbD) approach to the development of CET-based enantioselective methods is a trend. This article (i) offers an overview of the application of experimental designs to the development of enantioselective methods from 2015 to mid-2020, (ii) reveals the experimental designs that are presently employed in CET-based enantioresolutions, and (iii) offers a critical point of view on how the different experimental designs can aid the optimization of enantioresolution processes by considering the method parameters.
Collapse
Affiliation(s)
- Icaro Salgado Perovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil
| | - Carolina Oliveira Serpellone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Sao Paulo, 14040-901, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, Araraquara, Sao Paulo, 14800-900, Brazil
| |
Collapse
|
16
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Yu RB, Quirino JP. Ionic liquids in electrokinetic chromatography. J Chromatogr A 2020; 1637:461801. [PMID: 33385743 DOI: 10.1016/j.chroma.2020.461801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/22/2023]
Abstract
There is an interest in the application of ionic liquids as additives into the separation media to improve achiral and chiral separations in electrokinetic chromatography (EKC). This review will critically discuss the developments on the use of ionic liquids in the different modes of EKC during the last five years (2015-mid 2020). A healthy number of 48 research articles searched through Scopus were categorised into two: ionic liquids as sole pseudophase (micelles, microemulsions, ligand exchange pseudophase or molecular pseudophase) and ionic liquids with pseudophase (achiral or chiral). More than half of the papers dealt with chiral separations that were mostly facilitated by another additive or pseudophase. The role of ionic liquids for improvement of separations were analysed, and we provided some recommendations for further investigations. Finally, the use of ionic liquids in different on-line sample concentration or stacking methods (i.e., field enhancement and sweeping) was briefly discussed.
Collapse
Affiliation(s)
- Raymond B Yu
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
18
|
Řemínek R, Foret F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: A review. Electrophoresis 2020; 42:19-37. [PMID: 32901975 DOI: 10.1002/elps.202000185] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Capillary electrophoresis represents a promising technique in the field of pharmaceutical analysis. The presented review provides a summary of capillary electrophoretic methods suitable for routine quality control analyses of small molecule drugs published since 2015. In total, more than 80 discussed methods are sorted into three main sections according to the applied electroseparation modes (capillary zone electrophoresis, electrokinetic chromatography, and micellar, microemulsion, and liposome-electrokinetic chromatography) and further subsections according to the applied detection techniques (UV, capacitively coupled contactless conductivity detection, and mass spectrometry). Key parameters of the procedures are summarized in four concise tables. The presented applications cover analyses of active pharmaceutical ingredients and their related substances such as degradation products or enantiomeric impurities. The contribution of reported results to the current knowledge of separation science and general aspects of the practical applications of capillary electrophoretic methods are also discussed.
Collapse
Affiliation(s)
- Roman Řemínek
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
19
|
Enantiomeric determination of econazole and sulconazole by electrokinetic chromatography using hydroxypropyl-β-cyclodextrin combined with ionic liquids based on L-lysine and L-glutamic acid. J Chromatogr A 2020; 1621:461085. [PMID: 32376018 DOI: 10.1016/j.chroma.2020.461085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
Two analytical methodologies based on the combined use of hydroxypropyl-β-cyclodextrin and two different amino acid-based chiral ionic liquids (tetrabutylammonium-L-lysine or tetrabutylammonium-L-glutamic acid) in electrokinetic chromatography were developed in this work to perform the enantioselective determination of econazole and sulconazole in pharmaceutical formulations. The influence of different experimental variables such as buffer concentration, applied voltage, nature and concentration of the ionic liquid, temperature and injection time, on the enantiomeric separation was investigated. The combination of hydroxypropyl-β-cyclodextrin and tetrabutylammonium-L-lysine under the optimized conditions enabled to achieve the enantiomeric determination of both drugs with high enantiomeric resolution (3.5 for econazole and 2.4 for sulconazole). The analytical characteristics of the developed methodologies were evaluated in terms of linearity, precision, LOD, LOQ and recovery showing good performance for the determination of both drugs which were successfully quantitated in pharmaceutical formulations. This work reports the first analytical methodology enabling the enantiomeric determination of sulconazole in pharmaceutical formulations.
Collapse
|
20
|
Rezaeian M, Izadyar M, Housaindokht MR. Thermal decomposition mechanisms of some amino acid ionic liquids: Molecular approach. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115807] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Huo F, Wan T, Wang Y, Liu Y, Karmaker PG, Yang X. Enhanced light-emitting diode induced fluorescence detection system with capillary electrophoresis. J Chromatogr A 2020; 1619:460935. [PMID: 32067761 DOI: 10.1016/j.chroma.2020.460935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 11/26/2022]
Abstract
An enhanced fluorescence detection system of capillary electrophoresis (CE) was equipped with a concave silver mirror, by which the detection sensitivity of light-emitting diode induced fluorescence (LEDIF) can be increased greatly. The silver concave mirror and the cathode window in photomultiplier tube (PMT) were accurately set face to face at the same axis. When the two labeled tumor markers exactly moved to the center of detection window, the emission from analytes are excitated by LED source. Currently, the analytes may be regarded as a luminescent source point. When the source point exactly moves to the focus of the concave mirror, the emission of the labeled sample was collected effectively, enhanced by convergence and reflected by the concave mirror. Then it was sensitively detected by the PMT. The optical mechanism of enhancing detection sensitivity was explored. A simple comparative test on sensitivity was carried out, which aimed to compare sensitivity of the new detection system with concave mirror to that without concave mirror but the other conditions were kept the same. Two tumor markers labeled with FITC were selected for the test, using the simple LEDIF detect system. The results (LOD, 150 nM for L-Leu and L-Val) showed that the detection sensitivity matched with concave mirror reached more 16 times than the detection method without concave mirror.
Collapse
Affiliation(s)
- Feng Huo
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Ting Wan
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Yaohui Wang
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Pran Gopal Karmaker
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China.
| |
Collapse
|
23
|
Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging Bioanalyses with Capillary Electrophoresis. Anal Chem 2020; 92:49-66. [PMID: 31698907 PMCID: PMC6995690 DOI: 10.1021/acs.analchem.9b04718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Gayatri P. Gautam
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Patrick K. Rutto
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
24
|
Casado N, Salgado A, Castro-Puyana M, García MÁ, Marina ML. Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids. J Chromatogr A 2019; 1608:460407. [PMID: 31383356 DOI: 10.1016/j.chroma.2019.460407] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/29/2019] [Accepted: 07/26/2019] [Indexed: 01/13/2023]
Abstract
A chiral methodology was developed for the first time to ensure the quality control of ivabradine, a novel anti-ischemic and heart rate lowering drug commercialized as a pure enantiomer. With this aim, electrokinetic chromatography (EKC) was employed and the enantiomeric separation of ivabradine was investigated using different anionic and neutral cyclodextrins (CDs) and amino acid-based chiral ionic liquids (CILs) as sole chiral selectors. Baseline separation was only achieved with sulfated CDs, and the best enantiomeric resolution was obtained with sulfated-γ-CD. Under the optimized conditions, ivabradine enantiomers were separated in 6 min with a resolution of 2.7. Nuclear magnetic resonance experiments showed a 1:1 stoichiometry for the enantiomer-CD complexes and apparent and averaged equilibrium constants were determined. The combined use of sulfated-γ-CD and different CILs as dual separation systems was investigated, resulting in a significant increase in the resolution. The use of 5 mM tetrabutylammonium-aspartic acid ([TBA][L-Asp]) in 50 mM formate buffer (pH 2.0) containing 4 mM sulfated-γ-CD were considered the best conditions in terms of resolution and migration times for ivabradine enantiomers. Nevertheless, as no inversion of the enantiomer migration order was observed when combining CILs and sulfated-γ-CD and a good enantiomeric resolution and efficiency were obtained using just sulfated-γ-CD as the sole chiral selector, the analytical characteristics of this method were evaluated, showing good recovery (98% and 103% for S- and R-ivabradine, respectively) and precision values (RSD < 5% for instrumental repeatability, < 6% for method repeatability and < 7% for intermediate precision). The limits of detection (LODs) were 0.22 and 0.28 μg mL-1 for S- and R-ivabradine, respectively, and the method enabled to detect a 0.1% of the enantiomeric impurity, allowing to accomplish the requirements of the International Conference on Harmonisation (ICH) guidelines. Finally, the method was applied to the analysis of a pharmaceutical formulation of ivabradine. The content of R-ivabradine was below the LOD and the amount of S-ivabradine was in agreement to the labeled content.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Antonio Salgado
- Centro de Espectroscopía de Resonancia Magnética Nuclear (CERMN), Centro de Apoyo a la Investigación en Química (CAIQ), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
25
|
Salido-Fortuna S, Greño M, Castro-Puyana M, Marina ML. Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis. J Chromatogr A 2019; 1607:460375. [PMID: 31353071 DOI: 10.1016/j.chroma.2019.460375] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022]
Abstract
Four amino acid chiral ionic liquids were evaluated in dual systems with hydroxypropyl-β-cyclodextrin to investigate the enantioseparation by CE of a group of seven drugs as model compounds (duloxetine, verapamil, terbutaline, econazole, sulconazole, metoprolol, and nadolol). The use of two of these chiral ionic liquids (tetramethylammonium L-Lysine ([TMA][L-Lys]) and tetramethylammonium L-glutamic acid ([TMA][L-Glu])) as modifiers in CE is reported for the first time in this work whereas tetrabutylammonium L-lysine ([TBA][L-Lys]) and tetrabutylammonium L-glutamic acid ([TBA][L-Glu]) were employed previously in CE although very scarcely. The effect of the nature and the concentration of each ionic liquid added to the separation buffer containing the neutral cyclodextrin on the enantiomeric resolution and the migration time obtained for each drug, was investigated. A synergistic effect was observed when combining each chiral ionic liquid with hydroxypropyl-β-cyclodextrin in the case of the five compounds for which the cyclodextrin showed enantiomeric discrimination power when used as sole chiral selector (duloxetine, verapamil, terbutaline, econazole, sulconazole). Buffer concentration and pH, temperature and separation voltage were varied in order to optimize the enantiomeric separation of these five compounds using dual systems giving rise to resolutions ranging from 1.1 to 6.6.
Collapse
Affiliation(s)
- Sandra Salido-Fortuna
- Departamento de Química Analítica, Química Física e Ingeniería Química. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Maider Greño
- Departamento de Química Analítica, Química Física e Ingeniería Química. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
26
|
De Schouwer F, Claes L, Vandekerkhove A, Verduyckt J, De Vos DE. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. CHEMSUSCHEM 2019; 12:1272-1303. [PMID: 30667150 DOI: 10.1002/cssc.201802418] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Protein-rich biomass provides a valuable feedstock for the chemical industry. This Review describes every process step in the value chain from protein waste to chemicals. The first part deals with the physicochemical extraction of proteins from biomass, hydrolytic degradation to peptides and amino acids, and separation of amino acid mixtures. The second part provides an overview of physical and (bio)chemical technologies for the production of polymers, commodity chemicals, pharmaceuticals, and other fine chemicals. This can be achieved by incorporation of oligopeptides into polymers, or by modification and defunctionalization of amino acids, for example, their reduction to amino alcohols, decarboxylation to amines, (cyclic) amides and nitriles, deamination to (di)carboxylic acids, and synthesis of fine chemicals and ionic liquids. Bio- and chemocatalytic approaches are compared in terms of scope, efficiency, and sustainability.
Collapse
Affiliation(s)
- Free De Schouwer
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Laurens Claes
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Annelies Vandekerkhove
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| |
Collapse
|
27
|
Chiral Selectors in Capillary Electrophoresis: Trends During 2017⁻2018. Molecules 2019; 24:molecules24061135. [PMID: 30901973 PMCID: PMC6471358 DOI: 10.3390/molecules24061135] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Chiral separation is an important process in the chemical and pharmaceutical industries. From the analytical chemistry perspective, chiral separation is required for assessing the fit-for-purpose and the safety of chemical products. Capillary electrophoresis, in the electrokinetic chromatography mode is an established analytical technique for chiral separations. A water-soluble chiral selector is typically used. This review therefore examines the use of various chiral selectors in electrokinetic chromatography during 2017–2018. The chiral selectors were both low and high (macromolecules) molecular mass molecules as well as molecular aggregates (supramolecules). There were 58 papers found by search in Scopus, indicating continuous and active activity in this research area. The macromolecules were sugar-, amino acid-, and nucleic acid-based polymers. The supramolecules were bile salt micelles. The low molecular mass selectors were mainly ionic liquids and complexes with a central ion. A majority of the papers were on the use or preparation of sugar-based macromolecules, e.g., native or derivatised cyclodextrins. Studies to explain chiral recognition of macromolecular and supramolecular chiral selectors were mainly done by molecular modelling and nuclear magnetic resonance spectroscopy. Demonstrations were predominantly on drug analysis for the separation of racemates.
Collapse
|
28
|
Klein-Júnior LC, Mangelings D, Vander Heyden Y. Experimental Design Methodologies for the Optimization of Chiral Separations: An Overview. Methods Mol Biol 2019; 1985:453-478. [PMID: 31069752 DOI: 10.1007/978-1-4939-9438-0_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this chapter, the application of design of experiments (DoE) for chiral separation optimization using supercritical fluid chromatography (SFC), liquid chromatography (LC), capillary electrophoresis (CE), and capillary electrochromatography (CEC) methods is reviewed. Both screening and optimization steps are covered, including a discussion of each aspect, such as factor-, level-, and response selection. Different designs are also presented, highlighting their applications.
Collapse
Affiliation(s)
- Luiz Carlos Klein-Júnior
- Pharmaceutical Chemistry Research Group, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Debby Mangelings
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
29
|
Wahl J, Holzgrabe U. Enantioseparation by Capillary Electrophoresis Using Cyclodextrins in an Amino Acid-Based Ionic Liquid Running Buffer. Methods Mol Biol 2019; 1985:365-371. [PMID: 31069745 DOI: 10.1007/978-1-4939-9438-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For enantioseparations of chiral drugs in capillary electrophoresis, chiral ionic liquids (CIL) can be employed instead of traditional running buffer containing a chiral selector. CILs can be applied solely or in addition to the often used cyclodextrin derivatives. Here the separation of phenethylamines, especially of ephedrine, is described using tetrabutylammonium L-argininate (125 mM) in phosphate buffer (75 mM, pH 1.5) in addition to β-cyclodextrin (30 mM). Using this dual-chiral running buffer system ephedrine, pseudoephedrine and methylephedrine, but not norephedrine, could be easily resolved.
Collapse
Affiliation(s)
- Joachim Wahl
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Wuerzburg, Germany.
| |
Collapse
|
30
|
Hussain A, AlAjmi MF, Hussain I, Ali I. Future of Ionic Liquids for Chiral Separations in High-Performance Liquid Chromatography and Capillary Electrophoresis. Crit Rev Anal Chem 2018; 49:289-305. [DOI: 10.1080/10408347.2018.1523706] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina, Al-Munawara, Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| |
Collapse
|
31
|
Xia X, Wan R, Wang P, Huo W, Dong H, Du Q. Toxicity of imidazoles ionic liquid [C 16mim]Cl to Hela cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:408-414. [PMID: 30015186 DOI: 10.1016/j.ecoenv.2018.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Our study aimed to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) on the human cervical carcinoma (Hela) cells. We evaluated toxicity, cell viability, genotoxicity, oxidative stress, apoptosis, and apoptosis-related gene expression in Hela cells following exposure to [C16min]Cl. The results indicated that [C16min]Cl inhibited the growth of Hela cells, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, as well as increased the cellular malondialdehyde level of Hela cells. Moreover, [C16min]Cl induced changes in the transcription of p53, Bax and Bcl-2, suggesting that the p53 and Bcl-2 family might have been involved in the cytotoxicity and apoptosis induced by [C16min]Cl in Hela cells. Taken together, these results revealed that [C16min]Cl imparts oxidative stress, genotoxicity, and induces apoptosis in Hela cells; hence, it is not a green solvent.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
32
|
Trujillo-Rodríguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL. Advances of Ionic Liquids in Analytical Chemistry. Anal Chem 2018; 91:505-531. [PMID: 30335970 DOI: 10.1021/acs.analchem.8b04710] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - He Nan
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Marcelino Varona
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Miranda N Emaus
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Israel D Souza
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Jared L Anderson
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| |
Collapse
|
33
|
Chalavi S, Fakhari AR, Nojavan S, Mirzaei P. Evaluation of the synergistic effect with amino acids for enantioseparation of basic drugs using capillary electrophoresis. Electrophoresis 2018; 39:2202-2209. [DOI: 10.1002/elps.201800128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/19/2018] [Accepted: 05/31/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Soheila Chalavi
- Faculty of Chemistry; Shahid Beheshti University; Tehran I. R. Iran
| | - Ali Reza Fakhari
- Faculty of Chemistry; Shahid Beheshti University; Tehran I. R. Iran
| | - Saeed Nojavan
- Faculty of Chemistry; Shahid Beheshti University; Tehran I. R. Iran
| | - Peyman Mirzaei
- Faculty of Chemistry; Shahid Beheshti University; Tehran I. R. Iran
| |
Collapse
|
34
|
Wang Z, Guo H, Chen M, Zhang G, Chang R, Chen A. Separation and determination of corynoxine and corynoxine B using chiral ionic liquid and hydroxypropyl-β-cyclodextrin as additives by field-amplified sample stacking in capillary electrophoresis. Electrophoresis 2018; 39:2195-2201. [PMID: 29947080 DOI: 10.1002/elps.201800129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 02/03/2023]
Abstract
A sensitive, fast, and effective method, field-amplified sample stacking (FASS) in capillary electrophoresis, has been established for the separation and determination of corynoxine and corynoxine B. Hydroxypropyl-β-CD (HP-β-CD) and tetrabutylammonium-L-glutamic acid (TBA-L-Glu) were used as additives in the separation system. Electrokinetic injection was chosen to introduce sample from inlet at 10 kV for 50 s after a water plug (0.5 psi, 4 s) was injected to permit FASS. The running buffer (pH 6.1) was composed of 40 mM sodium dihydrogen phosphate solution, 130 mM HP-β-CD, and 10 mM TBA-L-Glu and the separation voltage was 20 kV. Under the optimum conditions, corynoxine and corynoxine B were successfully enriched and separated within 12 min and the sensitivity was improved approximately by 700-900 folds. Calibration curves were in a good linear relationship within the range of 62.5-5.00 × 103 ng/mL for both corynoxine and corynoxine B. The limits of detection (S/N = 3) and quantitation (S/N = 10) were 14.9, 45.2 ng/mL for corynoxine and 11.2, 34.5 ng/mL for corynoxine B, respectively. Finally, this method was successfully applied for the determination of corynoxine and corynoxine B in the stems with hooks of Uncaria rhynchophylla and its formulations.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Haitao Guo
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Meng Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Guangbin Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Ruimiao Chang
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Anjia Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
35
|
Memon AF, Solangi AR, Memon SQ, Mallah A, Memon N. Quantitative separation of hesperidin, chrysin, epicatechin, epigallocatechin gallate, and morin using ionic liquid as a buffer additive in capillary electrophoresis. Electrophoresis 2018; 39:1606-1612. [PMID: 29484675 DOI: 10.1002/elps.201700421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 01/14/2023]
Abstract
Recently, an increasing interest has been observed in ionic liquids (ILs) due to their potentialities in various chemical processes. ILs have some unique properties making them excellent additives in CE. In this work a simple, rapid, and reliable CZE method has been developed and validated using 1-butyl-3-methyl imidazolium hexafluorophosphate (BMIM-PF6 ) ionic liquid as a buffer additive for the determination/separation of five flavonoids including hesperedin, epicatechin (EC), epigallocatechin gallate (EGCG), and morin using photodiode array (PDA) detector. The effect of several parameters such as concentration and pH of the running buffer, applied voltage, and concentration of ionic liquid were optimized. CZE at 25°C with 25 mM borate buffer of pH 9.0 at an applied voltage of 17 kV by adding 17.5 mM of IL was found to be suitable for the separation/determination of all five analytes within 08 min. Validation of the method was performed in terms of linearity, accuracy, precision, and limit of detection and quantification. The calibration curves were plotted in the concentration range of 1-200 μg/mL for all five analytes. The response was linear with R2 = 0.990 for EC, chrysin, and hesperidin, 0.992 for morin, and 0.988 for EGCG. LOD and LOQ were obtained within the range of 0.4-0.5 and 1.4-1.7 μg/mL, respectively. The proposed method showed good reproducibility with RSD of less than 3% for both migration time and peak height. The method was successfully applied for the determination of flavonoids from citrus fruits and tea samples.
Collapse
Affiliation(s)
- Almas F Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Saima Q Memon
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Arfana Mallah
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|