1
|
Sun F, Qiu J, Kong J, Cao Y, Li L, Cao X. A sensitive and robust analytical method for the determination of enramycin residues in swine tissues using UHPLC-MS/MS. Front Vet Sci 2024; 11:1462743. [PMID: 39290506 PMCID: PMC11405371 DOI: 10.3389/fvets.2024.1462743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Enramycin, a common growth promoter utilized in chickens and pigs, is sensitive against Gram-positive bacteria, and the maximum residue limit (MRL) of enramycin set up by is 30 μg/kg. However, the methods have been reported for detecting enramycin have failed to meet the accuracy requirements, with the required limit of quantification being higher than the MRL. To address this issue, we developed a high-sensitive and robust analytical method based on ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS), to determine enramycin residues in swine tissues, including liver, kidney, pork, and fat. The ENV cartridge was selected to cleanup and enrich analytes after being extracted using a mixture of 55% methanol containing 0.2 M hydrochloric acid. With comprehensively validation, this established method was found great linearity of enramycin in each tissue, with a coefficient of variation above 0.99. Satisfactory recoveries from four different spiking levels were acquired (70.99-101.40%) while the relative standard deviations were all below 9%. The limit of quantification of enramycin in the present study is 5 μg/kg in fat and 10 μg/kg in other tissues, meeting the requirements for conducting the corresponding safety evaluation study. This method was demonstrated with excellent specificity, stability, and high sensitivity. To conclude, this novel approach is sufficiently sensitive and robust for the safety evaluation of enramycin in food products.
Collapse
Affiliation(s)
- Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jicheng Qiu
- Department of Veterinary Pharmacology and Toxicology, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, Ministry of Agriculture, Beijing, China
| | - Jingyuan Kong
- Department of Veterinary Pharmacology and Toxicology, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, Ministry of Agriculture, Beijing, China
| | - Yuying Cao
- Department of Veterinary Pharmacology and Toxicology, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, Ministry of Agriculture, Beijing, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xingyuan Cao
- Department of Veterinary Pharmacology and Toxicology, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, Ministry of Agriculture, Beijing, China
| |
Collapse
|
2
|
Osman EA, Rynes TP, Wang YL, Mruk K, McKeague M. Non-invasive single cell aptasensing in live cells and animals. Chem Sci 2024; 15:4770-4778. [PMID: 38550682 PMCID: PMC10967030 DOI: 10.1039/d3sc05735f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024] Open
Abstract
We report a genetically encoded aptamer biosensor platform for non-invasive measurement of drug distribution in cells and animals. We combined the high specificity of aptamer molecular recognition with the easy-to-detect properties of fluorescent proteins. We generated six encoded aptasensors, showcasing the platform versatility. The biosensors display high sensitivity and specificity for detecting their specific drug target over related analogs. We show dose dependent response of biosensor performance reaching saturating drug uptake levels in individual live cells. We designed our platform for integration into animal genomes; thus, we incorporated aptamer biosensors into zebrafish, an important model vertebrate. The biosensors enabled non-invasive drug biodistribution imaging in whole animals across different timepoints. To our knowledge, this is the first example of an aptamer biosensor-expressing transgenic vertebrate that is carried through generations. As such, our encoded platform addresses the need for non-invasive whole animal biosensing ideal for pharmacokinetic-pharmacodynamic analyses that can be expanded to other organisms and to detect diverse molecules of interest.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, Faculty of Science, McGill University Montreal QC H3A 0B8 Canada
| | - Thomas P Rynes
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville NC 27834 USA
| | - Y Lucia Wang
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University Montreal QC H3G 1Y6 Canada
| | - Karen Mruk
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville NC 27834 USA
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University Montreal QC H3A 0B8 Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University Montreal QC H3G 1Y6 Canada
| |
Collapse
|
3
|
Darwish IA, Khalil NY. Development and Comparative Evaluation of Two Different Label-Free and Sensitive Fluorescence Platforms for Analysis of Olaparib: A Recently FDA-Approved Drug for the Treatment of Ovarian and Breast Cancer. Molecules 2023; 28:6524. [PMID: 37764300 PMCID: PMC10537137 DOI: 10.3390/molecules28186524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Olaparib (OLA) is a PARP inhibitor drug which has been recently approved by the Food and Drug Administration (FDA) for the treatment of ovarian and breast cancer. A convenient analytical tool for the quantitation of OLA in its dosage form and plasma samples was urgently needed. This study describes, for the first time, the development of two different label-free and sensitive fluorescence-based platforms for the pharmaceutical and bioanalysis of OLA. These platforms were microwell-assisted with a fluorescence microplate reader (MW-FLR) and high-performance liquid chromatography with fluorescence detection (HPLC-FD). Both MW-FLR and HPLC-FD employed the native fluorescence of OLA as an analytical signal. The MW-FLR involved measuring the fluorescence signals in 96-well white-opaque plates. The HPLC-FD involved chromatographic separation of OLA and duvelisib (DUV), as an internal standard on a Nucleosil-CN HPLC column (250 mm length × 4.6 mm i.d., 5 µm particle diameter) with a mobile phase composed of acetonitrile: water (25:75, v/v) pumped at a flow rate of 1.7 mL/min. Elution of OLA and DUV was detected using a fluorescence detector. The optimal conditions of both MW-FLR and HPLC-FD were established, and they were validated according to the guidelines of the International Council for Harmonization for the validation of analytical procedures. The linear ranges of MW-FLR and HPLC-FD were 25-1000 and 5-200 ng/mL, respectively, with limits of detection of 15 and 1.7 ng/mL, respectively. The accuracy and precision of both platforms were confirmed as the recovery values were ≥98.2% and the relative standard deviations (RSD) were ≤2.89%. Both methodologies were satisfactorily applied to the quantitation of OLA in its commercial dosage form (Lynparza® tablets) and plasma samples with high accuracy and precision. The greenness of both MW-FLR and HPLC-FD was assessed using two different multiple parameter-based metric tools, and the results proved their greenness and adherence to the requirements of green analytical approaches. Both platforms have simple procedures and acceptable levels of analytical throughput. In conclusion, the proposed MW-FLR and HPLC-FD are valuable tools for routine use in quality control and clinical laboratories for the quantitation of OLA for the purposes of pharmaceutical quality control, pharmacokinetic studies, and bioequivalence testing.
Collapse
Affiliation(s)
- Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
4
|
Nanomaterial-based electrochemical sensing platform for the determination of Olaparib. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Alali AS, Kalam MA, Ahmed MM, Aboudzadeh MA, Alhudaithi SS, Anwer MK, Fatima F, Iqbal M. Nanocrystallization Improves the Solubilization and Cytotoxic Effect of a Poly (ADP-Ribose)-Polymerase-I Inhibitor. Polymers (Basel) 2022; 14:polym14224827. [PMID: 36432955 PMCID: PMC9696361 DOI: 10.3390/polym14224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Olaparib (OLA) is an anticancer agent that acts by inhibiting the poly (ADP-ribose)-polymerase-I (PARP-I). Due to its low solubility and low permeability, it has been placed as a BCS Class-IV drug and hence its clinical use is limited. In this study, we develop the nanocrystals of OLA as a way to improve its solubility and other performances. The OLA-NCs were prepared by antisolvent precipitation method through homogenization and probe sonication technique using a novel amphiphilic polymeric stabilizer (Soluplus®). Particle characterization resulted approximately 103.13 nm, polydispersity-index was 0.104 with positive zeta-potential of +8.67 mV. The crystal morphology by SEM of OLA-NCs (with and without mannitol) exhibited nano-crystalline prism-like structures as compared to the elongated OLA-pure. The DSC, XRD and FTIR were performed to check the interaction of Soluplus, mannitol and OLA did not exhibit any physical interaction among the OLA, Soluplus® and mannitol that is indicated by the presence of parent wave number peak. Two-fold increased solubility of OLA was found in PBS with Soluplus® from the NCs (69.3 ± 6.2 µgmL−1) as compared to pure drug (35.6 ± 7.2 µgmL−1). In vitro release of drug from OLA-NCs was higher (78.2%) at 12 h at pH 6.8 and relatively lower (53.1%) at pH 1.2. In vitro cellular cytotoxicity and anticancer effects were examined on MCF-7 cells. OLA-NCs were found effectively potent to MCF-7 cells compared with OLA-pure with approximately less than half IC50 value during MTT assay. Estimation of p53, Caspase-3 and Caspase-9 in MCF-7 cells indicated that OLA-NCs have significantly (p < 0.05) increased their expressions. After single oral dose in rats, 12 h plasma drug concentration-time profile indicated approximately 2.06-, 2.29-, 2−25- and 2.62-folds increased Cmax, AUC0-12 h, AUC0-∞ and AUMC0-∞, respectively, from the NCs as compared to OLA-pure. Storage stability indicated that the OLA-NCs was physically and chemically stable at 4 °C, 25 °C and 40 °C up to 6-months. Overall, OLA-NCs were deliberated; its potential feasibility to overwhelm the formulation challenges related to poorly soluble drugs and its future clinical applications.
Collapse
Affiliation(s)
- Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Abul Kalam
- Nanobiotechnogy Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence:
| | - M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| | - Sulaiman S. Alhudaithi
- Nanobiotechnogy Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Wu ZX, Mai Q, Yang Y, Wang JQ, Ma H, Zeng L, Chen ZS, Pan Y. Overexpression of human ATP-binding cassette transporter ABCG2 contributes to reducing the cytotoxicity of GSK1070916 in cancer cells. Biomed Pharmacother 2021; 136:111223. [PMID: 33450491 DOI: 10.1016/j.biopha.2021.111223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of multidrug resistance (MDR) is one of the main factors that impair therapeutic outcome in cancer therapy. Among all the factors that contribute to MDR, overexpression of ABCG2 transporter has been described as a key factor. GSK1070916 is a potent Aurora kinase inhibitor with broad anticancer effects. The robust efficacy shown in preclinical studies allowed the drug progress to clinical investigation. However, the potential mechanisms of acquired resistance to GSK1070916 remain inconclusive. Since several Aurora kinase inhibitors were reported to be transported substrates of ABCG2, we aimed to identify the potential interaction of GSK1070916 with ABCG2. Our data showed that ABCG2-overexpressing cells demonstrated high resistance-fold to GSK1070916 compared to the parental cells. In addition, combination of GSK1070916 with an ABCG2 inhibitor was able to restore its sensitivity. The multicellular tumor spheroid assay supported this finding by demonstrating attenuated growth inhibition in ABCG2-overexpressing tumor spheroids. In addition, the ABCG2 ATPase assay and computational modeling suggested that GSK1070916 could bind to ABCG2 substrate-binding site. The HPLC assay provided another direct evidence that ABCG2-overexpressing cells showed attenuated intracellular accumulation of GSK1070916, and such phenomenon was abolished by Ko143, a known ABCG2 inhibitor. Furthermore, GSK1070916 was able to hinder the efflux activity of ABCG2, indicating possible drug-drug interactions with other ABCG2 substrate drugs. In summary, we revealed that overexpression of ABCG2 can cause GSK1070916 resistance in cancer cells. The combination of an ABCG2 inhibitor with GSK1070916 may be a rational strategy to overcome the drug resistance and should be considered for clinical investigation.
Collapse
Affiliation(s)
- Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiuyan Mai
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hansu Ma
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Leli Zeng
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yihang Pan
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China.
| |
Collapse
|
7
|
McCrorie P, Mistry J, Taresco V, Lovato T, Fay M, Ward I, Ritchie AA, Clarke PA, Smith SJ, Marlow M, Rahman R. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. Eur J Pharm Biopharm 2020; 157:108-120. [PMID: 33068736 DOI: 10.1016/j.ejpb.2020.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 02/09/2023]
Abstract
Glioblastoma is a malignant brain tumour with a median survival of 14.6 months from diagnosis. Despite maximal surgical resection and concurrent chemoradiotherapy, reoccurrence is inevitable. To try combating the disease at a stage of low residual tumour burden immediately post-surgery, we propose a localised drug delivery system comprising of a spray device, bioadhesive hydrogel (pectin) and drug nanocrystals coated with polylactic acid-polyethylene glycol (NCPPs), to be administered directly into brain parenchyma adjacent to the surgical cavity. We have repurposed pectin for use within the brain, showing in vitro and in vivo biocompatibility, bio-adhesion to mammalian brain and gelling at physiological brain calcium concentrations. Etoposide and olaparib NCPPs with high drug loading have shown in vitro stability and drug release over 120 h. Pluronic F127 stabilised NCPPs to ensure successful spraying, as determined by dynamic light scattering and transmission electron microscopy. Successful delivery of Cy5-labelled NCPPs was demonstrated in a large ex vivo mammalian brain, with NCPP present in the tissue surrounding the resection cavity. Our data collectively demonstrates the pre-clinical development of a novel localised delivery device based on a sprayable hydrogel containing therapeutic NCPPs, amenable for translation to intracranial surgical resection models for the treatment of malignant brain tumours.
Collapse
Affiliation(s)
- Phoebe McCrorie
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Jatin Mistry
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Vincenzo Taresco
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Tatiana Lovato
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Michael Fay
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Ian Ward
- School of Life Sciences Imaging, School of Life Sciences, University of Nottingham, NG7 2RD, UK
| | - Alison A Ritchie
- Division of Cancer and Stem Cells, Faculty of Medicine and Health Sciences, University of Nottingham, NG7 2RD, UK
| | - Philip A Clarke
- Division of Cancer and Stem Cells, Faculty of Medicine and Health Sciences, University of Nottingham, NG7 2RD, UK
| | - Stuart J Smith
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Maria Marlow
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
8
|
Determination of neuropeptide Y Y1 receptor antagonist BIBP 3226 and evaluation of receptor expression based on liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 2020; 412:6625-6632. [PMID: 32728863 DOI: 10.1007/s00216-020-02825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Neuropeptide Y (NPY) is a peptide widely distributed throughout the body that is involved in various physiological processes, including the regulation of feeding behavior and energy homeostasis. 5-Carbamimidamido-2-(2,2-diphenylacetamido)-N-[(4-hydroxyphenyl)methyl]pentanamide (BIBP 3226) is a selective NPY Y1 receptor antagonist with recognized application in bone regeneration studies, requiring quantification at picogram levels. Hence, BIBP 3226 determination is proposed here by a validated HPLC-MS/MS method, based on a reversed-phase Kinetex® core-shell C8 column (2.6 μm, 150 × 2.1 mm) at 30 °C, elution in isocratic mode using a mixture of acetonitrile and water (30:70, v/v), containing 0.1% (v/v) formic acid, at 0.25 mL min-1, detection in positive ionization mode, and data acquisition in selected reaction monitoring mode. Calibration curves were linear for concentrations ranging from 0.25 to 30 ng mL-1 with LOD and LOQ values as low as 0.1 and 0.3 pg in cell extracts and 16 and 48 pg in supernatant culture media, respectively. BIBP 3226 was successfully determined in cell extracts and supernatants obtained from internalization assays. Using similar exposure conditions, the amount of BIBP 3226 found in breast cancer cells (MCF7) was 72 to 657 times higher than that found in bone marrow cells (Wt C57BL/6 mice), providing an indirect indicator of NPY Y1 receptor expression.
Collapse
|
9
|
Yaro P, Nie J, Xu M, Zeng K, Zeng S. Development and Validation of Liquid Chromatography-mass Spectrometry Method for the Determination of Intracellular Concentration of Ginkgolide A, B, C, and Bilobalide in Transporter-Expressing Cells. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190314142020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Terpene lactones are major components of ginkgo biloba extract which are
used in cardiovascular and degenerative diseases. To study the involvement of transporters in the
transport/disposition of ginkgolides A, B, C, and bilobalide, a bioanalytical assay was developed by LCMS/
MS system for the quantitation of intracellular levels of terpene lactones in cells expressing organic
cation transporter 2 (OCT2).
Methods:
The assay involved an optimized simple sample handling with methyl tert-butyl ether for
liquid-liquid extraction and reconstitution in modified dissolution solution. Pretreatment of samples
with 50 μM ascorbic acid and the addition of ascorbic acid and formic acid in dissolution solution significantly
reduced matrix effect and stabilized the postpreparative samples. Separations were performed
by Zobrax RRHD column (extend-C18 1.8μm, 3.0 x 100mm) and acetonitrile gradient elution. The
analysis was carried out in the negative ion scan mode using multiple reaction monitoring.
Results:
The method was validated for linearity (concentration range of 20-5000nM), accuracy
(±13.1%), precision (<11.0%), recovery (94.31–105.9%), matrix effect (93.8-111.0%) and stability.
Finally, the method was applied in the determination of intracellular concentrations of ginkgolides A, B,
C, and bilobalide in Madin-Darby canine kidney (MDCK-mock) and MDCK-OCT2 cells in uptake
study.
Conclusion:
The developed method was successfully validated. Results suggest that OCT2 is involved
in the renal disposition of ginkgolide A, B, and bilobalide. This method would foster the study of
transport mediated activity via the interaction of ginkgolides and bilobalide with cellular systems.
Collapse
Affiliation(s)
- Peter Yaro
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310006, China
| | - Jing Nie
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310006, China
| | - Mingcheng Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310006, China
| | - Kui Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310006, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
10
|
Dubois C, Martin F, Hassel C, Magnier F, Daumar P, Aubel C, Guerder S, Mounetou E, Penault-Lorca F, Bamdad M. Low-Dose and Long-Term Olaparib Treatment Sensitizes MDA-MB-231 and SUM1315 Triple-Negative Breast Cancers Spheroids to Fractioned Radiotherapy. J Clin Med 2019; 9:jcm9010064. [PMID: 31888054 PMCID: PMC7019977 DOI: 10.3390/jcm9010064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
The Triple-Negative Breast Cancer subtype (TNBC) is particularly aggressive and heterogeneous. Thus, Poly-ADP-Ribose Polymerase inhibitors were developed to improve the prognosis of patients and treatment protocols are still being evaluated. In this context, we modelized the efficacy of Olaparib (i.e., 5 and 50 µM), combined with fractioned irradiation (i.e., 5 × 2 Gy) on two aggressive TNBC cell lines MDA-MB-231 (BRCAness) and SUM1315 (BRCA1-mutated). In 2D cell culture and for both models, the clonogenicity drop was 95-fold higher after 5 µM Olaparib and 10 Gy irradiation than Olaparib treatment alone and was only 2-fold higher after 50 µM and 10 Gy. Similar responses were obtained on TNBC tumor-like spheroid models after 10 days of co-treatment. Indeed, the ratio of metabolic activity decrease was of 1.2 for SUM1315 and 3.3 for MDA-MB-231 after 5 µM and 10 Gy and of only 0.9 (both models) after 50 µM and 10 Gy. MDA-MB-231, exhibiting a strong proliferation profile and an overexpression of AURKA, was more sensitive to the co-treatment than SUM1315 cell line, with a stem-cell like phenotype. These results suggest that, with the studied models, the potentiation of Olaparib treatment could be reached with low-dose and long-term exposure combined with fractioned irradiation.
Collapse
Affiliation(s)
- Clémence Dubois
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France; (C.D.)
- Université Clermont Auvergne, Institut Universitaire de Technologie, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
| | - Fanny Martin
- Département de Radiothérapie, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Chervin Hassel
- Centre Hospitalier Universitaire Purpan, Centre de Physiopathologie de Toulouse Purpan, INSERM, UMR 1043/CNRS UMR 5282, Antigen Presenting Cells and CD4 T cell responses, F-31024 Toulouse, France
| | - Florian Magnier
- Service de Physique Médicale, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Pierre Daumar
- Université Clermont Auvergne, Institut Universitaire de Technologie, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
| | - Corinne Aubel
- Université Clermont Auvergne, Faculté de Médecine, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
| | - Sylvie Guerder
- Centre Hospitalier Universitaire Purpan, Centre de Physiopathologie de Toulouse Purpan, INSERM, UMR 1043/CNRS UMR 5282, Antigen Presenting Cells and CD4 T cell responses, F-31024 Toulouse, France
| | - Emmanuelle Mounetou
- Université Clermont Auvergne, Institut Universitaire de Technologie, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
| | - Frédérique Penault-Lorca
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France; (C.D.)
| | - Mahchid Bamdad
- Université Clermont Auvergne, Institut Universitaire de Technologie, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Correspondence: ; Tel.: +33-4-7317-7077
| |
Collapse
|
11
|
Seashore-Ludlow B, Axelsson H, Lundbäck T. Perspective on CETSA Literature: Toward More Quantitative Data Interpretation. SLAS DISCOVERY 2019; 25:118-126. [PMID: 31665966 DOI: 10.1177/2472555219884524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cellular thermal shift assay (CETSA) was introduced in 2013 to investigate drug-target engagement inside live cells and tissues. As with all thermal shift assays, the response measured by CETSA is not simply governed by ligand affinity to the investigated target protein, but the thermodynamics and kinetics of ligand binding and protein unfolding also contribute to the observed protein stabilization. This limitation is commonly neglected in current applications of the method to validate the target of small-molecule probes. Instead, there is an eagerness to make direct comparisons of CETSA measurements with functional and phenotypic readouts from cells at 37 °C. Here, we present a perspective of the early CETSA literature and put the accumulated data into a quantitative context. The analysis includes annotation of ~270 peer-reviewed papers, the majority of which do not consider the underlying biophysical basis of CETSA. We also detail what future technology developments are needed to enable CETSA-based optimization of structure-activity relationships and more appropriate comparisons of these data with functional or phenotypic responses. Finally, we describe ongoing developments in assay formats that allow for CETSA measurements at single-cell resolution, with the aspiration to allow differentiation in cellular target engagement between cells in co-cultures and more complex models, such as organoids and potentially even tissue.
Collapse
Affiliation(s)
- Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden.,Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
12
|
Validation of Cell-Based Assay for Quantification of Sesamol Uptake and Its Application for Measuring Target Exposure. Molecules 2019; 24:molecules24193522. [PMID: 31569436 PMCID: PMC6803937 DOI: 10.3390/molecules24193522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
The intracellular drug concentration is needed for determination of target exposure at the site of action regarding its pharmacological action and adverse effects. Sesamol is an antiproliferative molecule from Sesamum indicum with promising health benefits. We present a method for measuring the intracellular sesamol content using reverse-phase HPLC with a UV diode array in melanoma cells. Sesamol was completely resolved by isocratic elution (4.152 ± 0.008 min) with methanol/water (70%, v/v) through a 30 °C, 5-µm C-18 column and detection at 297 nm. The present assay offers high sensitivity, fast elution, and an accurate and linear nominal concentration range of 10–1000 ng/mL (R2 = 0.9972). The % accuracy of the sesamol quality control sample was −3.36% to 1.50% (bias) with a 0.84% to 5.28% relative standard deviation (RSD), representing high repeatability and high reproducibility. The % recovery was 94.80% to 99.29%, which determined that there was no loss of sesamol content during the sample preparation. The validated method was applied to monitor intracellular sesamol concentration after treatment from 5 min to 24 h. The remaining intracellular sesamol content was correlated with its antiproliferative effect (R2 = 0.9483). In conclusion, this assay demonstrated low manipulation, quick elution, and high sensitivity, precision, accuracy, and recovery, and it was successfully applied to the quantification of sesamol in target cells.
Collapse
|
13
|
Jain S, Jadav T, Sahu AK, Kalia K, Sengupta P. An Exploration of Advancement in Analytical Methodology for Quantification of Anticancer Drugs in Biomatrices. ANAL SCI 2019; 35:719-732. [PMID: 30905906 DOI: 10.2116/analsci.19r002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Significant numbers of newer anticancer drugs are regularly entering into the market worldwide to fight against different types of cancers. Analytical methodologies are being developed to quantitate those molecules in a variety of matrices during their drug development stages. Selection of biological matrices for developing bioanalytical methods is based on the mechanism of action, site of action, site of metabolism and route of excretion of the drugs or their metabolites. In this review, we have described the current scenario and advancements in bioanalytical techniques for quantification of different anticancer drugs in a variety of biomatrices with a special emphasis on sample preparation techniques. We have discussed and summarized different bioanalytical aspects for anticancer drugs, which can give direction to the researcher for choosing appropriate techniques for their quantification needs.
Collapse
Affiliation(s)
- Sonali Jain
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad
| |
Collapse
|
14
|
Quantitative Characterization of Olaparib in Nanodelivery System and Target Cell Compartments by LC-MS/MS. Molecules 2019; 24:molecules24050989. [PMID: 30862103 PMCID: PMC6429415 DOI: 10.3390/molecules24050989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/19/2023] Open
Abstract
Olaparib, an orally active inhibitor of poly(ADP-ribose)polymerase(PARP), is the drug of choice in the treatment of gBRCA1/2+ metastatic breast cancers. Unfortunately, Olaparib is poorly soluble with low bioavailability and tumor accumulation; nano-delivery could be a good choice to overcome these disadvantages. Here, a rapid and robust HPLC-ESI–MS/MS method for the quantification of Olaparib in ferritin nano-carriers led to the development of cells compartments, different tissues, plasma and urines and were validated to assess the effects of nano-delivery on cell compartment distribution of the drug. This method allows the quantification of Olaparib within the linear range of 0.1–10ng/mL in cells culture medium and cell cytoplasm, of 0.5–10ng/mL in nuclei, of 0.5–100ng/mL in plasma and urine and of 10–500ng/mL in tissue samples (kidney and liver). The limit of quantification was found to be 1.54 ng/mL for liver, 2.87 ng/mL for kidney, and lower than 0.48 ng/mL for all matrices. The method has been applied to quantify Ola encapsulated in ferritin-nano-carriers during the nano-drug development. The application of the method to human BRCA-mutated cell model to quantify the Olaparib distribution after incubation of free or ferritin-encapsulated Olaparib is also reported. This sensitive method allows the quantification of low concentrations of Olaparib released from nano-carriers in different cell compartments, leading to the determination of the drug release and kinetic profile of an essential parameter to validate nano-carriers.
Collapse
|