1
|
Li H, Li K, Zhang L, Wu Z, Yu H, Li H, Lv J, Zhang S, Yu J. The use of heat-treated whey protein isolate as a natural emulsifier in fat-filled whey powder with a pre-emulsification process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39584548 DOI: 10.1002/jsfa.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Fat-filled whey powder is a type of whey powder that has been developed in recent years and is widely applied in the dry processing of infant formula milk powder. The addition of sodium caseinate, dextrin, or modified starch as emulsifiers can also improve the stability of fat-filled whey powders. However, regulations forbid the use of these substances as raw materials in powdered infant formulas. The development of new natural emulsifiers is therefore essential. RESULTS A pre-emulsification process (P-EP) with heat-treated whey protein (HWP) increased the solubility of fat-filled whey powders, reduced the Turbiscan stability index value, and reduced surface fat content. Microstructural analysis showed that the fat-filled whey powder in the experimental group (≤35 wt% fat in dry matter) exhibited a more uniform particle distribution in comparison with a control group. CONCLUSION The P-EP with HWP as a natural emulsifier can improve the stability and emulsifying effect in fat-filled whey powders. The use of P-EP with HWP was a promising method for producing fat-filled whey powder without artificial additives, relying solely on milk-derived ingredients for a clean label. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ke Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Leilei Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhengyan Wu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Hongmei Yu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
2
|
Chittasupho C, Umsumarng S, Srisawad K, Arjsri P, Phongpradist R, Samee W, Tingya W, Ampasavate C, Dejkriengkraikul P. Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1. Pharmaceutics 2024; 16:751. [PMID: 38931873 PMCID: PMC11206841 DOI: 10.3390/pharmaceutics16060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, poses a significant global health threat. The spike glycoprotein S1 of the SARS-CoV-2 virus is known to induce the production of pro-inflammatory mediators, contributing to hyperinflammation in COVID-19 patients. Triphala, an ancient Ayurvedic remedy composed of dried fruits from three plant species-Emblica officinalis (Family Euphorbiaceae), Terminalia bellerica (Family Combretaceae), and Terminalia chebula (Family Combretaceae)-shows promise in addressing inflammation. However, the limited water solubility of its ethanolic extract impedes its bioavailability. In this study, we aimed to develop nanoparticles loaded with Triphala extract, termed "nanotriphala", as a drug delivery system. Additionally, we investigated the in vitro anti-inflammatory properties of nanotriphala and its major compounds, namely gallic acid, chebulagic acid, and chebulinic acid, in lung epithelial cells (A549) induced by CoV2-SP. The nanotriphala formulation was prepared using the solvent displacement method. The encapsulation efficiency of Triphala in nanotriphala was determined to be 87.96 ± 2.60% based on total phenolic content. In terms of in vitro release, nanotriphala exhibited a biphasic release profile with zero-order kinetics over 0-8 h. A549 cells were treated with nanotriphala or its active compounds and then induced with 100 ng/mL of spike S1 subunit (CoV2-SP). The results demonstrate that chebulagic acid and chebulinic acid are the active compounds in nanotriphala, which significantly reduced cytokine release (IL-6, IL-1β, and IL-18) and suppressed the expression of inflammatory genes (IL-6, IL-1β, IL-18, and NLRP3) (p < 0.05). Mechanistically, nanotriphala and its active compounds notably attenuated the expression of inflammasome machinery proteins (NLRP3, ASC, and Caspase-1) (p < 0.05). In conclusion, the nanoparticle formulation of Triphala enhances its stability and exhibits anti-inflammatory properties against CoV2-SP-induction. This was achieved by suppressing inflammatory mediators and the NLRP3 inflammasome machinery. Thus, nanotriphala holds promise as a supportive preventive anti-inflammatory therapy for COVID-19-related chronic inflammation.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (R.P.); (W.T.); (C.A.)
| | - Sonthaya Umsumarng
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (P.A.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (P.A.)
| | - Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (R.P.); (W.T.); (C.A.)
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand;
| | - Wipawan Tingya
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (R.P.); (W.T.); (C.A.)
| | - Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (R.P.); (W.T.); (C.A.)
| | - Pornngarm Dejkriengkraikul
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (P.A.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Li G, Yu Q, Li M, Zhang D, Yu J, Yu X, Xia C, Lin J, Han L, Huang H. Phyllanthus emblica fruits: a polyphenol-rich fruit with potential benefits for oral management. Food Funct 2023; 14:7738-7759. [PMID: 37529983 DOI: 10.1039/d3fo01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The fruit of Phyllanthus emblica Linn., which mainly grows in tropical and subtropical regions, is well-known for its medicine and food homology properties. It has a distinctive flavor, great nutritional content, and potent antioxidant, anti-inflammatory, anti-cancer and immunoregulatory effects. According to an increasing amount of scientific and clinical evidence, this fruit shows significant potential for application and development in the field of oral health management. Through the supplementation of vitamins, superoxide dismutase (SOD) and other nutrients reduce virulence expression of various oral pathogens, prevent tissue and mucosal damage caused by oxidative stress, etc. Phyllanthus emblica fruit can promote saliva secretion, regulate the balance of the oral microecology, prevent and treat oral cancer early, promote alveolar bone remodeling and aid mucosal wound healing. Thus, it plays a specific role in the prevention and treatment of common oral disorders, producing surprising results. For instance, enhancing the effectiveness of scaling and root planing in the treatment of periodontitis, relieving mucosal inflammation caused by radiotherapy for oral cancer, and regulating the blood glucose metabolism to alleviate oral discomfort. Herein, we systematically review the latest research on the use of Phyllanthus emblica fruit in the management of oral health and examine the challenges and future research directions based on its chemical composition and characteristics.
Collapse
Affiliation(s)
- Gefei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mengqi Li
- Pharmacy department, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohan Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chenxi Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haozhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| |
Collapse
|
4
|
Long XM, Li R, Liu HP, Xia ZX, Guo S, Gu JX, Zhang LJ, Fan Y, Chen ZK. Chemical fingerprint analysis and quality assessment of Tibetan medicine Triphala from different origins by high-performance liquid chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2023. [PMID: 37130825 DOI: 10.1002/pca.3228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/19/2023] [Accepted: 04/08/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Although the Tibetan medicine Triphala (THL) is widely used in many countries, insufficient progress has been made in quality control. OBJECTIVES The present study aimed to propose a methodology for quality control of THL based on HPLC fingerprinting combined with an orthogonal array design. METHODS Seven identified peaks were used as indicators to examine the effects of temperature, extraction time, and solid-liquid ratio on the dissolution of active ingredients in THL. Fingerprint analysis was performed on 20 batches of THL from four geographical areas (China, Laos, Thailand, and Vietnam). For further chemometric assessment, analysis techniques including similarity analysis, hierarchical clustering analysis, principal component analysis, and orthogonal partial least squares discrimination analysis (OPLS-DA) were used to classify the 20 batches of samples. RESULTS Fingerprints were established and 19 common peaks were identified. The similarity of 20 batches of THL was more than 0.9 and the batches were divided into two clusters. Four differential components of THL were identified based on OPLS-DA, including chebulinic acid, chebulagic acid, and corilagin. The optimal extraction conditions were an extraction time of 30 min, a temperature of 90°C, and a solid-liquid ratio of 30 mL/g. CONCLUSION HPLC fingerprinting combined with an orthogonal array design could be used for comprehensive evaluation and quality assessment of THL, providing a theoretical basis for further development and utilization of THL.
Collapse
Affiliation(s)
- Xiao-Mei Long
- Yunnan University of Chinese Medicine, Kunming, China
| | - Rong Li
- Yunnan University of Chinese Medicine, Kunming, China
| | - Hai-Peng Liu
- The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650041, China
| | - Zong-Xiao Xia
- Yunnan University of Chinese Medicine, Kunming, China
| | - Shuang Guo
- Yunnan University of Chinese Medicine, Kunming, China
| | - Jian-Xing Gu
- Yunnan University of Chinese Medicine, Kunming, China
| | - Li-Jun Zhang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Yuan Fan
- Yunnan University of Chinese Medicine, Kunming, China
- The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650041, China
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, 650021, China
| | - Zu-Kun Chen
- Yunnan University of Chinese Medicine, Kunming, China
- The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650041, China
| |
Collapse
|
5
|
Characterization of nettle leaves (Urtica dioica) as a novel source of protease for clotting dromedary milk by non-destructive methods. Colloids Surf B Biointerfaces 2022; 211:112312. [PMID: 34979497 DOI: 10.1016/j.colsurfb.2021.112312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023]
Abstract
This study investigates the valorization of the nettle leaves (Urtica dioica) as a novel source of a protease for clotting dromedary milk. The aim of this work is to study the effect of extracting pH on the enzymatic activity of nettle leaves extracts. The extraction was achieved in phosphate citrate buffer at different pH values (from 3 to 6.5) and the obtained extracts were used to coagulate dromedary milk. The characterization of the obtained extracts was carried out using non-destructive methods namely FT-MIR, fluorescence spectroscopy and turbiscan instrument. The extract prepared at pH = 4 had the highest proteolytic activity. The fluorescence and turbiscan measurements revealed a substantial effect of the pH value on chlorophyll residues extraction and stability, respectively. At an acidic environment (pH range of 3 - 4), the enzymatic extracts were unstable (with turbiscan stability index (TSI) values ~ 20), while at a nearly neutral pH value (pH range of 5 - 6.5), they were found to be more stable as indicated by the low TSI values ~ 1. The maximum milk-clotting activity (MCA) (0.021 U/mL) was obtained for the extracts prepared at pH = 4.
Collapse
|
6
|
Influence of the Dispersion Medium and Cryoprotectants on the Physico-Chemical Features of Gliadin- and Zein-Based Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14020332. [PMID: 35214063 PMCID: PMC8878396 DOI: 10.3390/pharmaceutics14020332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The evaluation of the physico-chemical features of nanocarriers is fundamental because the modulation of these parameters can influence their biological and in vivo fate. This work investigated the feasibility of saline, 5% w/v glucose and phosphate-buffered saline solution, as polar media for the development of nanoparticles made up of two vegetal proteins, zein from corn and gliadin from wheat, respectively. The physico-chemical features of the various systems were evaluated using dynamic and multiple light scattering techniques, and the results demonstrate that the 5% w/v glucose solution is a feasible medium to be used for their development. Moreover, the best formulations were characterized by the aforementioned techniques following the freeze-drying procedure. The aggregation of the zein nanoparticles prepared in water or glucose solution was prevented by using various cryoprotectants. Mannose confirmed its crucial role in the cryopreservation of the gliadin nanosystems prepared in both water and glucose solution. Sucrose and glucose emerged as additional useful excipients when they were added to gliadin nanoparticles prepared in a 5% glucose solution. Specifically, their protective effect was in the following order: mannose > sucrose > glucose. The results obtained when using specific aqueous media and cryoprotectants permitted us to develop stable zein or gliadin nanoparticles as suspension or freeze-dried formulations.
Collapse
|
7
|
Gayathri S, Chandrashekar H R, Fayaz S M. Phytotherapeutics Against Alzheimer's Disease: Mechanism, Molecular Targets and Challenges for Drug Development. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:409-426. [PMID: 34544351 DOI: 10.2174/1871527320666210920120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is inflating worldwide and is combatted by only a few approved drugs. At best, these drugs treat symptomatic conditions by targeting cholinesterase and N-methyl-D-aspartate receptors. Most of the clinical trials in progress are focused to develop disease-modifying agents that aim single targets. The 'one drug-one target' approach is failing in the case of Alzheimer's disease due to its labyrinth etiopathogenesis. Traditional medicinal systems like ayurveda uses a holistic approach encompassing legion of medicinal plants exhibiting multimodal activity. Recent advances in high-throughput technologies have catapulted the research in the arena of ayurveda, specifically in identifying plants with potent anti-Alzheimer's disease properties and their phytochemical characterization. Nonetheless, clinical trials of very few herbal medicines are in progress. This review is a compendium of Indian plants and ayurvedic medicines against Alzheimer's disease and their paraphernalia. A record of 230 plants that are found in India with anti-Alzheimer's disease potential and about 500 phytochemicals from medicinal plants has been solicited with the hope of exploring the unexplored. Further, the molecular targets of phytochemicals isolated from commonly used medicinal plants such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifolia and Withania somnifera have been reviewed with respect to their multidimensional property such as antioxidant, anti-inflammation, anti-aggregation, synaptic plasticity modulation, cognition and memory enhancing activity. In addition, the strengths, and challenges in ayurvedic medicine that limit its use as mainstream therapy is discussed and a framework for the development of herbal medicine has been proposed.
Collapse
Affiliation(s)
- Gayathri S
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| | - Fayaz S M
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| |
Collapse
|
8
|
Wei X, Luo C, He Y, Huang H, Ran F, Liao W, Tan P, Fan S, Cheng Y, Zhang D, Lin J, Han L. Hepatoprotective Effects of Different Extracts From Triphala Against CCl 4-Induced Acute Liver Injury in Mice. Front Pharmacol 2021; 12:664607. [PMID: 34290606 PMCID: PMC8287969 DOI: 10.3389/fphar.2021.664607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Background:Triphala is a traditional polyherbal formula used in Indian Ayurvedic and Chinese Tibetan medicine. A wide range of biological activities have been attributed to Triphala, but the impact of various extraction methods on efficacy has not been determined. Purpose: The study aimed to evaluate Triphala extracts obtained by various methods for their hepatoprotective effects and molecular mechanisms in a mouse model of carbon tetrachloride (CCl4)-induced liver injury. Methods: HPLC fingerprinting was used to characterize the chemical characteristics of Triphala extracts obtained by (a) 0.5 h ultrasonication, (b) 2 h reflux, and (c) 4 h reflux. Hepatoprotective efficacy was evaluated in a mouse model of CCl4-induced liver damage. Serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured, as well as the liver antioxidant and inflammatory markers malondialdehyde superoxide dismutase glutathione peroxidase (GSH-Px), TNF-α, and IL-6. Gene and protein expression of Nrf-2 signaling components Nrf-2, heme oxygenase (HO-1), and NADPH Quinone oxidoreductase (NQO-1) in liver tissue were evaluated by real-time PCR and western blotting. Results: Chemical analysis showed a clear difference in content between extracts produced by ultrasonic and reflux methods. The pharmacological analysis showed that all three Triphala extracts reduced ALT, AST, MDA, TNF-α, and IL-6 levels and increased SOD and GSH-Px. Triphala extracts also induced transcript and protein expression of Nrf-2, HO-1, and NQO-1. Conclusion: Triphala extract prevents CCl4-induced acute liver injury. The ultrasonic extract of Triphala was most effective, suggesting that hepatoprotection may be related to the larger tannins via activation of Nrf-2 signaling.
Collapse
Affiliation(s)
- Xichuan Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, China
| | - Sanhu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Yuan Cheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Patil S, Sarode SC, Ashi H, Ali Baeshen H, Thirumal Raj A, Awan KH, Gondivkar S, Ramchandra Gadbail A, Sarode GS. Triphala extract negates arecoline-induced senescence in oral mucosal epithelial cells in vitro. Saudi J Biol Sci 2021; 28:2223-2228. [PMID: 33911939 PMCID: PMC8071809 DOI: 10.1016/j.sjbs.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Background Arecoline found in areca nut causes oral submucous fibrosis. Triphala is an Ayurvedic medicinal preparation used to improve overall physical wellness that has also been shown to improve oral health. Objectives To assess the activity of Triphala extract on arecoline-induced senescence in oral mucosal epithelial cells in vitro. Materials and methods Oral mucosal epithelial cells were isolated and cultured in vitro. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to assess the viability of treated cells, while senescence was assessed by senescence-associated-β-galactosidase staining. Cell surface marker expression was analyzed by flow cytometry. Finally, real-time quantitative polymerase chain reaction was performed to examine gene expression levels. Results Triphala extract (5 µg/mL) reversed the cell senescence activity of arecoline, as evidenced by reduced β-galactosidase activity, increased Ki-67 marker expression, and reduced expression of senescence-related genes p16 and p21. Conclusion Triphala extract helped to reduce the pathological effects of arecoline-induced pathogenesis. Clinical relevance. Arecoline found in the areca nut causes oral pathological conditions including oral submucous fibrosis. Our results showed that Triphala counteracted the adverse effects of arecoline, in particular, negating senescence in oral mucosal epithelial cells. As a translational effect, Triphala treatment could restore normal epithelial thickness in oral submucous fibrosis, thus reducing the clinical severity of the disease. This reestablishment of oral homeostasis would help to improve oral health-related quality of life in patients with oral submucous fibrosis.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology College of Dentistry, Jazan University, Saudi Arabia
| | - Sachin C Sarode
- Department of Oral Pathology & Microbiology, Dr. D.Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Heba Ashi
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hosam Ali Baeshen
- Consultant in Orthodontics, Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Kamran H Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, United States
| | - Shailesh Gondivkar
- Department of Oral Medicine and Radiology, Government Dental College & Hospital, Nagpur, India
| | - Amol Ramchandra Gadbail
- Department of Dentistry, Indira Gandhi Government Medical College and Hospital, Nagpur, India
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
10
|
Li CY, Niu M, Liu YL, Tang JF, Chen W, Qian G, Zhang MY, Shi YF, Lin JZ, Li XJ, Li RS, Xiao XH, Li GH, Wang JB. Screening for Susceptibility-Related Factors and Biomarkers of Xianling Gubao Capsule-Induced Liver Injury. Front Pharmacol 2020; 11:810. [PMID: 32547402 PMCID: PMC7274038 DOI: 10.3389/fphar.2020.00810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Although increasing reports from the literature on herbal-related hepatotoxicity, the identification of susceptibility-related factors and biomarkers remains challenging due to idiosyncratic drug-induced liver injury (IDILI). As a well-known Chinese medicine prescription, Xianling Gubao Capsule (XLGB) has attracted great attention due to reports of potential liver toxicity. But the mechanism behind it is difficult to determine. In this paper, we found that XLGB-induced liver injury belongs to IDILI through the analysis of clinical liver injury cases. In toxicological experiment assessment, co-exposure to XLGB and non-toxic dose of lipopolysaccharide (LPS) could cause evident liver injury as manifested by significantly increased plasma alanine aminotransferase activity and obvious liver histological damage. However, it failed to induce observable liver injury in normal rats, suggesting that mild immune stress may be a susceptibility factor for XLGB-induced idiosyncratic liver injury. Furthermore, plasma cytokines were determined and 15 cytokines (such as IL-1β, IFN-γ, and MIP-2α etc) were acquired by receiver operating characteristic (ROC) curves analysis. The expression of these 15 cytokines in LPS group was significantly up-regulated in contrast to the normal group. Meanwhile, the metabolomics profile showed that mild immune stress caused metabolic reprogramming, including sphingolipid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. 8 potential biomarkers (such as sphinganine, glycerophosphoethanolamine, and phenylalanine etc.) were identified by correlation analysis. Therefore, these results suggested that intracellular metabolism and immune changes induced by mild immune stress may be important susceptibility mechanisms for XLGB IDILI.
Collapse
Affiliation(s)
- Chun-Yu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ya-Lei Liu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Fa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Qian
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Yu Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Fei Shi
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Zhi Lin
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing-Jie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guo-Hui Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Wei XC, Cao B, Luo CH, Huang HZ, Tan P, Xu XR, Xu RC, Yang M, Zhang Y, Han L, Zhang DK. Recent advances of novel technologies for quality consistency assessment of natural herbal medicines and preparations. Chin Med 2020; 15:56. [PMID: 32514289 PMCID: PMC7268247 DOI: 10.1186/s13020-020-00335-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
Quality consistency is one of the basic attributes of medicines, but it is also a difficult problem that natural medicines and their preparations must face. The complex chemical composition and comprehensive pharmacological action of natural medicines make it difficult to simply apply the commonly used evaluation methods in chemical drugs. It is thus urgent to explore the novel evaluation methods suitable for the characteristics of natural medicines. With the rapid development of analytical techniques and the deepening understanding of the quality of natural herbs, increasing numbers of researchers have proposed many new ideas and technologies. This review mainly focuses on the basic principles, technical characteristics and application examples of the chemical evaluation, biological evaluation methods and their combination in quality consistency evaluation of natural herbs. On the bases of chemical evaluation and clinical efficacy, new methods reflecting their pharmacodynamic mechanism and safety characteristics will be developed, and gradually towards accurate quality control, to achieve the goal of quality consistency. We hope that this manuscript can provide new ideas and technical references for the quality consistency of natural drugs and their preparations, thus better guarantee their clinical efficacy and safety, and better promote industrial development.
Collapse
Affiliation(s)
- Xi-Chuan Wei
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Bo Cao
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Chuan-Hong Luo
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Hao-Zhou Huang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, 610041 China
| | - Xiao-Rong Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Run-Chun Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Yi Zhang
- Chengdu Food and Drug Control, Chengdu, 610000 China
| | - Li Han
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ding-Kun Zhang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| |
Collapse
|
12
|
Li P, Tian Y, Ke XM, Tan QC, Han X, Ma HY, Pei J, Lin JZ, Xu RC, Han L, Yang M, Zhang DK. Amphiphilic Block Copolymers: A Novel Substance for Bitter-Masking in Aqueous Solutions. Mol Pharm 2020; 17:1586-1595. [PMID: 32186879 DOI: 10.1021/acs.molpharmaceut.9b01296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is a challenging task to suppress the bitterness of liquid preparations, especially for children. Bitter molecules are highly dispersible in liquids, leading to a strong and instant stimulation of the bitter receptors. At present, there is no effective way to correct this issue except for adding sweeteners, resulting in an unsatisfying taste. Based on the three-point contact theory, which is a universally accepted mechanism of bitterness formation, a new idea and application of amphiphilic block copolymers (ABCs) for bitterness suppression was proposed for the first time. We found that ABCs could widely inhibit the bitterness of four typical bitter substances. The mechanism is that ABCs self-assemble to form association colloids, which attract bitter components and reduce their distribution in the molecular form in solution. The bitter components were demonstrated to automatically embed in the spiral hydrophobic cavity of the hydrophobic chain of the ABCs, and their special interaction dispersed the positive electrostatic potential of bitter groups. The combination did not affect the pharmacokinetic parameters and pharmacodynamics of bitter drugs. These findings highlight the novel application of ABCs for the inhibition of bitterness and illuminate the underlying inhibition mechanisms.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yin Tian
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiu-Mei Ke
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,School of Basic Medical Sciences, Jiujiang University, Jiujiang 332005, China
| | - Qing-Chu Tan
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xue Han
- Shool of Pharmacy, Chengdu Medical College, Chengdu 610083, China
| | - Hong-Yan Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Zhi Lin
- Central Laboratory, The Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Run-Chun Xu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Han
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ding-Kun Zhang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol Res 2020; 155:104738. [PMID: 32151681 DOI: 10.1016/j.phrs.2020.104738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Breast cancer remains the leading cause of cancer-related death among women worldwide, and its incidence is also increasing. High recurrence rate and metastasis rate are the key causes of poor prognosis and death. It is suggested that abnormal glycosylation plays an important role in the growth, invasion, metastasis and resistance to therapy of breast cancer cells. Meanwhile, it can be used as the biomarkers for the early detection and prognosis of breast cancer and the potential attractive targets for drug treatment. However, only a few attentions have been paid to the molecular mechanism of abnormal glycosylation in the epithelial-mesenchymal transition (EMT) of breast cancer cells and the related intervention of drugs. This manuscript thus investigated the relationship between abnormal glycosylation, the EMT, and breast cancer metastasis. Then, the process of abnormal glycosylation, the classification and their molecular regulatory mechanisms of breast cancer were analyzed in detail. Last, potential drugs are introduced in different categories, which are expected to reverse or intervene the abnormal glycosylation of breast cancer. This review is conducive to an in-depth understanding of the metastasis and drug resistance of breast cancer cells, which will provide new ideas for the clinical regulation of glycosylation and related drug treatments in breast cancer.
Collapse
|
14
|
Kim JH, Lee K, Jerng UM, Choi G. Global Comparison of Stability Testing Parameters and Testing Methods for Finished Herbal Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7348929. [PMID: 31772599 PMCID: PMC6854946 DOI: 10.1155/2019/7348929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022]
Abstract
Quality consistencies of drug products are essential to guarantee expected therapeutic activities, and achieving consistent qualities for herbal products is challenging because of their physicochemical complexities and inherent variabilities. Regulatory authorities worldwide have issued regulations or guidelines for stability testing parameters and testing procedures for herbal products stored in proposed conditions. These testing parameters and methods for finished herbal products are detailed in the guidelines and regulations issued by 5 global authorities and 15 countries, that is, the Association of Southeast Asian Nations (ASEAN), the Eurasian Economic Commission (EEC), the European Medicines Agency (EMA), the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), the World Health Organization (WHO), Australia, Brazil, Canada, China, Egypt, Hong Kong, India, Japan, Kenya, Republic of Korea, the Philippines, Qatar, Switzerland, USA, and Zambia. Physical, chemical, and biological stability tests were compared between different dosage forms, and the testing conditions (temperature and relative humidity) used for long-term, accelerated, or intermediate testing were included in the guidelines and regulations. Comparisons of global regulations and guidelines addressing stability testing are fundamental for the international harmonization of herbal product quality assessments. This review aids understanding of the global situation regarding the testing of herbal product quality with respect to storages.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ui Min Jerng
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju 26339, Republic of Korea
| | - Goya Choi
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
15
|
Spectrum-Effect Relationship between UPLC Fingerprints and Antilung Cancer Effect of Si Jun Zi Tang. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7282681. [PMID: 31662780 PMCID: PMC6778903 DOI: 10.1155/2019/7282681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 08/20/2019] [Indexed: 01/05/2023]
Abstract
Nowadays, an increasing number of patients are seriously affected by lung cancer. Si Jun Zi Tang (SJZ), a four-herb Chinese medicine formula first described approximately one thousand years ago, is often prescribed for cancer patients as a complementary therapy. But the research on the effective materials for treating cancer using SJZ was rarely reported. To solve this problem, we evaluate the inhibitory effect of 10 samples of SJZ from different origins on PC9 cells. Ultraperformance liquid chromatography (UPLC) and hierarchical cluster analysis (HCA) along with canonical correlation analysis (CCA) and bioactivity validation were used to investigate the underlying correlation between the chemical ingredients and the antiproliferative effect of SJZ on PC9 cells. The evaluation indicated that 10 batches of SJZ could inhibit proliferation of PC9 cells and there was a notable difference in pharmacological activity between the different SJZ samples. The results of CCA and multivariate statistical analysis indicated that ginsenoside Ro and ginsenoside Rg1 might be active constituents of the antiproliferative effect as determined by spectrum-effect relationships. The results showed that bioassay and spectrum-effect relationships are suitable to associate sample quality with the active ingredient associated with clinical efficacy. And our finding would provide foundation and further understanding of the quality evaluation of traditional Chinese medicine decoction.
Collapse
|