1
|
Mani Arockia Doss VNM, Lin YW, Horng L. Characterization of an Environmentally Responsive Organic-Inorganic Hybrid Fe 3O 4/SiO 2/PPy-c Core-Shell Nanocomposite with Magneto-Chromatic Ability for Synergistic Electrical Properties. Inorg Chem 2024; 63:18016-18029. [PMID: 39285706 DOI: 10.1021/acs.inorgchem.4c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The aim of this study was to analyze the properties of a composite that incorporates carbon black and polypyrrole within an Fe3O4/SiO2 core-shell structure, synthesized using the Stöber method under high ultrasonic irradiation conditions (120 W) for Fe3O4/SiO2 nanocomposite. The Fe3O4/SiO2 core-shell indicates magnetochromatic behavior characterized by temperature-dependent coloration and magnetic alignment. Incorporating carbon black and polypyrrole at moderate temperature (5-15 °C) enhanced the electrical conductivity. The electrical resistivity ρ was 7.30 × 106 Ω·cm for Fe3O4, 3.19 × 108 Ω·cm for Fe3O4/SiO2, and 242.56 Ω·cm for Fe3O4/SiO2/PPy-c at room temperature. When it was performed at moderate temperature (5-15 °C), the ρ of the prepared Fe3O4/SiO2 and Fe3O4/SiO2/PPy-c nanocomposite was 1.08 × 108 and 0.00799 Ω·cm, respectively. Current-voltage measurements revealed a linear relationship, with butterfly shaped curves in the forward-bias region for all samples. The Fe3O4/SiO2/PPy-c nanocomposite's tunable synergistic electrical properties at moderate temperatures make it useful for environmental applications, electrical wiring, and circuitry.
Collapse
Affiliation(s)
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Lance Horng
- Department of Physics, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
2
|
Azorín C, López-Juan AL, Aparisi F, Benedé JL, Chisvert A. Determination of hexanal and heptanal in saliva samples by an adapted magnetic headspace adsorptive microextraction for diagnosis of lung cancer. Anal Chim Acta 2023; 1271:341435. [PMID: 37328243 DOI: 10.1016/j.aca.2023.341435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023]
Abstract
In this work, an analytical method for the determination of two endogenous aldehydes (hexanal and heptanal) as lung cancer biomarkers in saliva samples is presented for the first time. The method is based on a modification of magnetic headspace adsorptive microextraction (M-HS-AME) followed by gas chromatography coupled to mass spectrometry (GC-MS). For this purpose, an external magnetic field generated by a neodymium magnet is used to hold the magnetic sorbent (i.e., CoFe2O4 magnetic nanoparticles embedded into a reversed-phase polymer) in the headspace of a microtube to extract the volatilized aldehydes. Subsequently, the analytes are desorbed in the appropriate solvent and the extract is injected into the GC-MS system for separation and determination. Under the optimized conditions, the method was validated and showed good analytical features in terms of linearity (at least up to 50 ng mL-1), limits of detection (0.22 and 0.26 ng mL-1 for hexanal and heptanal, respectively), and repeatability (RSD ≤12%). This new approach was successfully applied to saliva samples from healthy volunteers and those with lung cancer, obtaining notably differences between both groups. These results reveal the prospect of the method as potential diagnostic tool for lung cancer by saliva analysis. This work contributes to the Analytical Chemistry field presenting a double novelty: on the one hand, the use of M-HS-AME in bioanalysis is unprecedentedly proposed, thus expanding the analytical potential of this technique, and, on the other hand, the determination of hexanal and heptanal is carried out in saliva samples for the first time.
Collapse
Affiliation(s)
- Cristian Azorín
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Andreu L López-Juan
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Francisco Aparisi
- Medical Oncology service. Biomarkers and Precision Medicine Unit (UBYMP). La Fe Hospital. La Fe Health Research Institute (IISLAFE), Valencia, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain.
| |
Collapse
|
3
|
Jalili V, Ghanbari Kakavandi M, Ghiasvand A, Barkhordari A. Microextraction techniques for sampling and determination of polychlorinated biphenyls: A comprehensive review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Restricted access mesoporous magnetic polypyrrole for extraction of acid, neutral and basic compounds from whey. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Delińska K, Rakowska PW, Kloskowski A. Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Porphyrin-based covalent organic framework coated stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in water and soil samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
A comprehensive review on microextraction techniques for sampling and analysis of fuel ether oxygenates in different matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ramezani AM, Yamini Y, Nazraz M. Development of a convenient polypyrrole based sorbent for headspace solid phase microextraction of diazinon and chlorpyrifos. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Yilmaz E, Sarp G, Uzcan F, Ozalp O, Soylak M. Application of magnetic nanomaterials in bioanalysis. Talanta 2021; 229:122285. [PMID: 33838779 DOI: 10.1016/j.talanta.2021.122285] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
The importance of magnetic nanomaterials and magnetic hybrid materials, which are classified as new generation materials, in analytical applications is increasingly understood, and research on the adaptation of these materials to analytical methods has gained momentum. Development of sample preparation techniques and sensor systems using magnetic nanomaterials for the analysis of inorganic, organic and biomolecules in biological samples, which are among the samples that analytical chemists work on most, are among the priority issues. Therefore in this review, we focused on the use of magnetic nanomaterials for the bioanalytical applications including inorganic and organic species and biomolecules in different biological samples such as primarily blood, serum, plasma, tissue extracts, urine and milk. We summarized recent progresses, prevailing techniques, applied formats, and future trends in sample preparation-analysis methods and sensors based on magnetic nanomaterials (Mag-NMs). First, we provided a brief introduction of magnetic nanomaterials, especially their magnetic properties that can be utilized for bioanalytical applications. Second, we discussed the synthesis of these Mag-NMs. Third, we reviewed recent advances in bioanalytical applications of the Mag-NMs in different formats. Finally, recently literature studies on the relevance of Mag-NMs for bioanalysis applications were presented.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ozgur Ozalp
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
10
|
Behzadi M. Facile fabrication and application of poly(ortho-phenetidine) nanocomposite coating for solid-phase microextraction of carcinogenic polycyclic aromatic hydrocarbons from wastewaters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111568. [PMID: 33396097 DOI: 10.1016/j.ecoenv.2020.111568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
The waters and wastewaters around industrial areas are heavily polluted and have adverse effects on the ecosystems. The present study is mainly focused on the electropolymerization of ortho-phenetidine and co-deposited on a steel wire along with graphene oxide nanosheets as a novel coating for solid-phase microextraction of polycyclic aromatic hydrocarbons (PAHs) from aqueous media prior to gas chromatography-mass spectrometry. PAHs are composed of multiple aromatic rings which have been linked to skin, lung, bladder and liver. Cancer is a primary human health risk of exposure to PAHs. To obtain a firm and stable coating, several empirical factors relevant to the electrochemical process were investigated. Characterization for chemical structure and surface morphology of the synthesized nanocomposite was conducted with FT-IR spectroscopy and FE-SEM, respectively. XRD and TGA were applied to study the other properties of the nanocomposite. Some essential items involved in microextraction process were also checked in details. Under optimized case, validation parameters were assessed. Wide linearity (0.005-5.0 ng mL-1), low detection limits (0.4-4.3 pg mL-1) and good repeatability (3.6-9.5%) and reproducibility (7.6-11.8%) were achieved. The developed method was utilized to analyze contaminated real samples such as wastewater samples from coal processing industries and agricultural water samples collected from the vicinity of the industry in different seasons and high recoveries were obtained, finally.
Collapse
Affiliation(s)
- Mansoureh Behzadi
- Department of Mining Engineering, High Education Complex of Zarand, Zarand, Iran.
| |
Collapse
|
11
|
Kim U, Karthikraj R. Solid‐phase microextraction for the human biomonitoring of environmental chemicals: Current applications and future perspectives. J Sep Sci 2020; 44:247-273. [DOI: 10.1002/jssc.202000830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Un‐Jung Kim
- Department of Earth & Environmental Sciences University of Texas at Arlington Arlington Texas USA
| | | |
Collapse
|
12
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Tabibpour M, Yamini Y, Ahmadi SH, Esrafili A, Heydar KT, Mousavi SAJ, Baharfar M. Microextraction on a screw for determination of trace amounts of hexanal and heptanal as lung cancer biomarkers. J Pharm Biomed Anal 2020; 191:113528. [PMID: 32916561 DOI: 10.1016/j.jpba.2020.113528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022]
Abstract
Solid phase microextraction on a screw was utilized for the extraction of hexanal and heptanal as lung cancer biomarkers from urine samples. Reduced graphene oxide (rGO) was coated on the surface of a stainless-steel set screw by electrophoretic deposition method. The screw was located inside a glass cover, and the created channel acted as the sample solution flow pass. A 5 mL glass syringe was connected to a syringe pump to direct the sample and the eluent through the channel. The extraction procedure was followed by gas chromatography/mass spectrometry (GC/MS) for separation and determination of the extracted aldehydes. The effective parameters on the extraction efficiencies of the analytes were identified and optimized. Under the optimal extraction conditions, the extraction time was as short as 10 min. The calibration curves indicated good linearity (R2 > 0.97) within the concentration range of 1.0-50 μg L-1. The obtained limits of detection (LODs) for hexanal and heptanal were down to 0.4 and 0.3 μg L-1, respectively. Considering the repeatability, simplicity, and eco-friendliness of this simple extraction method, it can be efficiently used for preconcentration of aldehydes in different samples.
Collapse
Affiliation(s)
- Mahmoud Tabibpour
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Seyyed Hamid Ahmadi
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran.
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Kourosh Tabar Heydar
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran
| | - Seyed Ali Javad Mousavi
- Air Pollution Research Center, Department of Pulmonology, Iran University of Medical Sciences, Tehran, Iran
| | - Mahroo Baharfar
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
14
|
Hajializadeh A, Ansari M, Foroughi MM, Kazemipour M. Ultrasonic assisted synthesis of a novel ternary nanocomposite based on carbon nanotubes/zeolitic imidazolate framework-67/polyaniline for solid-phase microextraction of organic pollutants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Rodinkov OV, Bugaichenko AS, Moskvin LN. Static Headspace Analysis and Its Current Status. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482001013x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Pelit L, Pelit F, Ertaş H, Ertaş FN. Electrochemically Fabricated Solid Phase Microextraction Fibers and Their Applications in Food, Environmental and Clinical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411015666190314155440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Designing an analytical methodology for complicated matrices, such as biological and environmental samples, is difficult since the sample preparation procedure is the most demanding step affecting the whole analytical process. Nowadays, this step has become more challenging by the legislations and environmental concerns since it is a prerequisite to eliminate or minimize the use of hazardous substances in traditional procedures by replacing with green techniques suitable for the sample matrix.Methods:In addition to the matrix, the nature of the analyte also influence the ease of creating green analytical techniques. Recent developments in the chemical analysis provide us new methodologies introducing microextraction techniques and among them, solid phase microextraction (SPME) has emerged as a simple, fast, low cost, reliable and portable sample preparation technique that minimizes solvent consumption.Results:The use of home-made fibers is popular in the last two decades since the selectivity can be tuned by changing the surface characteristics through chemical and electrochemical modifications. Latter technique is preferred since the electroactive polymers can be coated onto the fiber under controlled electrochemical conditions and the film thicknesses can be adjusted by simply changing the deposition parameters. Thermal resistance and mechanical strength can be readily increased by incorporating different dopant ions into the polymeric structure and selectivity can be tuned by inserting functional groups and nanostructures. A vast number of analytes with wide range of polarities extracted by this means can be determined with a suitable chromatographic detector coupled to the system. Therefore, the main task is to improve the physicochemical properties of the fiber along with the extraction efficiency and selectivity towards the various analytes by adjusting the electrochemical preparation conditions.Conclusion:This review covers the fine tuning conditions practiced in electrochemical preparation of SPME fibers and in-tube systems and their applications in environmental, food and clinical analysis.
Collapse
Affiliation(s)
- Levent Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Füsun Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Hasan Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Fatma Nil Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| |
Collapse
|
17
|
Heidari N, Ghiasvand A. A review on magnetic field-assisted solid-phase microextraction techniques. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1668804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nahid Heidari
- Department of Chemistry, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Lorestan University, Khorramabad, Iran
- School of Natural Sciences, Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Hobart, Australia
| |
Collapse
|
18
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
19
|
Ghiasvand A, Heidari N, Abdolhosseini S. Magnetic Field-Assisted Direct Immersion SPME of Endogenous Aldehydes in Human Urine. Chromatographia 2018. [DOI: 10.1007/s10337-018-3620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|