1
|
Li T, Zhang K, Liu R, Ren L, Li X, Li J, Liu W, Song Y. Direct infusion-multiple reaction monitoring cubed (DI-MRM 3) enables widely targeted bi-omics of Colla Corii Asini (Chinese name: Ejiao). Food Chem 2024; 447:138969. [PMID: 38507947 DOI: 10.1016/j.foodchem.2024.138969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Food authenticity is extremely important and widely targeted bi-omics is a promising pipeline attributing to incorporating metabolomics and peptidomics. Colla Corii Asini (CCA, Ejiao) is one of the most popular tonic edible materials, with counterfeit and adulterated products being widespread. An attempt was devoted to develop a high-throughput and reliable DI-MRM3 program facilitating widely targeted bi-omics of CCA. Firstly, predictive MRM program captured metabolites and peptides in trypsin-digestive gelatins. After data alignment and structure annotation, primary parameters such as Q1 → Q3 → QLIT, CE, and EE were optimized for all 17 metabolites and 34 peptides by online ER-MS. Though a single run merely consumed 6.5 min, great selectivity was reached for each analyte. Statistical results showed that nine peptides contributed to distinguish CCA from other gelatins. After cross-validation with LC-MRM, DI-MRM3 was justified to be reproducible and high-throughput for widely targeted bi-omics of CCA, suggesting a meaningful tool for food authenticity.
Collapse
Affiliation(s)
- Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Luyao Ren
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Zhang Y, Zhang Z, Liu Y, Cai D, Gu J, Sun D. Differential Mobility Spectrometry-Tandem Mass Spectrometry with Multiple Ion Monitoring Coupled with in Source-Collision Induced Dissociation: A New Strategy for the Quantitative Analysis of Pharmaceutical Polymer Excipients in Rat Plasma. Molecules 2023; 28:4782. [PMID: 37375337 DOI: 10.3390/molecules28124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Polylactic acids (PLAs) are synthetic polymers composed of repeating lactic acid subunits. For their good biocompatibility, PLAs have been approved and widely applied as pharmaceutical excipients and scaffold materials. Liquid chromatography-tandem mass spectrometry is a powerful analytical tool not only for pharmaceutical ingredients but also for pharmaceutical excipients. However, the characterization of PLAs presents particular problems for mass spectrometry techniques. In addition to their high molecular weights and wide polydispersity, multiple charging and various adductions are intrinsic features of electrospray ionization. In the present study, a strategy combining of differential mobility spectrometry (DMS), multiple ion monitoring (MIM) and in-source collision-induced dissociation (in source-CID) has been developed and applied to the characterization and quantitation of PLAs in rat plasma. First, PLAs will be fragmented into characteristic fragment ions under high declustering potential in the ionization source. The specific fragment ions are then screened twice by quadrupoles to ensure a high signal intensity and low interference for mass spectrometry detection. Subsequently, DMS technique has been applied to further reduce the background noise. The appropriately chosen surrogate specific precursor ions could be utilized for the qualitative and quantitative analysis of PLAs, which provided results with the advantages of low endogenous interference, sufficient sensitivity and selectivity for bioassay. The linearity of the method was evaluated over the concentration range 3-100 μg/mL (r2 = 0.996) for PLA 20,000. The LC-DMS-MIM coupled with in source-CID strategy may contribute to the pharmaceutical studies of PLAs and the possible prospects of other pharmaceutical excipients.
Collapse
Affiliation(s)
- Yuyao Zhang
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhi Zhang
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
| | - Yingze Liu
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
| | - Deqi Cai
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dong Sun
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Kumar S, Singh B, Singh R. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114647. [PMID: 34562562 DOI: 10.1016/j.jep.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Catharanthus roseus (L.) G. Don is a well known medicinal plant belonging to family Apocynaceae that have been traditionally used as medicine since ancient times. C. roseus is a well-recognized herbal medicine due to its anticancer bisindole alkaloids (vinblastine (111), vincristine (112) and vindesine (121)). In the Ayurvedic system of medicine, different parts of C. roseus are used in folklore herbal medicine for treatment of many types of cancer, diabetes, stomach disorders, kidney, liver and cardiovascular diseases. AIM OF THE STUDY The main idea behind this communication is to update comprehensively and analyze critically the traditional applications, phytochemistry, pharmacological activities, and toxicity of various extracts and isolated compounds from C. roseus. MATERIALS AND METHODS The presented data covers scientific works on C. roseus published across the world between 1967 and 2021 was searched from various international publishing houses using search engines as well as several traditional texts like Ayurveda and relevant books. Collected data from different sources was comprehensively summarized/analyzed for ethnomedicinal uses, phytochemistry, analytical chemistry, biological activities and toxicity studies of C. roseus. RESULTS AND DISCUSSION C. roseus has a wide range of applications in the traditional system of medicine especially in cancer and diabetes. During phytochemical investigation, total of 344 compounds including monoterpene indole alkaloids (MIAs) (110), bisindole alkaloids (35), flavonoids (34), phenolic acids (9) and volatile constituents (156) have been reported in the various extracts and fractions of different plant parts of C. roseus. The extracts and isolated compounds of C. roseus have to exhibit many pharmacological activities such as anticancer/cytotoxic, antidiabetic, antimicrobial, antioxidant, larvicidal and pupicidal. The comparative toxicity of extracts and bioactive compounds investigated in dose dependent manner. The investigation of toxicity showed that the both extracts and isolated compounds are safe to a certain limit beyond that they cause adverse effects. CONCLUSION This review is a comprehensive, critically analyzed summarization of sufficient baseline information of selected topics in one place undertaken till date on C. roseus for future works and drug discovery. The phytochemical investigation including biosynthetic pathways showed that the MIAs and bisindole alkaloids are major and characteristic class of compounds in this plant. The present data confirm that the extracts/fractions and their isolated alkaloids especially vinblastine (111) and vincristine (112) have a potent anticancer/cytotoxic and antidiabetic property and there is a need for further study with particular attention to the mechanisms of anticancer activity. In biosynthesis pathways of alkaloids especially bisindole alkaloids, some enzymes and rearrangement are unexposed therefore it is required to draw special attention. It also focuses on attracting the attention of scientific communities about the widespread biological activities of this species for its better utilization prospects in the near future.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, (affiliated to Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur), Farrukhabad, 209602, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ramesh Singh
- Department of Botany, Government Degree College Bahua Dehat, (affiliated to Professor Rajendra Singh (Rajju Bhaiya) University Prayagraj), Fatehpur, 212663, Uttar Pradesh, India
| |
Collapse
|
4
|
Cheng J, Yang Z, Ge XY, Gao MX, Meng R, Xu X, Zhang YQ, Li RZ, Lin JY, Tian ZM, Wang J, Ning SL, Xu YF, Yang F, Gu JK, Sun JP, Yu X. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism. Cell Metab 2022; 34:240-255.e10. [PMID: 35108512 DOI: 10.1016/j.cmet.2021.12.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022]
Abstract
Along with functionally intact insulin, diabetes-associated insulin peptides are secreted by β cells. By screening the expression and functional characterization of olfactory receptors (ORs) in pancreatic islets, we identified Olfr109 as the receptor that detects insulin peptides. The engagement of one insulin peptide, insB:9-23, with Olfr109 diminished insulin secretion through Gi-cAMP signaling and promoted islet-resident macrophage proliferation through a β cell-macrophage circuit and a β-arrestin-1-mediated CCL2 pathway, as evidenced by β-arrestin-1-/- mouse models. Systemic Olfr109 deficiency or deficiency induced by Pdx1-Cre+/-Olfr109fl/fl specifically alleviated intra-islet inflammatory responses and improved glucose homeostasis in Akita- and high-fat diet (HFD)-fed mice. We further determined the binding mode between insB:9-23 and Olfr109. A pepducin-based Olfr109 antagonist improved glucose homeostasis in diabetic and obese mouse models. Collectively, we found that pancreatic β cells use Olfr109 to autonomously detect self-secreted insulin peptides, and this detection arrests insulin secretion and crosstalks with macrophages to increase intra-islet inflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Xiao-Yan Ge
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Ming-Xin Gao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Ran Meng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xin Xu
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yu-Qi Zhang
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Rui-Zhe Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhao-Mei Tian
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jin Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Shang-Lei Ning
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yun-Fei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Jing-Kai Gu
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Jin-Peng Sun
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X, Tian D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front Chem 2021; 9:813359. [PMID: 34993180 PMCID: PMC8724130 DOI: 10.3389/fchem.2021.813359] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023] Open
Abstract
Mass spectrometry (MS) is one of the most widely used analytical techniques in many fields. Recent developments in chemical and biological researches have drawn much attention to the measurement of substances with low abundances in samples. Continuous efforts have been made consequently to further improve the sensitivity of MS. Modifications on the mass analyzers of mass spectrometers offer a direct, universal and practical way to obtain higher sensitivity. This review provides a comprehensive overview of the latest developments in mass analyzers for the improvement of mass spectrometers' sensitivity, including quadrupole, ion trap, time-of-flight (TOF) and Fourier transform ion cyclotron (FT-ICR), as well as different combinations of these mass analyzers. The advantages and limitations of different mass analyzers and their combinations are compared and discussed. This review provides guidance to the selection of suitable mass spectrometers in chemical and biological analytical applications. It is also beneficial to the development of novel mass spectrometers.
Collapse
Affiliation(s)
- Chang Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| | - Shiying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Di Tian
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| |
Collapse
|
6
|
Abstract
This paper aims to cover the main strategies based on ion mobility spectrometry (IMS) for the analysis of biological samples. The determination of endogenous and exogenous compounds in such samples is important for the understanding of the health status of individuals. For this reason, the development of new approaches that can be complementary to the ones already established (mainly based on liquid chromatography coupled to mass spectrometry) is welcomed. In this regard, ion mobility spectrometry has appeared in the analytical scenario as a powerful technique for the separation and characterization of compounds based on their mobility. IMS has been used in several areas taking advantage of its orthogonality with other analytical separation techniques, such as liquid chromatography, gas chromatography, capillary electrophoresis, or supercritical fluid chromatography. Bioanalysis is not one of the areas where IMS has been more extensively applied. However, over the last years, the interest in using this approach for the analysis of biological samples has clearly increased. This paper introduces the reader to the principles controlling the separation in IMS and reviews recent applications using this technique in the field of bioanalysis.
Collapse
|
7
|
Jia S, Sun Y, Li L, Wang R, Xiang Y, Li S, Zhang Y, Jiang H, Du Z. Discrimination of turmeric from different origins in China by MRM-based curcuminoid profiling and multivariate analysis. Food Chem 2020; 338:127794. [PMID: 32798827 DOI: 10.1016/j.foodchem.2020.127794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
In this research, a three-step strategy was utilized for discriminating turmeric samples from different provinces and regions in China. Firstly, MRM-based UPLC-MS/MS method for chemical profiling of curcuminoids in turmeric samples was established. Then, response surface methodology was applied for optimizing the extraction process of targeted curcuminoids. Finally, multivariate analysis was conducted for systematic characterization of 66 curcuminoids in turmeric. Principal component analysis (PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) revealed that turmeric samples from Sichuan and other regions could be classified into two distinct groups. Turmeric samples from the same group had similar curcuminoids content distribution. 25 differential curcuminoids were discovered through OPLS-DA, among which most curcuminoids were more abundant in Sichuan. Furthermore, turmeric samples from different provinces could be clearly discriminated based on hierarchical cluster analysis (HCA) using the screened differential curcuminoids.
Collapse
Affiliation(s)
- Shuailong Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Yi Sun
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Lieyao Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Runjing Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Yi Xiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Hongren Biopharmaceutical Inc., Wuhan, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China.
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Determination of 10 Kinds of Caine-Type Prohibited Ingredients in Cosmetics by Ultra-Performance Liquid Chromatography-Differential Mobility Spectrometry-Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61160-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|