1
|
Baghdadi ME, Emamzadeh R, Nazari M, Michelini E. Development of a bioluminescent homogenous nanobody-based immunoassay for the detection of prostate-specific antigen (PSA). Enzyme Microb Technol 2024; 180:110474. [PMID: 38944901 DOI: 10.1016/j.enzmictec.2024.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer is the most prevalent cancer in men. At present, the diagnosis and screening of prostate cancer rely on the essential biomarker known as prostate-specific antigen (PSA). The main purpose of this study was to develop a novel immunoassay for the detection of PSA based on a tri-part split-nanoluciferase system and a nanobody targeting PSA. In our approach, two small components of the split-nanoluciferase, referred to as β9 and β10, were individually fused to two anti-PSA nanobodies, N7 and N23. When these proteins bind to PSA and in the presence of the third nanoluciferase component, called Δ11S, the split-nanoluciferase components are brought into close proximity, facilitating the reassembly of the active nanoluciferase and activation of luminescence. These proteins were expressed in a bacterial expression system, purified, and employed for the intended immunoassay. The developed immunoassay demonstrated the capability to sensitively detect PSA within a linear range from 1.0 to 20.0 ng/mL with LOD of 0.4 ng/mL, and the results obtained through this immunoassay agreed with those derived from the ELISA. Our study indicates that the homogeneous immunoassay developed with nanobodies exhibits remarkable specificity for PSA and can serve as a reliable, fast, and user-friendly test for detecting PSA.
Collapse
Affiliation(s)
- Mahmoud Esraa Baghdadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahboobeh Nazari
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Elisa Michelini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Selmi 2, Bologna 40126, Italy
| |
Collapse
|
2
|
Petrenko VA. Phage Display's Prospects for Early Diagnosis of Prostate Cancer. Viruses 2024; 16:277. [PMID: 38400052 PMCID: PMC10892688 DOI: 10.3390/v16020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Prostate cancer (PC) is the second most diagnosed cancer among men. It was observed that early diagnosis of disease is highly beneficial for the survival of cancer patients. Therefore, the extension and increasing quality of life of PC patients can be achieved by broadening the cancer screening programs that are aimed at the identification of cancer manifestation in patients at earlier stages, before they demonstrate well-understood signs of the disease. Therefore, there is an urgent need for standard, sensitive, robust, and commonly available screening and diagnosis tools for the identification of early signs of cancer pathologies. In this respect, the "Holy Grail" of cancer researchers and bioengineers for decades has been molecular sensing probes that would allow for the diagnosis, prognosis, and monitoring of cancer diseases via their interaction with cell-secreted and cell-associated PC biomarkers, e.g., PSA and PSMA, respectively. At present, most PSA tests are performed at centralized laboratories using high-throughput total PSA immune analyzers, which are suitable for dedicated laboratories and are not readily available for broad health screenings. Therefore, the current trend in the detection of PC is the development of portable biosensors for mobile laboratories and individual use. Phage display, since its conception by George Smith in 1985, has emerged as a premier tool in molecular biology with widespread application. This review describes the role of the molecular evolution and phage display paradigm in revolutionizing the methods for the early diagnosis and monitoring of PC.
Collapse
Affiliation(s)
- Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Ionescu RE. Ultrasensitive Electrochemical Immunosensors Using Nanobodies as Biocompatible Sniffer Tools of Agricultural Contaminants and Human Disease Biomarkers. MICROMACHINES 2023; 14:1486. [PMID: 37630022 PMCID: PMC10456424 DOI: 10.3390/mi14081486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Nanobodies (Nbs) are known as camelid single-domain fragments or variable heavy chain antibodies (VHH) that in vitro recognize the antigens (Ag) similar to full-size antibodies (Abs) and in vivo allow immunoreactions with biomolecule cavities inaccessible to conventional Abs. Currently, Nbs are widely used for clinical treatments due to their remarkably improved performance, ease of production, thermal robustness, superior physical and chemical properties. Interestingly, Nbs are also very promising bioreceptors for future rapid and portable immunoassays, compared to those using unstable full-size antibodies. For all these reasons, Nbs are excellent candidates in ecological risk assessments and advanced medicine, enabling the development of ultrasensitive biosensing platforms. In this review, immobilization strategies of Nbs on conductive supports for enhanced electrochemical immune detection of food contaminants (Fcont) and human biomarkers (Hbio) are discussed. In the case of Fcont, the direct competitive immunoassay detection using coating antigen solid surface is the most commonly used approach for efficient Nbs capture which was characterized with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) when the signal decays for increasing concentrations of free antigen prepared in aqueous solutions. In contrast, for the Hbio investigations on thiolated gold electrodes, increases in amperometric and electrochemical impedance spectroscopy (EIS) signals were recorded, with increases in the antigen concentrations prepared in PBS or spiked real human samples.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie CS 42060, 10004 Troyes, France
| |
Collapse
|
4
|
Dhehibi A, Allaoui A, Raouafi A, Terrak M, Bouhaouala-Zahar B, Hammadi M, Raouafi N, Salhi I. Nanobody-Based Sandwich Immunoassay for Pathogenic Escherichia coli F17 Strain Detection. BIOSENSORS 2023; 13:299. [PMID: 36832065 PMCID: PMC9953962 DOI: 10.3390/bios13020299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Rapid and specific detection of pathogenic bacteria in fecal samples is of critical importance for the diagnosis of neonatal diarrhea in veterinary clinics. Nanobodies are a promising tool for the treatment and diagnosis of infectious diseases due to their unique recognition properties. In this study, we report the design of a nanobody-based magnetofluorescent immunoassay for the sensitive detection of pathogenic Escherichia coli F17-positive strains (E. coli F17). For this, a camel was immunized with purified F17A protein from F17 fimbriae and a nanobody library was constructed by phage display. Two specific anti-F17A nanobodies (Nbs) were selected to design the bioassay. The first one (Nb1) was conjugated to magnetic beads (MBs) to form a complex capable of efficiently capturing the target bacteria. A second horseradish peroxidase (HRP)-conjugated nanobody (Nb4) was used for detection by oxidizing o-phenylenediamine (OPD) to fluorescent 2,3-diaminophenazine (DAP). Our results show that the immunoassay recognizes E. coli F17 with high specificity and sensitivity, with a detection limit of 1.8 CFU/mL in only 90 min. Furthermore, we showed that the immunoassay can be applied to fecal samples without pretreatment and remains stable for at least one month when stored at 4 °C.
Collapse
Affiliation(s)
- Asma Dhehibi
- Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine 4119, Tunisia
| | - Abdelmounaaim Allaoui
- Laboratory of Microbiology, African Genome Centre, Mohammed VI Polytechnic University (UM6P), Lot 660—Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Amal Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Mohammed Terrak
- InBioS-Centre for Protein Engineering, University of Liege, B-4000 Liege, Belgium
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Theranostic Applications (LR20IPT01), Place Pasteur, BP74, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Mohamed Hammadi
- Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine 4119, Tunisia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Imed Salhi
- Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine 4119, Tunisia
| |
Collapse
|
5
|
Su J, Liu X, Guo S, Zhang J, Wei X, Li X. Nanobodies: a new potential for prostate cancer treatment. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04515-y. [PMID: 36680579 DOI: 10.1007/s00432-022-04515-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/02/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND The current progressive increase in the cancer burden of prostate cancer requires the exploration of new diagnostic and therapeutic approaches. Nanobodies are single-domain antibodies with the advantages of small size, high stability, easy processing and modification, which are increasingly used in the treatment of many types of cancer. METHODS This review analyzed the relevant literature in PubMed and other databases. RESULT In the retrieved literature, nanobodies are widely used in the treatment of prostate cancer. The preparation of nanobodies targeting PSA or PSMA is straightforward. For diagnostic purposes, nanobodies can be used in the preparation of biosensors for more sensitive identification of prostate cancer; for therapeutic purposes, nanobodies are used in the preparation of immunotoxic and ADC drugs. Preclinical in vivo and in vitro experiments have shown that this therapeutic approach is feasible. This article is a review of the above to provide new ideas for the treatment of prostate cancer. CONCLUSION Compared with traditional antibodies, nano-antibodies have the advantages of small size, high stability, and high penetration. These advantages make nano-antibodies worthy to be widely used. Current studies have shown that nanobodies have advantages and future in the diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Jianfei Su
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodi Liu
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanqi Guo
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingxian Zhang
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqin Wei
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojiang Li
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Szunerits S, Pagneux Q, Swaidan A, Mishyn V, Roussel A, Cambillau C, Devos D, Engelmann I, Alidjinou EK, Happy H, Boukherroub R. The role of the surface ligand on the performance of electrochemical SARS-CoV-2 antigen biosensors. Anal Bioanal Chem 2022; 414:103-113. [PMID: 33616686 PMCID: PMC7897554 DOI: 10.1007/s00216-020-03137-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023]
Abstract
Point-of-care (POC) technologies and testing programs hold great potential to significantly improve diagnosis and disease surveillance. POC tests have the intrinsic advantage of being able to be performed near the patient or treatment facility, owing to their portable character. With rapid results often in minutes, these diagnostic platforms have a high positive impact on disease management. POC tests are, in addition, advantageous in situations of a shortage of skilled personnel and restricted availability of laboratory-based analytics. While POC testing programs are widely considered in addressing health care challenges in low-income health systems, the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections could largely benefit from fast, efficient, accurate, and cost-effective point-of-care testing (POCT) devices for limiting COVID-19 spreading. The unrestrained availability of SARS-CoV-2 POC tests is indeed one of the adequate means of better managing the COVID-19 outbreak. A large number of novel and innovative solutions to address this medical need have emerged over the last months. Here, we critically elaborate the role of the surface ligands in the design of biosensors to cope with the current viral outbreak situation. Their notable effect on electrical and electrochemical sensors' design will be discussed in some given examples. Graphical abstract.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Abir Swaidan
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Vladyslav Mishyn
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020, Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020, Marseille, France
| | - David Devos
- Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, LICEND, 59000, Lille, France
| | - Ilka Engelmann
- Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, 59000, Lille, France
| | | | - Henri Happy
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
7
|
Zhang X, Liao X, Wu Y, Xiong W, Du J, Tu Z, Yang W, Wang D. A sensitive electrochemical immunosensing interface for label-free detection of aflatoxin B 1 by attachment of nanobody to MWCNTs-COOH@black phosphorene. Anal Bioanal Chem 2021; 414:1129-1139. [PMID: 34719746 DOI: 10.1007/s00216-021-03738-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
A label-free electrochemical immunosensor has advantages of real-time and rapid detection, but it is weak in detection of small molecular toxins such as aflatoxin B1 (AFB1). The greatest obstacle to achieving this is that small molecules bound to a common immunosensing interface cannot interfere with electron transfer effectively and the detection signal is so weak. Therefore, a sensitive electrochemical immunosensing interface for small molecules is urgently needed. Here, we employed functionalized black phosphorene (BP) as electrode modification materials and anti-AFB1 nanobody (Nb) as a biorecognition element to construct a very sensitive immunosensing interface towards small molecular AFB1. The BP functionalized by carboxylic multi-walled carbon nanotubes (MWCNTs-COOH) via P-C bonding behaved with a satisfactory stability and good catalytic performance for the ferricyanide/ferrocyanide probe, while the small-sized Nb showed good compatibility with the functionalized BP and also had less influence on electron transfer than monoclonal antibody (mAb). Expectedly, the as-prepared immunosensing interface was very sensitive to AFB1 detection by differential pulse voltammetry (DPV) in a redox probe system. Under optimized conditions, a linear range from 1.0 pM to 5.0 nM and an ultralow detection limit of 0.27 pM were obtained. Additionally, the fabricated immunosensor exhibited satisfactory stability, specificity, and reproducibility. The strategy proposed here provides a more reliable reference for label-free sensing of small molecules in food samples.
Collapse
Affiliation(s)
- Xue Zhang
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits &Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xiaoning Liao
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits &Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yongfa Wu
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits &Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanming Xiong
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits &Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Juan Du
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Wuying Yang
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Dan Wang
- Research Center of Mycotoxin, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China.
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
8
|
Pillay TS, Muyldermans S. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Ann Lab Med 2021; 41:549-558. [PMID: 34108282 PMCID: PMC8203438 DOI: 10.3343/alm.2021.41.6.549] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies have proven to be central in the development of diagnostic methods over decades, moving from polyclonal antibodies to the milestone development of monoclonal antibodies. Although monoclonal antibodies play a valuable role in diagnosis, their production is technically demanding and can be expensive. The large size of monoclonal antibodies (150 kDa) makes their re-engineering using recombinant methods a challenge. Single-domain antibodies, such as “nanobodies,” are a relatively new class of diagnostic probes that originated serendipitously during the assay of camel serum. The immune system of the camelid family (camels, llamas, and alpacas) has evolved uniquely to produce heavy-chain antibodies that contain a single monomeric variable antibody domain in a smaller functional unit of 12–15 kDa. Interestingly, the same biological phenomenon is observed in sharks. Since a single-domain antibody molecule is smaller than a conventional mammalian antibody, recombinant engineering and protein expression in vitro using bacterial production systems are much simpler. The entire gene encoding such an antibody can be cloned and expressed in vitro. Single-domain antibodies are very stable and heat-resistant, and hence do not require cold storage, especially when incorporated into a diagnostic kit. Their simple genetic structure allows easy re-engineering of the protein to introduce new antigen-binding characteristics or attach labels. Here, we review the applications of single-domain antibodies in laboratory diagnosis and discuss the future potential in this area.
Collapse
Affiliation(s)
- Tahir S Pillay
- Department of Chemical Pathology and NHLS- Tshwane Academic Division, University of Pretoria, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa.,Department of Chemical Pathology, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
9
|
Tang JB, Yang HM, Gao XY, Zeng XZ, Wang FS. Directional immobilization of antibody onto magnetic nanoparticles by Fc-binding protein-assisted photo-conjugation for high sensitivity detection of antigen. Anal Chim Acta 2021; 1184:339054. [PMID: 34625272 DOI: 10.1016/j.aca.2021.339054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022]
Abstract
Immobilized antibodies with site-specific, oriented, and covalent pattern are of great significance to improve the sensitivity of solid-phase immunoassay. Here, we developed a novel antibody conjugation strategy that can immobilize antibodies in a directional and covalent manner. In this study, an IgG-Fc binding protein (Z domain) carrying a site-specific photo-crosslinker, p-benzoyl-L-phenylalanine, and a single C-terminal cysteine (Cys) handle was genetically engineered. Upon UV irradiation, the chimeric protein enables the Cys handle to couple with the native antibody in Fc-specific and covalent conjugation pattern, resulting in a novel thiolated antibody. Thus, an approach for the covalent, directional immobilization of antibodies to maleimide-modified magnetic nanoparticles (MNPs) was developed on the basis of the crosslinking between sulfhydryl and maleimide groups. The antibody-conjugated MNPs were applied in MNP-based enzyme-linked immunosorbent assay (ELISA) for the detection of carcinoembryonic antigen. The MNP-based ELISA presented a quantification linear range of 0.1-100 ng mL-1 and detection limit of 0.02 ng mL-1, which was approximately 100 times more sensitive than the traditional microplate ELISA (2.0 ng mL-1). Thus, the proposed antibody immobilization approach can be used in surface functionalization for the sensitive detection of various biomarkers.
Collapse
Affiliation(s)
- Jin-Bao Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Ming Yang
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiao-Yi Gao
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xian-Zhong Zeng
- Department of Biochemical Drugs, School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Hosseindokht M, Bakherad H, Zare H. Nanobodies: a tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell Int 2021; 21:580. [PMID: 34717636 PMCID: PMC8557569 DOI: 10.1186/s12935-021-02285-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/21/2021] [Indexed: 02/02/2023] Open
Abstract
Background Prostate cancer is one of the most common cancers in men and its incidence has increased dramatically in the last decade. This increase in the detection of this type of cancer is based more on the detection of PSA or PSMA antigens as the most important specific antigens of this cancer, and this early detection has greatly helped in the more optimal treatment of patients. Main body Many methods have been proposed by researchers for early detection of prostate cancer, but most of the methods used today to detect this type of cancer have been using classical antibodies. Although classical antibodies are able to detect tumor cell markers, but instability, large size, costly and laborious production, and random immobility characteristics, causes many problems. Nanobodies or VHHs, which are derived from camel heavy chain antibodies, have special advantages and have eliminated the disadvantages of classical antibodies which makes them attractive to use in biosensors and cancer diagnostic kits. The research that has been done so far shows that the introduced nanobodies are created for the purpose of targeting, detecting and sensing prostate cancer cells with two main purposes. The first is the efficient identification of prostate cancer and the second is the elimination of cancer cells. Conclusion Research shows the use of specific nanobodies against prostate cancer antigens in the design of biosensors and target therapy will be very interesting. In this review article, these nanobodies are introduced and categorized based on their performance.
Collapse
Affiliation(s)
- Maryam Hosseindokht
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Zare
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
The electrochemical immunosensor for detection of prostatic specific antigen using quince seed mucilage-GNPs-SNPs as a green composite. Bioelectrochemistry 2021; 139:107744. [PMID: 33517204 DOI: 10.1016/j.bioelechem.2021.107744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Prostatic specific antigen (PSA) is known as a biomarker of prostate cancer. In males, prostate cancer is ranked second as leading cause of death out of more than 200 different cancer types1. As a result, early detection of cancer can cause a significant reduction in mortality. PSA concentration directly is related to prostate cancer, so normal serum concentrations in healthy means are 4 ng and above 10 ng as abnormal concentration. Therefore, PSA determination is important to cancer progression. In this study, a free label electrochemical immunosensor was prepared based on a new green platform for the quantitative detection of the PSA. The used platform was formed from quince seed mucilage containing green gold and silver nanoparticles and synthesized by the green method (using Calendula officinalis L. extract). The quince mucilage biopolymer was used as a sub layer to assemble nanoparticles and increase the electrochemical performance. This nanocomposite was used to increase the antibody loading and accelerate the electron transfer, which can increase the biosensor sensitivity. The antibodies of the PSA biomarker were successfully incubated on the green platform. Under the optimal conditions, the electrochemical impedance spectroscopy (EIS) was proportional to the PSA biomarker concentration from 0.1 pg mL-1 to 100 ng mL-1 with low limit of detection (0.078 pg mL-1). The proposed green immunosensor exhibited high stability and reproducibility, which can be used for the quantitative assay of the PSA biomarker in clinical analyses. The results of real sample analysis presented another tool for the PSA biomarker detection in physiologic models.
Collapse
|
13
|
Bastos-Soares EA, Sousa RMO, Gómez AF, Alfonso J, Kayano AM, Zanchi FB, Funes-Huacca ME, Stábeli RG, Soares AM, Pereira SS, Fernandes CFC. Single domain antibodies in the development of immunosensors for diagnostics. Int J Biol Macromol 2020; 165:2244-2252. [DOI: 10.1016/j.ijbiomac.2020.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
14
|
Lin Y, Chen Z, Hu C, Chen ZS, Zhang L. Recent progress in antitumor functions of the intracellular antibodies. Drug Discov Today 2020; 25:1109-1120. [DOI: 10.1016/j.drudis.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
15
|
Liu X, Wen Y, Wang W, Zhao Z, Han Y, Tang K, Wang D. Nanobody-based electrochemical competitive immunosensor for the detection of AFB1 through AFB1-HCR as signal amplifier. Mikrochim Acta 2020. [DOI: https://doi.org/10.1007/s00604-020-04343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Liu X, Wen Y, Wang W, Zhao Z, Han Y, Tang K, Wang D. Nanobody-based electrochemical competitive immunosensor for the detection of AFB 1 through AFB 1-HCR as signal amplifier. Mikrochim Acta 2020; 187:352. [PMID: 32462392 DOI: 10.1007/s00604-020-04343-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
A novel nanobody (Nb)-based voltammetric immunosensor coupled with horseradish peroxidase concatemer-modified hybridization chain reaction (HRP-HCR) signal amplifying system is described to realize the rapid and ultrasensitive detection of AFB1. To design such an immunoassay, anti-AFB1 Nbs with smaller molecular size were coated densely onto the surface of Au nanoparticle-tungsten disulfide-multi-walled carbon nanotubes (AuNPs/WS2/MWCNTs) functional nanocomposites as an effective molecular recognition element, whereas AFB1-streptavidin (AFB1-SA) conjugates were ingeniously bound with biotinylated HCR dsDNA nanostructures as the competitor, amplifier, and signal report element. In the presence of AFB1 targets, a competitive immunoreaction was performed between the analyte and AFB1-SA-labeled HCR (AFB1-HCR) platform. Upon the addition of SA-modified polyHRP (SA-polyHRP), AFB1-HCR nanostructures containing abundant biotins were allowed to cross-link to a quantity of HRP by streptavidin-biotin chemistry for signal amplification and signal conversion. Under optimal conditions, the immunosensor displayed a good linear correlation toward AFB1 ranging from 0.5 to 10 ng mL-1 with a sensitivity of 2.7 μA • (mL ng-1) and an ultralow limit of detection (LOD) of 68 fg mL-1. The specificity test showed that the AFB1 immunosensor had no obvious cross-reaction with OTA, DON, ZEN, and FB1. The signal of this sensor decreased by 10.18% in 4 weeks indicating satisfactory stability, and its intra- and inter-laboratory reproducibility was 3.42~10.35% and 4.03%~12.11%, respectively. This biosensing system will open up new opportunities for the detection of AFB1 in food safety and environmental analysis and extend a wide range of applications in the analysis of other small molecules. Graphical abstract.
Collapse
Affiliation(s)
- Xin Liu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zitong Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yi Han
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Kaijie Tang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dan Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
17
|
Ehzari H, Amiri M, Safari M. Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks. Talanta 2020; 210:120641. [DOI: 10.1016/j.talanta.2019.120641] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022]
|
18
|
Negahdary M, Sattarahmady N, Heli H. Advances in prostate specific antigen biosensors-impact of nanotechnology. Clin Chim Acta 2020; 504:43-55. [PMID: 32004532 DOI: 10.1016/j.cca.2020.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
Abstract
Prostate cancer is one of the most dangerous and deadly cancers in elderly men. Early diagnosis using prostate-specific antigen (PSA) facilitates disease detection, management and treatment. Biosensors have recently been used as sensitive, selective, inexpensive and rapid diagnostic tools for PSA detection. In this review, a variety of PSA biosensors such as aptasensors, peptisensors and immunesensors are highlighted. These use aptamers, peptides and antibodies in the biorecognition element, respectively, and can detect PSA with very high sensitivity via electrochemical, electrochemiluminescence, fluorescence and surface-enhanced Raman spectroscopy. To improve the sensitivity of most of these PSA biosensors, different nanostructured materials have played a critical role.
Collapse
Affiliation(s)
- M Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Farzin L, Sadjadi S, Shamsipur M, Sheibani S. An immunosensing device based on inhibition of mediator's faradaic process for early diagnosis of prostate cancer using bifunctional nanoplatform reinforced by carbon nanotube. J Pharm Biomed Anal 2019; 172:259-267. [DOI: 10.1016/j.jpba.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/27/2019] [Accepted: 05/04/2019] [Indexed: 01/08/2023]
|
21
|
Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. Phage Display in the Quest for New Selective Recognition Elements for Biosensors. ACS OMEGA 2019; 4:11569-11580. [PMID: 31460264 PMCID: PMC6682082 DOI: 10.1021/acsomega.9b01206] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Phages are bacterial viruses that have gained a significant role in biotechnology owing to their widely studied biology and many advantageous characteristics. Perhaps the best-known application of phages is phage display that refers to the expression of foreign peptides or proteins outside the phage virion as a fusion with one of the phage coat proteins. In 2018, one half of the Nobel prize in chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies." The outstanding technology has evolved and developed considerably since its first description in 1985, and today phage display is commonly used in a wide variety of disciplines, including drug discovery, enzyme optimization, biomolecular interaction studies, as well as biosensor development. A cornerstone of all biosensors, regardless of the sensor platform or transduction scheme used, is a sensitive and selective bioreceptor, or a recognition element, that can provide specific binding to the target analyte. Many environmentally or pharmacologically interesting target analytes might not have naturally appropriate binding partners for biosensor development, but phage display can facilitate the production of novel receptors beyond known biomolecular interactions, or against toxic or nonimmunogenic targets, making the technology a valuable tool in the quest of new recognition elements for biosensor development.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme (UFIEC), Instituto de
Salud Carlos III, Ctra.
Majadahonda-Pozuelo Km 2.2, 28220 Madrid, Spain
| | - María C. Moreno-Bondi
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
22
|
Sydyakina Y, Sivakova A, Komar A, Galkin A. Prostat-Specific Antigen: Biochemical, Molecular-Biological, and Analytical Aspects. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.2.164790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|