1
|
Chen H, Yang P, Wu Z, Zhang C, Li X, Li Z, Wang Y, Zhan D, Zhu L, Jiang H, Liu Y. Multi-level fingerprint and immune activity evaluation of polysaccharides from Rhodiola rosea L. Int J Biol Macromol 2025; 299:140197. [PMID: 39848386 DOI: 10.1016/j.ijbiomac.2025.140197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
To establish the quality control method of Rhodiola rosea L., the multi-level fingerprinting profile was established. The quality evaluation of Rhodiola rosea L. was evaluated based on the following information: polysaccharide content in herbs (2.86-4.51 %), thirteen infrared absorption peaks (3391.25 cm-1, 2934.03 cm-1, 1747.47 cm-1, 1618.67 cm-1, 1445.12 cm-1, 1374.16 cm-1, 1357.16 cm-1, 1237.94 cm-1, 1102.37 cm-1, 1017.50 cm-1, 762.27 cm-1, 631.88 cm-1 and 528.77 cm-1), seven monosaccharides (Mannose, Rhamnose, Glucuronic acid, Glucose, Galactose, Xylose, Arabinose), and two molecular weight segments Mw1 (7.12 × 105-1.31 × 106 Da) and Mw2 (6.04 × 103-6.92 × 103 Da). The results of chemometric analysis found that the infrared absorption peaks of 762.27 cm-1, the monosaccharides of Man and Xyl, and the molecular weight of Mw1 were the key markers in differentiating the origin of Rhodiola rosea L. The spectrum-effect relationship showed that Rhodiola rosea L. polysaccharides (RRP) with a higher infrared absorption peak at 1618.67 cm-1, higher Xyl, and higher Mw1 displayed higher immune activity. In conclusion, this study determined the RRP content in herbs, established a polysaccharide-based quality control method for Rhodiola rosea L., and investigated the connection between fingerprints and in vitro immune activity. All of this study can provide more theoretical support for the authentication and quality control of Rhodiola rosea L.
Collapse
Affiliation(s)
- Hao Chen
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pei Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zongyao Wu
- Tibetan University of Tibetan Medicine, Lhasa 850007, China
| | - Chuanxiang Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xinlong Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuzhou Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dongxia Zhan
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui 273200, China
| | - Haiqiang Jiang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
Wang T, Zuo Q, Dong T, Wu P, Cao S, Wu H, Zhou A. Identification and characterization of the absorbed components and metabolites of Gandouling tablets in rats' plasma, liver, and urine by UPLC-Q-TOF-MS E. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1254:124503. [PMID: 39929036 DOI: 10.1016/j.jchromb.2025.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/12/2025]
Abstract
Gandouling (GDL), a famous proprietary Chinese medicine, has been utilized in China's clinics for decades to treat Wilson's disease. However, its metabolism in vivo needs to be clarified. In this study, Ultra Performance Liquid Chromatography-quadrupole time-of-flight mass spectrometry-tandem (UPLC-Q-TOF-MSE) was employed to analyze the metabolic pathways of these critical components in the rat after identifying the prototypes and metabolites of GDL in the plasma, liver, and urine of both normal and copper-loaded rats. As a result, 49 components were detected in the plasma of normally administered rats, including 29 prototype compounds and 20 metabolites; and 26 components were detected in the liver of normally administered rats, including 16 prototype compounds and 10 metabolites. 43 components were detected in the plasma of copper-laden administered rats, including 25 prototype compounds and 18 metabolites; and 23 components were detected in the liver of copper-laden administered rats, including 15 prototype compounds and 8 metabolites. A total of 73 GDL-related substances were detected in the urine of rats. The study results showed that the compositions in rats' plasma, liver, and urine were similar, mainly alkaloids and anthraquinones. The alkaloid components are mainly metabolized by phase I metabolism in vivo and the metabolic pathways are methylation, demethylation, etc. The anthraquinone components are mainly metabolized by phase II metabolism in vivo, and the metabolism modes are mainly glucuronidation and sulfation. The present study comprehensively analyses the metabolic properties of GDL and sets an essential basis for further investigations on the pharmacokinetics, in vivo bioactive components, and mechanism of action of GDL.
Collapse
Affiliation(s)
- Tiantian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Qing Zuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ting Dong
- The First Afliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,.
| | - Shijian Cao
- The First Afliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Hefei 230038, China.
| | - An Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Hefei 230038, China.
| |
Collapse
|
3
|
Ou CY, Gao X, Wang JJ, Chen XL, Cao L, Wang ZZ, Zhang CF, Xiao W. Characterization of metabolic profile of Dazhu Hongjingtian and evaluation of its anti-hypoxic constituents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-19. [PMID: 39665404 DOI: 10.1080/10286020.2024.2434550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
Dazhu Hongjingtian (DZ) is renowned for its diverse pharmacological activities, yet its metabolic pathways remain to be fully elucidated. In this study, the metabolic profile after oral administration of DZ extract (DZE) in rats was systematically identified by the UPLC/Q-TOF-MS/MS method for the first time. A total of 94 components, including 32 prototypes and 62 metabolites, were tentatively characterized in rat plasma and various tissues samples. Furthermore, 6 constituents (salidroside, quercetin, 4-hydroxycinnamic acid, 5-hydroxymethylfurfural, p-tyrosol, and gallic acid) derived from plasma prototypes were identified as bioactive by assessing cell viabilities of OGD-injured RSC96 cells.
Collapse
Affiliation(s)
- Chun-Yan Ou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang222001, China
| | - Xia Gao
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang222001, China
| | - Jia-Jia Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang222001, China
| | - Xia-Lin Chen
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang222001, China
| | - Liang Cao
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang222001, China
| | - Zhen-Zhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang222001, China
| | - Chen-Feng Zhang
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang222001, China
| |
Collapse
|
4
|
Zhang W, Liao Z, Xu C, Lin X. Salidroside rescues hypoxic cardiomyocytes by regulating the EGLN1/HIF‑1α pathway. Biomed Rep 2024; 21:180. [PMID: 39387002 PMCID: PMC11462497 DOI: 10.3892/br.2024.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Myocardial infarction is characterized by oxygen deficiency caused by arterial flow restriction. Salidroside (SAL) protects against myocardial damage via antioxidant production and inhibition of apoptosis. The present study aimed to investigate potential rescue mechanism of SAL on hypoxic cardiomyocytes. H9C2 cardiomyocytes were divided into normoxia, hypoxia and hypoxia + SAL groups. The inhibitory rate of hypoxia and the optimal concentration and rescue effect of SAL were determined using Cell Counting Kit-8 assay and flow cytometry. Ca2+ concentration following hypoxia treatment and SAL intervention were detected by Fluo-4/acetoxymethyl. Tandem mass tag (TMT) proteomics was used to analyze the differential expression of hypoxia-associated proteins among the three groups. SAL exerted a protective effect on hypoxia-injured cardiomyocytes by enhancing aerobic metabolism during hypoxia and rescuing cardiomyocytes from hypoxic damage. SAL promoted cell proliferation, decreased apoptosis and increased Ca2+ levels in cell membranes of hypoxic cardiomyocytes. TMT proteomics results showed that the expression levels of intracellular hypoxia inducible factor-1 (HIF)-1α and Egl-9 family HIF 1 (EGLN1) in H9C2 cells were elevated under hypoxic conditions. However, SAL significantly decreased expression levels of HIF-1α and EGLN1. SAL inhibited mitochondrial calcium overload in hypoxic cardiomyocytes and attenuated expression of hypoxia-associated factors. SAL exerted its rescue effect on hypoxic cardiomyocytes through the EGLN1/HIF-1α pathway, thereby suppressing cardiomyocyte apoptosis, improving mitochondrial energy metabolism efficiency and rescuing cardiomyocytes from hypoxic injury.
Collapse
Affiliation(s)
- Wenmao Zhang
- Department of Scientific Research, Yueyang Maternal and Child Health-Care Hospital, Yueyang, Hunan 414000, P.R. China
| | - Ziling Liao
- Department of Scientific Research, Yueyang Maternal and Child Health-Care Hospital, Yueyang, Hunan 414000, P.R. China
| | - Chengfeng Xu
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100000, P.R. China
| | - Xinping Lin
- Department of Scientific Research, Yueyang Maternal and Child Health-Care Hospital, Yueyang, Hunan 414000, P.R. China
| |
Collapse
|
5
|
Wang L, Wu L, Li J, Cailang B, Zhao X, Yue H. Rhodiosin from Rhodiola crenulata effectively alleviate postprandial hyperglycemia by inhibiting both the activity and production of α‑glucosidase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155836. [PMID: 38941814 DOI: 10.1016/j.phymed.2024.155836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Effective control of postprandial blood glucose (PBG) level is essential for the prevention and treatment of diabetes and its complications. Several flavonoids have attracted much attention due to their significant PBG-lowering effects. However, there is still a certain gap in the in vivo hypoglycemic activity of most flavonoids compared to first-line drugs available on the market, and are still lack of the PBG-lowering effects of 8-hydroxyflavones and their structure-activity relationship. PURPOSE Evaluate hypoglycemic effects of 8-hydroxyflavones from Rhodiola crenulata in vitro and in vivo, especially comparatively analyze the relationship between hypoglycemic effects and flavonoid configuration and reveal the possible mechanism of 8-hydroxyflavones in lowering hyperglycemia. METHODS Starch, maltose, sucrose, and glucose tolerance tests in both diabetic and normal mice were used to evaluate and compare the hypoglycemic effects of 8-hydroxyflavones rhodiosin (RHS), rhodionin (RHN), and herbacetin (HBT). Molecular docking, enzyme kinetics, and immunofluorescence analysis were used to research the possible hypoglycemic mechanisms of 8-hydroxyflavones. RESULTS RHS (5 and 10 mg/kg) could efficiently decrease PBG levels in both normal and diabetes mice. Moreover, RHS, RHN, and HBT all had significant PBG-lowering effects in transgenic diabetes mice, and the effects were equivalent to or stronger than acarbose. Further mechanism research indicated that 8-hydroxyflavones achieved PBG-lowering effects by inhibiting both the activity and production of glycosidase. Notably, we have innovatively discovered that inhibiting the expression of glycosidases rather than just their activities may be a new target for hypoglycemic drugs. CONCLUSION We have firstly comprehensively and systematically clarified PBG-lowering effects of 8-hydroxyflavones from Rhodiola crenulata, and revealed their structure-activity relationships and hypoglycemic mechanisms. The study demonstrated that the substitution of 8-hydroxy groups in flavonoids could significantly enhance their hypoglycemic effects, which were equivalent to or stronger than commercially available drug acarbose. 8-Hydroxyflavones could be used as therapeutic or health drugs with significant potential to reduce postprandial hyperglycemia.
Collapse
Affiliation(s)
- Luya Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xinning Road 23, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Wu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xinning Road 23, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xinning Road 23, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Banma Cailang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xinning Road 23, Xining, Qinghai 810008, China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xinning Road 23, Xining, Qinghai 810008, China.
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xinning Road 23, Xining, Qinghai 810008, China.
| |
Collapse
|
6
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
7
|
Jiao Y, Zhao Z, Li X, Li L, Xiao D, Wan S, Wu T, Li T, Li P, Zhao R. Salidroside ameliorates memory impairment following long-term ethanol intake in rats by modulating the altered intestinal microbiota content and hippocampal gene expression. Front Microbiol 2023; 14:1172936. [PMID: 37362918 PMCID: PMC10288325 DOI: 10.3389/fmicb.2023.1172936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background Salidroside (Sal), the main component of a famous herb Rhodiola rosea L, enhances memory performance and reduces fatigue. Therefore, this study assessed the effect of Sal on memory impairment induced by a long-term intake of ethanol (EtOH) in rats and investigated its relevant mechanisms using gut microbiota metagenomic analysis and hippocampal transcriptomic analysis. Methods Eighteen male SD rats were divided into the normal control group (CON group), EtOH model group (Model group), and Sal treatment group (Sal group). The rats in the Model and Sal groups intragastrically (i.g.) received 2 g/kg EtOH for 30 consecutive days, whereas the CON group was given an equal volume of distilled water. Meanwhile, the rats in the Sal group were administered i.g. 30 mg/kg Sal 60 min after EtOH intake. All rats were tested in the eight-arm maze for their memory function every 3 days. On the 30th day, metagenomic analyses of gut microbiota and transcriptomic analyses of the hippocampus were performed. Results Compared with the Model group, Sal treatment reduced the total time to complete the eight-arm maze task, decreased the number of arm entries, and abated the working memory error that was significant from the 9th day. Additionally, Sal intervention improved the gut microbiota composition, such as the increased abundance of Actinobacteria and Bifidobacterium, which was related to the metabolism of amino acids and terpenoid carbohydrate, endocrine function, and signal transduction by neurotransmitters. In the hippocampus, the EtOH intake differentially expressed 68 genes (54 genes increased, whereas 14 genes decreased), compared with the CON group, whereas Sal intervention affected these changes: 15 genes increased whereas 11 genes decreased. And, enrichment analyses revealed these genes were related to the structural components of the ribosome, mRNA splicing process, protein translation, mitochondria function, and immunological reaction. Finally, a correlation analysis found the memory impairment was positively correlated with the abnormal upregulation of Tomm7 but negatively correlated with decreased abundance of gut Alistipes_indistinctus, Lactobacillus_taiwanensis, Lactobacillus_paragasseri, and Lactobacillus johnsonii. Conclusion Sal improved memory impairment caused by long-term EtOH intake in rats, which may be related to its regulation of gut dysbiosis and hippocampal dysfunction.
Collapse
Affiliation(s)
- Yu Jiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhenglin Zhao
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xin Li
- Department of Psychiatry, The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lulu Li
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou, Henan, China
| | - Siyuan Wan
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Wu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Rongjie Zhao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
8
|
Li JW, Zhang YM, Zhao CJ, Zhao M, Huang YH. Determination of the components of danyikangtai powder into the plasma and its pharmacodynamic study. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-14. [PMID: 36327877 DOI: 10.1080/10286020.2022.2134013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Danyikangtai powder has a definite therapeutic effect on pancreatitis. However, the internal mechanism is unclear. The purpose of this experiment is to quickly identify the blood components of danyikangtai powder and evaluate its efficacy. 25 blood components were identified by comparing the components with the same mass spectrometry information from in vivo and in vitro samples. The AR42J cells of the pancreatitis model were treated with drug-containing plasma, and the drug efficacy was evaluated by investigating the amylase release rate. This study provides a scientific reference for its pharmacological research and rational clinical application.
Collapse
Affiliation(s)
- Jing-Wei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Meng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun-Jie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi-He Huang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
9
|
Metabolic Profiling of Glabridin in Rat Plasma, Urine, Bile, and Feces After Intragastric and Intravenous Administration. Eur J Drug Metab Pharmacokinet 2022; 47:879-887. [DOI: 10.1007/s13318-022-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
|
10
|
Lopes KS, Marques AAM, Moreno KGT, Lorençone BR, Leite PRT, da Silva GP, Dos Santos AC, Souza RIC, Gasparotto FM, Cassemiro NS, Lourenço ELB, Klider LM, Manfron J, Silva DB, Gasparotto Junior A. Small conductance calcium-activated potassium channels and nitric oxide/cGMP pathway mediate cardioprotective effects of Croton urucurana Baill. In hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115255. [PMID: 35398499 DOI: 10.1016/j.jep.2022.115255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Croton urucurana Baill. (Euphorbiaceae), popularly known as 'sangue de dragão' is a Brazilian species widely used in traditional medicine for cardiovascular ailments. AIM To investigate the cardiovascular effects of the C. urucurana extract in spontaneously hypertensive rats (SHRs). MATERIALS AND METHODS Leaves from C. urucurana were collected and morphoanatomically characterized. The ethanol-soluble fraction (ESCU) was obtained and analyzed by LC-DAD-MS. Using female Wistar rats we investigated the acute toxicity of ESCU. Then, SHRs (six months old) received vehicle, hydrochlorothiazide (25 mg/kg), or ESCU (30, 100, 300 mg/kg) for 28 days. At the beginning and at the end of treatments, urine samples were obtained to assess renal function. At the end of the trial period, the blood pressure, mesenteric vascular beds (MVBs) reactivity, and electrocardiographic profile were evaluated. Serum angiotensin-converting enzyme activity, as well as urea, creatinine, sodium, potassium, nitrite, malondialdehyde, nitrotyrosine, and aldosterone levels were determined. Relative organ weights and histopathological analysis were performed. Finally, the cardiac function on a Langendorff system, as well as the molecular mechanisms involved in the vasodilator effects of ESCU in MVBs were also investigated. RESULTS The compounds annotated from ESCU by LC-DAD-MS included mainly phenylpropanoid derivatives, alkaloids, O-glycosylated megastigmanes, glycosylated flavonoids, flavan-3-ols, and others, such as quercetin O-deoxyhexosyl-hexoside, magnoflorine, reticuline, and taspine. None of the animals showed any signs of toxicity. Male SHRs treated only with the vehicle showed important cardiovascular changes, including a reduction in renal function, increase in serum oxidative stress, and hemodynamic, electrocardiographic, and morphological changes typical of hypertensive disease. Moreover, parameters of cardiac function, including left ventricular developed pressure, peak rate of contraction, peak rate of relaxation, and the rate pressure product were significantly altered, showing a significant impairment of ventricular function. All ESCU-doses presented a significant cardioprotective effect in SHRs rats. The 28-day treatment normalized the hemodynamic, electrocardiographic, morphological, and renal impairments, as well as reversed the changes in ventricular function induced by hypertension. In MVBs with an intact endothelium, ESCU (0.1, 0.3, and 1 mg) dose-dependently induced vasodilation. Endothelium removal or the inhibition of nitric oxide synthase prevented the vasodilatory effect of ESCU. Perfusion with a physiological saline solution that contained KCl, tetraethylammonium, or apamin also abolished the vasodilatory effect of ESCU. CONCLUSION Prolonged ESCU-treatment showed significant cardioprotective effects in SHRs. Moreover, the data showed the role of nitric oxide and calcium-activated small conductance potassium channels in the cardiovascular effects of ESCU.
Collapse
Affiliation(s)
- Katiana Simões Lopes
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Aline Aparecida Macedo Marques
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Karyne Garcia Tafarelo Moreno
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Bethânia Rosa Lorençone
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Patrícia Regina Terço Leite
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Gabriela Pereira da Silva
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Ariany Carvalho Dos Santos
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Roosevelt Isaías Carvalho Souza
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Francielly Mourão Gasparotto
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Nadla Soares Cassemiro
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Lislaine Maria Klider
- Laboratory of Reproductive Toxicology, Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil; Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jane Manfron
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
11
|
Xie G, Zhou R, Huang L, Zhang S, Tan Z. In Vitro Biotransformation of Total Glycosides in Qiwei Baizhu Powder by the Gut Microbiota of Normal and Diarrheal Mice: Novel Insight Into the Biotransformation of Multi-Glycosides by the Gut Microbiota. Front Chem 2022; 10:907886. [PMID: 35795223 PMCID: PMC9251009 DOI: 10.3389/fchem.2022.907886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 01/30/2023] Open
Abstract
The gut microbiota (GM) is involved in the metabolism of glycosides and is beneficial for enhancing their bioactivity. However, the metabolism of multi-glycosides by the GM under normal and pathological conditions is unclear. In this study, the total glycosides (TG) of the traditional Chinese medicine (TCM) formula Qiwei Baizhu Powder (QWBZP) were extracted to represent a multi-glycoside system. Ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to rapidly identify the components and in vitro metabolites of QWBZP-TG. The metabolic profiles of QWBZP-TG in the GM of normal and diarrheal mice were also compared. A total of 68 compounds and seven metabolites were identified in the QWBZP-TG and metabolic samples, respectively. Deglycosylation was the main metabolic pathway of in vitro multi-glycoside metabolism. Liquiritin apioside, isoliquiritin apioside, liquiritin, protopanaxadiol (PPD)-type, and oleanane (OLE)-type ginsenosides were relatively easy to metabolize by the GM. At first, the deglycosylation capability of the GM of normal mice was superior to that of diarrheal mice, but the deglycosylation capability of diarrheal mice gradually recovered and produced abundant deglycosylation metabolites. In conclusion, deglycosylation metabolites may be the bioactive components of QWBZP. Glycoside-bacteria interaction may be a key mechanism for QWBZP to therapy diarrhea.
Collapse
Affiliation(s)
- Guozhen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Rongrong Zhou
- The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Lili Huang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Zhoujin Tan, , , orcid.org/0000-0003-3193-073X
| |
Collapse
|
12
|
Yue H, Wang L, Jiang S, Banma C, Jia W, Tao Y, Zhao X. Hypoglycemic effects of Rhodiola crenulata (HK. f. et. Thoms) H. Ohba in vitro and in vivo and its ingredient identification by UPLC-triple-TOF/MS. Food Funct 2022; 13:1659-1667. [PMID: 35080557 DOI: 10.1039/d1fo03436g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodiola crenulata (HK. f. et. Thoms) H. Ohba (RC), mainly distributed in the highly cold region of China, has long been used as a medicine/healthy food for eliminating fatigue and increasing blood circulation. This study aimed to evaluate the inhibitory effects of the RCRS extract on α-amylase and α-glucosidase (sucrase and maltase) in vitro and in vivo, and tentatively analyze and identify its chemical ingredients using UPLC-Triple-TOF/MS. The Rhodiola crenulata RCRS extract had strong inhibitory activities against α-amylase, sucrase and maltase with an IC50 of 0.031 mg mL-1, 0.142 mg mL-1 and 0.214 mg mL-1, respectively. Furthermore, the RCRS extract could significantly decrease the postprandial blood glucose (PBG) level of normal mice in a starch tolerance test, and reduce the PBG levels of diabetic mice in a starch/maltose/sucrose tolerance test. UHPLC-Triple-TOF-MS/MS analysis indicated that hydroxybenzoic acids, hydroxycinnamic acids, alcohol glycosides, flavonols and their derivatives were the main active ingredients in the RCRS extract. The results demonstrate that the RCRS extract of Rhodiola crenulata could be employed as a healthy food or medicine for controlling postprandial blood glucose levels.
Collapse
Affiliation(s)
- Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Luya Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Sirong Jiang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Cailang Banma
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Wenjing Jia
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| |
Collapse
|
13
|
Marques AAM, Lorençone BR, Romão PVM, Guarnier LP, Palozi RAC, Moreno KGT, Tirloni CAS, Dos Santos AC, Souza RIC, Klider LM, Lourenço ELB, Tolouei SEL, Budel JM, Khan SI, Silva DB, Gasparotto Junior A. Ethnopharmacological investigation of the cardiovascular effects of the ethanol-soluble fraction of Aloysia polystachya (Griseb.) Moldenke leaves in spontaneously hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114077. [PMID: 33789140 DOI: 10.1016/j.jep.2021.114077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/27/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloysia polystachya (Griseb) Moldenke (Verbenaceae), popularly known as "burrito", is a South American species widely prescribed by local Brazilian healers for the treatment of cardiovascular diseases. However, its antihypertensive and cardioprotective effects are still unknown. AIM To evaluate the role of the ethanol-soluble fraction of A. polystachya leaves (ESAP) against hypertension in spontaneously hypertensive rats (SHRs), as well as its safety, morphoanatomical and phytochemical aspects. MATERIALS AND METHODS First, the leaves and stems of A. polystachya were analyzed by optical and scanning electron microscopy in order to provide anatomical data for quality control. Then, ESAP was obtained and its chemical profile was analyzed by LC-DAD-MS. In addition, the cytotoxic and acute toxicity potential of ESAP were evaluated in six cell lines and in female Wistar rats, respectively. Next, female spontaneously hypertensive rats (SHRs) received ESAP (30, 100, 300 mg/kg), hydrochlorothiazide (25 mg/kg), or vehicle once daily for 28 days. Weekly kidney function was monitored by analyzing urinary parameters. At the end of the 28-day treatment, the electrocardiographic profile, blood pressure, and renal and mesenteric vascular reactivity were evaluated. Relative organ (heart, kidney, and liver) weights and biochemical parameters were also evaluated. Finally, the heart, kidneys, and aorta were collected for determination of the tissue redox state, cardiac morphometry, and histopathological analysis. RESULTS The chemical profile of ESAP was composed by organic acids, a nucleoside, methoxylated flavones and glycosylated compounds including phenolic acids, phenylpropanoids, iridoids and monoterpenes. No signs of toxicity were observed in all cell's lines nor in female Wistar rats submitted to this trial. All SHRs from the negative control group presented a reduction in renal function, alterations in the renal and mesenteric vascular reactivity, and electrocardiographic and morphometric changes typical of ventricular hypertrophy. Oral prolonged ESAP-administration in SHRs was able to reverse renal, electrocardiographic and hemodynamic changes induced by hypertension. Moreover, ESAP-treatment was able to modulate the vascular and renal arterial reactivity and tissue redox state. The aforementioned data were accompanied by reduction of cardiac hypertrophy. CONCLUSION In this study, we present important anatomical and phytochemical data that contributed to the correct identification and quality control of A. polystachya. In addition, we have shown that ESAP is safe after acute administration and present significant cardioprotective effects (at 30, 100, and 300 mg/kg doses) in SHRs after prolonged treatment.
Collapse
Affiliation(s)
- Aline Aparecida Macedo Marques
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Bethânia Rosa Lorençone
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Paulo Vitor Moreira Romão
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Lucas Pires Guarnier
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Rhanany Alan Calloi Palozi
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Karyne Garcia Tafarelo Moreno
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Cleide Adriane Signor Tirloni
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Ariany Carvalho Dos Santos
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Roosevelt Isaías Carvalho Souza
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Lislaine Maria Klider
- Laboratory of Reproductive Toxicology, Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil; Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Sara Emilia Lima Tolouei
- Laboratory of Reproductive Toxicology, Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil; National Center for Natural Products Research, University of Mississippi, Oxford, MS, USA
| | - Jane Manfron Budel
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Shabana I Khan
- National Center for Natural Products Research, University of Mississippi, Oxford, MS, USA
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil; Laboratory of Reproductive Toxicology, Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
14
|
Ren HH, Niu Z, Guo R, Fu M, Li HR, Zhang XY, Yao L. Rhodiola crenulata extract decreases fatty acid oxidation and autophagy to ameliorate pulmonary arterial hypertension by targeting inhibiton of acylcarnitine in rats. Chin J Nat Med 2021; 19:120-133. [PMID: 33641783 DOI: 10.1016/s1875-5364(21)60013-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 10/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating pulmonary circulation disease lacking high-efficiency therapeutics. The present study aims to decipher the therapeutic mechanism of Rhodiola crenulata, a well-known traditional chinese medicine with cardiopulmonary protection capacity, on PAH by exploiting functional lipidomics. The rat model with PAH was successfully established for first, following Rhodiola crenulata water extract (RCE) treatment, then analysis of chemical constituents of RCE was performed, additional morphologic, hemodynamic, echocardiographic measurements were examined, further targeted lipidomics assay was performed to identify differential lipidomes, at last accordingly mechanism assay was done by combining qRT-PCR, Western blot and ELISA. Differential lipidomes were identified and characterized to differentiate the rats with PAH from healthy controls, mostly assigned to acylcarnitines, phosphatidylcholines, sphingomyelin associated with the PAH development. Excitingly, RCE administration reversed high level of decadienyl-L-carnitine by the modulation of metabolic enzyme CPT1A in mRNA and protein level in serum and lung in the rats with PAH. Furthermore, RCE was observed to reduce autophagy, confirmed by significantly inhibited PPARγ, LC3B, ATG7 and upregulated p62, and inactivated LKB1-AMPK signal pathway. Notably, we accurately identified the constituents in RCE, and delineated the therapeutic mechansim that RCE ameliorated PAH through inhibition of fatty acid oxidation and autophagy. Altogether, RCE might be a potential therapeutic medicine with multi-targets characteristics to prevent the progression of PAH. This novel findings pave a critical foundation for the use of RCE in the treatment of PAH.
Collapse
Affiliation(s)
- Huan-Huan Ren
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zheng Niu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Rui Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Fu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hai-Ru Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xuan-Yu Zhang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Li Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China; State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
15
|
Liu LX, Cao L, Shi DF, Wang ZZ, Xiao W, Yao XS, Li HB, Yu Y. Metabolic profiles of Jin-hong tablets in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr 2021; 35:e5072. [PMID: 33453065 DOI: 10.1002/bmc.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/06/2022]
Abstract
Jin-hong tablets (JHTs), a well-known traditional Chinese patent medicine (TCPM), have been effectively used for the treatment of chronic superficial gastritis (CSG). The metabolic profile of TCPMs is performed to determine their bioactive components. In this study, a five-step strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and metabolynx™ software combined with mass defect filter technique was developed to delineate the metabolic profile of JHT in vivo. As a result, a total of 163 JHT-related xenobiotics (38 prototypes and 125 metabolites) were identified or tentatively characterized in rat biological samples, and the phase I and II metabolism processes mainly included demethylation, hydroxylation, sulfation, and glucuronidation. In addition, after oral administration of JHT, a large amount of alkaloid-related ingredients was detected in rat plasma samples, indicating that alkaloids may play an important role in the treatment of CSG with JHT. This study is beneficial for understanding the JHT's in vivo metabolic profiles and characteristics, which helps to reveal its in vivo effective components and provides a solid basis for further studies on its functional mechanism.
Collapse
Affiliation(s)
- Ling-Xian Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Liang Cao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Dan-Feng Shi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Zhen-Zhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Hai-Bo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Marchev AS, Koycheva IK, Aneva IY, Georgiev MI. Authenticity and quality evaluation of different Rhodiola species and commercial products based on NMR-spectroscopy and HPLC. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:756-769. [PMID: 32311178 DOI: 10.1002/pca.2940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The main concern regarding the authenticity and quality of Rhodiola rosea L. (Sedum rosea (L.) Scop.) products is their adulteration with other Rhodiola species. OBJECTIVE The aim of the study was the development of a reliable and practical analytical platform for quality and quantity assessment of the characteristic molecules in three Rhodiola species (R. rosea, R. kirilowii (Regel) Maxim and R. crenulata (Hook. f. & Thomson) H. Ohba), commercial products and their possible application as markers for the authentication of R. rosea based products. MATERIAL AND METHODS The major molecules were identified by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR)-based metabolomics and quantitatively determined by high-performance liquid chromatography ultraviolet (HPLC-UV) analysis. The orthogonal projections to latent structures discriminant analysis (OPLS-DA) revealed the specific patterns in the metabolite profiles of R. rosea and R. crenulata. RESULTS The coumarin crenulatin was only identified in R. crenulata and can be used as a marker to detect potential adulteration of the commercial products. Crenulatin was identified in two of the four analysed products by NMR-spectroscopy. According to the HPLC data, in less than a quarter of all products, the labelled amounts of salidroside and total rosavins were confirmed. CONCLUSIONS The developed analytical platform was found to be useful in the investigations of the phytochemical diversity of different Rhodiola species, the recognition of the unique metabolites between them and the identification of adulterated products. Therefore, this approach could be applied from the earliest to the latest stages of the value chain in the manufacturing of R. rosea based products.
Collapse
Affiliation(s)
- Andrey S Marchev
- Group of Plant Cell Biotechnology and Metabolomics, Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Ivanka K Koycheva
- Group of Plant Cell Biotechnology and Metabolomics, Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Ina Y Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| |
Collapse
|
17
|
Li J, Wang M, Wang X, Sun L, Zhao C, Zhao M. Rapid characterization of the chemical constituents of Duzhong Jiangya tablet by HPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. J Sep Sci 2020; 43:4434-4460. [PMID: 33108700 DOI: 10.1002/jssc.202000842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 11/06/2022]
Abstract
Duzhong Jiangya tablet is a hypotensive drug. In this study, high-performance liquid chromatography-Fourier transform-ion cyclotron resonance-mass spectrometry technology was used to quickly identify its chemical composition. SinoChrom ODS-BP column (250 mm × 4.6 mm, 5 μm) was used. The mobile phase was acetonitrile(A)-0.1% formic acid solution(B). The flow rate was 1 mL/min. Extracted ion chromatogram was used to analyze the samples in positive and negative ion modes. Based on the accurate mass spectrometry information (such as quasi-molecular ions and fragment ions) obtained from the instrument, combined with reference compounds and literature, the chemical composition of Duzhong Jiangya Tablets was identified. A total of 131 compounds were identified, including four types of penylpropanoids, six types of phenylethanoid glycosides, 10 types of organic acids, 14 types of iridoids, 12 types of lignans, 18 types of alkaloids, seven types of coumarins, and 60 kinds of flavonoids. This established method can quickly and efficiently identify chemical constituents in Duzhong Jiangya tablet, lay a foundation for the research on the efficacy and quality of this traditional Chinese medicine, and provide a reference for the characterization of the chemical constituents of other traditional Chinese medicine preparations.
Collapse
Affiliation(s)
- Jingwei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
18
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Zhou J, Zhang Y, Li N, Zhao D, Lu Y, Wang L, Chen X. A systematic metabolic pathway identification of Common Gardenia Fruit (Gardeniae Fructus) in mouse bile, plasma, urine and feces by HPLC-Q-TOF-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122100. [PMID: 32311674 DOI: 10.1016/j.jchromb.2020.122100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022]
Abstract
Gardeniae Fructus was a traditional Chinese medicine (TCM) containing various biological ingredients including iridoids and crocetins, monocyclic monoterpenes, organic acids, and flavonoids. However, few systematic identification studies of the bioactive components in vivo have been reported. Herein, the ingredients and metabolites of Gardeniae Fructus were investigated using high-performance liquid chromatography coupled with high-sensitivity Q-TOF mass spectrometry. A total of 45 prototype compounds in Gardeniae Fructus extract were tentatively identified. After oral administration, 69 of prototypes and metabolites were identified from mice bile, plasma, urine, and feces, in which, 31 compounds were prototypes, and 38 chemicals were metabolites. The in vivo biotransformation pathways of these metabolites were also proposed including phase I (hydrolysis, hydrogenation, oxidation, loss of O, and ketone formation, decarboxylation) and phase II reactions (glycine, cysteine, glutathione, and glutamine, and sulfate conjugation, and glucuronidation). For the first time, our results had revealed systematic metabolic profiles of ingredients in Gardeniae Fructus extract in vivo of mice and replenished novel knowledge into the explanation of effective material and/or toxicological basis of Gardeniae Fructus which deserves further investigation.
Collapse
Affiliation(s)
- Jing Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210023, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, 100 Hongshan Road, Nanjing 210028, China
| | - Yongjie Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Ning Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Di Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yang Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Xijing Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
20
|
Zhao Y, Wang M, Sun L, Jiang X, Zhao M, Zhao C. Rapid characterization of the chemical constituents of Sanhua decoction by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. RSC Adv 2020; 10:26109-26119. [PMID: 35519733 PMCID: PMC9055441 DOI: 10.1039/d0ra02264k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/23/2020] [Indexed: 12/03/2022] Open
Abstract
Sanhua decoction, a famous Chinese herbal formula has been widely used for the treatment of stroke. In our study, a rapid, swift and straightforward analytical method with the help of UHPLC-FT-ICR-MS/MS was successfully developed for the first time to separate and identify the chemical constituents of Sanhua decoction. Chromatography was performed on a Universal XB C18 column (150 mm × 2.1 mm, 1.8 μm) using a mobile phase containing 0.1% formic acid–water (A) and acetonitrile (B). A total of 137 compounds in Sanhua decoction were identified or tentatively characterized. The findings revealed the fact that Sanhua decoction mainly contains flavonoids (in Aurantii fructus immaturus and Rheum palmatum L.), anthraquinones (in Rheum palmatum L.), coumarins (in Notopterygii Rhizoma Et Radix), phenylpropanoid glycosides, alkaloids and lignans (in Magnoliae Officmalis Cortex), which made up the key ingredients existing in Sanhua decoction. This study is hoped to be meaningful for the characterization of components in other traditional Chinese medicines, and lay the foundation for research on the pharmacology of Sanhua decoction. Sanhua decoction, a famous Chinese herbal formula has been widely used for the treatment of stroke.![]()
Collapse
Affiliation(s)
- Yanhui Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Miao Wang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Lin Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xue Jiang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Min Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Chunjie Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
21
|
Wang X, Hou Y, Li Q, Li X, Wang W, Ai X, Kuang T, Chen X, Zhang Y, Zhang J, Hu Y, Meng X. Rhodiola crenulata attenuates apoptosis and mitochondrial energy metabolism disorder in rats with hypobaric hypoxia-induced brain injury by regulating the HIF-1α/microRNA 210/ISCU1/2(COX10) signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111801. [PMID: 30878546 DOI: 10.1016/j.jep.2019.03.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodiola crenulata, a traditional Tibetan medicine, has shown promise in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, the underlying mechanisms remain unclear. This study investigated the protective effects of R. crenulata aqueous extract (RCAE) on HH-induced brain injury in rats. MATERIALS AND METHODS An animal model of high-altitude hypoxic brain injury was established in SD rats using an animal decompression chamber for 24 h. Serum and hippocampus levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and lactate dehydrogenase (LDH) were then determined using commercial biochemical kits. Neuron morphology and vitality were also evaluated using H&E and Nissl staining, and TUNEL staining was used to examine apoptosis. Gene and protein expression of HIF-1α, microRNA 210, ISCU1/2, COX10, Apaf-1, cleaved Caspase-3, Caspase-3, Bax, Bcl-2, and Cyto-c were determined by western blot, immunohistochemical and qRT-PCR analysis. RESULTS RCAE administration attenuated HH-induced brain injury as evidenced by decreased levels of MDA, LDH, and GSSG, increased GSH and SOD, improvements in hippocampus histopathological changes, increased cell vitality and ATP level, and reduced apoptotic cell numbers. RCAE treatment also enhanced HIF-1α, ISCU1/2, COX10, and Bcl-2 protein expression, while dramatically inhibiting expression of Apaf-1, Bax, Cyto-c, and cleaved Caspase-3. Treatment also increased gene levels of HIF-1α, microRNA 210, ISCU1/2, and COX10, and decreased Caspase-3 gene production. CONCLUSIONS RCAE attenuated HH-induced brain injury by regulating apoptosis and mitochondrial energy metabolism via the HIF-1α/microRNA 210/ISCU1/2 (COX10) signaling pathway.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Interdisciplinary Laboratory of Exercise and Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Interdisciplinary Laboratory of Exercise and Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qiuyue Li
- Ethnic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xuanhao Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Ethnic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wenxiang Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Tingting Kuang
- Ethnic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xiaorui Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yi Zhang
- Ethnic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Zhang
- Ethnic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Yao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Interdisciplinary Laboratory of Exercise and Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|