1
|
Wang C, Zhou J, Jia P, Yang Y, Song R, Zheng X, Zhang H, Li Y. Joint proteomic and metabolomic analysis reveals renal metabolic remodeling of chronic heart failure mice. J Pharm Biomed Anal 2025; 255:116641. [PMID: 39731929 DOI: 10.1016/j.jpba.2024.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
Pharmacologic intervention in chronic heart failure (HF) with renal insufficiency is one of the clinical challenges due to the fact that the mechanisms of cardio-renal interactions in chronic heart failure (CHF) progressing have not been fully revealed. In this paper, C57BL/6 mice were applied thoracic aortic narrowing surgery to establish pressure overload CHF model. Cardiac function, serum markers, renal pathologic changes and kidney metabolism were analyzed at 4th, 8th, 12th, and 16th week after surgery respectively to evaluate the heart-Kidney pathologic overlap. Kidney proteomic analysis was performed at 16th week after operation. As a result, renal hypofiltration and exacerbation of pathological damage was observed accompanying cardiac function deterioration after 12th week. 66 differentially expressed proteins and 13 differential metabolites were found to be involved in the cardio-renal pathological overlap. Joint proteomic and metabolomic analysis revealed that signal pathways like Phosphatidylinositol signaling system, Glucagon signaling pathway, the Glyoxylate and dicarboxylate metabolism; DEPs of Pten, Mtmr4, PLC and CPT1, differential metabolites like aspartic acid and isocitrate deserve further investigation.
Collapse
Affiliation(s)
- Chunliu Wang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Ruixue Song
- Xi'an Research Institute of Chinese Lacquer, Xi'an, Shaanxi, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
| | - Ye Li
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Ye J, Li P, Liu P, Pei W, Wang R, Liu H, Ma C, Zhao D. Serum Metabolomics Analysis Revealed Metabolic Pathways Related to AECOPD Complicated with Anxiety and Depression. Int J Chron Obstruct Pulmon Dis 2024; 19:2135-2151. [PMID: 39355059 PMCID: PMC11444062 DOI: 10.2147/copd.s471817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
Background Anxiety and depression are two of the most common comorbidities of COPD, which can directly lead to the number of acute exacerbations and hospitalizations of COPD patients and reduce their quality of life. At present, there are many studies on anxiety and depression in stable COPD, but few studies on anxiety and depression in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients. Objective We aim to explore the changes of serum metabolomics in AECOPD complicated with anxiety and depression and to provide some clues for further understanding its pathogenesis. Methods This is an observational high-throughput experimental study based on retrospective data extraction. Twenty-one AECOPD with anxiety and depressive patients and 17 healthy controls (HCs) were retrospectively enrolled in the Second Affiliated Hospital of Anhui Medical University. Hamilton anxiety scale (HAMA) and Hamilton depression scale (HAMD) for anxiety and depression were used to assess the patients with AECOPD. Untargeted metabolomics analysis was carried out to investigate different molecules in the serum of all participants. General information of all participants, baseline data and clinical measurement data of AECOPD patients were collected. Statistical analysis and bioinformatics analysis were performed to reveal different metabolites and perturbed metabolic pathways. Results A total of 724 metabolites in positive ionization mode and 555 metabolites in negative ionization mode were different in AECOPD patients with anxiety and depression. The 1,279 serum metabolites could be divided into 77 categories. Based on multivariate and univariate analysis, 74 metabolites were detected in positive ionization mode, and 60 metabolites were detected in negative ionization as differential metabolites. The 134 metabolites were enriched in 18 pathways, including biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, protein digestion and absorption, ovarian steroidogenesis, long-term depression, retrograde endocannabinoid signaling, and so on. Conclusion This work highlights the key metabolites and metabolic pathways disturbed in AECOPD patients with anxiety and depression. These findings support the use of metabolomics to understand the pathogenic mechanisms involved in AECOPD patients with anxiety and depression.
Collapse
Affiliation(s)
- Jing Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Wenjing Pei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ruowen Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Changxiu Ma
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
3
|
Guo K, Xu X, Gao J, Zhang Y, Wang Y, Zhuang Y, Zhu Y, Zhou Z, Chen X, Zhang Z, Wei W. Study on pulp metabolism of patients with pulpitis using ultra-performance liquid chromatography coupled with Orbitrap mass spectrometry. Clin Chim Acta 2024; 558:117894. [PMID: 38583552 DOI: 10.1016/j.cca.2024.117894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND AND AIMS Pulpitis, a pulp disease caused by caries, trauma, and other factors, has a high clinical incidence. This study focused on identifying possible metabolic biomarkers of pulpitis cases and analyzing the related metabolic pathways for providing a theoretical foundation to diagnose and prevent pulpitis. MATERIALS AND METHODS Pulp samples from 20 pulpitis cases together with 20 normal participants were analyzed with a serum metabolomics approach using ultra-high-performance liquid chromatography (UPLC)/Orbitrap mass spectrometry. Moreover, this work carried out multivariate statistical analysis for screening potential biomarkers of pulpitis. RESULTS Through biomarker analysis and identification, such as partial least squares discrimination analysis, orthogonal partial least squares discriminant analysis model establishment, correlation analysis, and biomarker pathway analysis, 40 biomarkers associated with 20 metabolic pathways were identified, including 20 upregulated and 20 downregulated metabolites. Those major biomarkers included oxoglutaric acid, inosine, citric acid, and PA(14:1(9Z)/PGD1). Among them, oxoglutaric acid and inosine were most significantly downregulated and had the highest correlation with pulpitis. Among these metabolic pathways, GABAergic synapse and alanine, aspartate, and glutamate metabolism were positively correlated with pulpitis. 4. CONCLUSIONS These biomarkers as well as metabolic pathways may offer the theoretical foundation to understand pulpitis pathogenesis and develop preventive drugs.
Collapse
Affiliation(s)
- Ke Guo
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Xu
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Gao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Nursing Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulian Zhuang
- Nursing Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonggan Zhu
- Nursing Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Zhou
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China.
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenjia Wei
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Ye Y, Zhang B, Mai W, Tan Y, Feng Z, Huang Q. Metabolomics study of the hepatoprotective effect of total flavonoids of Mallotus apelta leaf in carbon tetrachloride-induced liver fibrosis in rats. Biomed Chromatogr 2023; 37:e5711. [PMID: 37593807 DOI: 10.1002/bmc.5711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Mallotus apelta leaf, recorded in the quality standard of Yao Medicinal Material in Guangxi Zhuang autonomous region, is commonly used in the treatment of liver diseases. Total flavonoids of M. apelta leaf (TFM) had good anti-fibrosis activity, but the anti-fibrosis mechanism of TFM is still unclear. Nuclear magnetic resonance technology was used to study the dynamic changes of urine metabolites in CCl4 -induced liver fibrosis before and after TFM treatment. Ingenuity Path Analysis (IPA) was used to find potential target genes for TFM to improve liver fibrosis and verify the expression of target genes by real-time fluorescent quantitative PCR and Western blotting. TFM can significantly reduce serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) levels, improve liver steatosis and reduce inflammation; in urine metabolomics, a total of seven potential biomarkers were found, mainly involving two metabolic pathways; IPA analysis showed that TNF may be a potential target for TFM to improve liver fibrosis induced by CCl4 in rats. This study found that TNF may be a potential target gene for TFM treatment of liver fibrosis, and shows that the anti-fibrosis mechanism of TFM could improve liver fibrosis by regulating the tricarboxylic acid cycle and subtaurine metabolism.
Collapse
Affiliation(s)
- Yong Ye
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Wanting Mai
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Zhongwen Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiujie Huang
- Pharmaceutical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
5
|
Song Y, Wang H, Sun R, Chang J, Tang J, Bai Y, Xia C. Serum Metabolic Characterization of Vitamin E Deficiency in Holstein Cows during the Transition Period Based on Proton Nuclear Magnetic Resonance Spectroscopy. Animals (Basel) 2023; 13:2957. [PMID: 37760357 PMCID: PMC10525730 DOI: 10.3390/ani13182957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin E, a potent antioxidant, is a necessary and complex micronutrient for cows. During the transition period, vitamin E deficiency (VED) is among the highest prevalent micronutrient deficits in dairy cows. It may eventually result in oxidative stress and immunological malfunction, and it increases the risk of peripartum disorders. At present, detailed data on blood metabolites in VED cows are limited. Consequently, the purpose of this research was to examine the alterations in the serum metabolic profile of VED cows throughout the early postpartum period. Using comprehensive 1H nuclear magnetic resonance (1H NMR), the alterations in serum metabolic activities of VED cows were analyzed. In total, 28 multiparous Holstein cows were assigned according to serum α-tocopherol (α-Toc) concentrations into normal (α-Toc ≥ 4 μg/mL, n = 14) and VED (α-Toc < 3 μg/mL, n = 14) groups at 21 days postpartum, and their blood samples were collected for biochemical and 1H NMR analyses. A t-test on independent samples as well as multivariate statistics were used to assess the findings. In comparison with normal cows, VED cows showed significantly worse body condition scores, milk yield, and dry matter intake (p < 0.05). Significantly higher levels of serum non-esterified fatty acids, aspartate aminotransferase, low-density lipoprotein, and malonaldehyde were found in VED-affected cows, as well as lesser concentrations of serum albumin, high-density lipoprotein, and total antioxidant capacity in comparison with normal cows (p < 0.01), while other vitamins and minerals concentrations showed no distinction between the groups (p > 0.05). Furthermore, 24 upregulated serum metabolites were identified under VED conditions. The metabolomics pathway analysis of these metabolites demonstrated that a global metabolic response to VED in cows was represented by changes in 11 metabolic pathways, comprising energy, carbohydrate, and amino acid metabolism. From these results, we conclude that VED cows were more likely to experience a negative energy balance characterized by alterations of common systemic metabolic processes and develop oxidative stress, inflammation, and ultimately liver injury. This study provides the first evidence of metabolic changes in cows with VED.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.S.); (H.W.); (R.S.); (J.C.); (J.T.); (Y.B.)
| |
Collapse
|
6
|
Wang C, Zhou J, Wang S, Liu Y, Long K, Sun T, Zhi W, Yang Y, Zhang H, Zhao Y, Zheng X, Zheng X, Li Y, Jia P. Guanxining injection alleviates fibrosis in heart failure mice and regulates SLC7A11/GPX4 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116367. [PMID: 36914037 DOI: 10.1016/j.jep.2023.116367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese) and Chuanxiong Rhizoma (rhizomes of Ligusticum chuanxiong Hort., Apiaceae, Chuanxiong in Chinese) both are important traditional Chinese medicine (TCM) for activating blood and eliminating stasis. Danshen-chuanxiong herb pair has been used for more than 600 years in China. Guanxinning injection (GXN) is a Chinese clinical prescription refined from aqueous extract of Danshen and Chuanxiong at the ratio of 1:1 (w/w). GXN has been mainly used in the clinical therapy of angina, heart failure (HF) and chronic kidney disease in China for almost twenty years. AIM OF THE STUDY This study aimed to explore the role of GXN on renal fibrosis in heart failure mice and the regulation of GXN on SLC7A11/GPX4 axis. MATARIALS AND METHODS The transverse aortic constriction model was used to mimic HF accompanied by kidney fibrosis model. GXN was administrated by tail vein injection in dose of 12.0, 6.0, 3.0 mL/kg, respectively. Telmisartan (6.1 mg/kg, gavage) was used as a positive control drug. Cardiac ultrasound indexes of ejection fraction (EF), cardiac output (CO), left ventricle volume (LV Vol), HF biomarker of pro-B type natriuretic peptide (Pro-BNP), kidney function index of serum creatinine (Scr), kidney fibrosis index of collagen volume fraction (CVF) and connective tissue growth factor (CTGF) were evaluated and contrasted. Metabolomic method was employed to analyze the endogenous metabolites changes in kidneys. Besides, contents of catalase (CAT), xanthine oxidase (XOD), nitricoxidesynthase (NOS), glutathione peroxidase 4 (GPX4), the x(c)(-) cysteine/glutamate antiporter (SLC7A11) and ferritin heavy chain (FTH1) in kidney were quantitatively analyzed. In addition, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical composition of GXN and network pharmacology was used to predict possible mechanisms and the active ingredients of GXN. RESULTS The cardiac function indexes of EF, CO and LV Vol, kidney functional indicators of Scr, the degree of kidney fibrosis indicators CVF and CTGF were all relieved to different extent for the model mice treated with GXN. 21 differential metabolites involved in redox regulation, energy metabolism, organic acid metabolism, nucleotide metabolism, etc were identified. Aspartic acid, homocysteine, glycine, and serine, methionine, purine, phenylalanine and tyrosine metabolism were found to be the core redox metabolic pathways regulated by GXN. Furthermore, GXN were found to increase CAT content, upregulate GPX4, SLC7A11 and FTH1 expression in kidney significantly. Not only that, GXN also showed good effect in down-regulating XOD and NOS contents in kidney. Besides, 35 chemical constituents were initially identified in GXN. Active ingredients of GXN-targets-related enzymes/transporters-metabolites network was established to find out that GPX4 was a core protein for GXN and the top 10 active ingredients with the most relevant to renal protective effects of GXN were rosmarinic acid, caffeic acid, ferulic acid, senkyunolide E, protocatechualdehyde, protocatechuic acid, danshensu, L-Ile, vanillic acid, salvianolic acid A. CONCLUSION GXN could significantly maintain cardiac function and alleviate the progression of fibrosis in the kidney for HF mice, and the mechanisms of action were related to regulating redox metabolism of aspartate, glycine, serine, and cystine metabolism and SLC7A11/GPX4 axis in kidney. The cardio-renal protective effect of GXN may be attributed to multi-components like rosmarinic acid, caffeic acid, ferulic acid, senkyunolide E, protocatechualdehyde, protocatechuic acid, danshensu, L-Ile, vanillic acid, salvianolic acid A et al.
Collapse
Affiliation(s)
- Chunliu Wang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Jie Zhou
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Yang Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Kaihua Long
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Tingting Sun
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Wenbing Zhi
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Ye Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Xiaopu Zheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Ye Li
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Azamov B, Lee KM, Hur J, Muradillaeva S, Shim WS, Lee C, Song P. Oxoglaucine Suppresses Hepatic Fibrosis by Inhibiting TGFβ-Induced Smad2 Phosphorylation and ROS Generation. Molecules 2023; 28:4971. [PMID: 37446633 DOI: 10.3390/molecules28134971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatic fibrosis is the first stage of liver disease, and can progress to a chronic status, such as cirrhosis or hepatocellular carcinoma. Excessive production of extracellular matrix (ECM) components plays an important role in the development of fibrosis. Mechanistically, transforming growth factor beta (TGFβ)-induced phosphorylation of Smad is thought to be a key signaling pathway in the development of liver fibrosis. Although the natural isoquinoline alkaloid oxoglaucine (1,2,9,10-tetramethoxy-7H-dibenzo(de,g)quinolin-7-one) exerts numerous beneficial effects, including anti-cancer, anti-inflammatory, and anti-osteoarthritic effects in diverse cell types, the effects of oxoglaucine on liver fibrosis and fibrogenic gene expression have not been fully elucidated. The aim of this study is to evaluate the signaling pathway and antifibrotic activity of isoquinoline alkaloid oxoglaucine in TFGβ-induced hepatic fibrosis in vitro. Using Hepa1c1c7 cells and primary hepatocytes, we demonstrated that oxoglaucine treatment resulted in inhibition of the expression of fibrosis markers such as collagen, fibronectin, and alpha-SMA. Subsequent experiments showed that oxoglaucine suppressed TGFβ-induced phosphorylation of Smad2 and reactive oxygen species (ROS) generation, without altering cell proliferation. We further determined that the increase in Smad7 by oxoglaucine treatment is responsible for the inhibition of Smad2 phosphorylation and the anti-fibrogenic effects. These findings indicate that oxoglaucine plays a crucial role in suppression of fibrosis in hepatocytes, thereby making it a potential drug candidate for treatment of liver fibrosis.
Collapse
Affiliation(s)
- Bakhovuddin Azamov
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Kwang-Min Lee
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Shakhnoza Muradillaeva
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Wan-Seog Shim
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Chanhee Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Parkyong Song
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Qin J, Luo Z, Wang Q, Tang C, Meng M, Huang Z, Guo B, He Y, Feng L, Nong Y, Deng L, Zhu D, Guo H, Liang Y, Su Z. Integrating metabonomics and metagenomics sequencing to study the anti-liver fibrosis effects of palmatine in Corydalis saxicola Bunting. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116666. [PMID: 37211189 DOI: 10.1016/j.jep.2023.116666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the main anti-liver fibrosis ingredients in CS are incompletely understood. AIM OF THE STUDY To elucidate the main anti-liver fibrosis ingredients in CS and its underlying mechanism. MATERIAL AND METHODS Firstly, spectrum-effect relationship (SER) strategy was applied to identify the major ingredients against liver fibrosis in CS. Subsequently, 1H NMR metabonomics and metagenomics sequencing techniques were used to clarify the intervention of palmatine (PAL) on liver fibrosis. Furthermore, the expression of tight junction proteins and the levels of liver inflammation factors were examination, the effect of PAL on microbiota was verified by FMT. RESULTS The SER model revealed that PAL was the most important active ingredient in CS. 1H NMR fecal metabonomics showed that PAL could reserve the abnormal levels of gut microbial-mediated metabolites of liver fibrosis, such as isoleucine, taurine, butyrate, propionate, lactate, glucose, which mainly involved in amino acid metabolism, intestinal flora metabolism and energy metabolism. Metagenomics sequencing found that PAL could callback the abundance of s__Lactobacillus_murinus, s__Lactobacillus_reuteri, s__Lactobacillus_johnsonii, s__Lactobacillus_acidophilus and s__Faecalibaculum_rodentium to varying degree. Furthermore, the intestinal barrier function and the levels of hepatic inflammation factors were significantly ameliorated by PAL. FMT demonstrated that the therapeutic efficiency of PAL was closely associated with gut microbiota. CONCLUSION The effects of CS on liver fibrosis were attributed in part to PAL by alleviating metabolic disorders and rebalancing gut microbiota. The SER strategy may be a useful method for the discovery of active constituents in natural plants.
Collapse
Affiliation(s)
- Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Zhuo Luo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Chaoling Tang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Mingwei Meng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Zheng Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Ying He
- First Clinical Medical College, Guangxi Medical University, Nanning, 530021, China.
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Dan Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, 530021, China; Guangxi Engineering Research Center for Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization, Nanning, 530021, China; Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning, 530021, China.
| |
Collapse
|
9
|
Corydalis saxicola Bunting: A Review of Its Traditional Uses, Phytochemistry, Pharmacology, and Clinical Applications. Int J Mol Sci 2023; 24:ijms24021626. [PMID: 36675133 PMCID: PMC9864617 DOI: 10.3390/ijms24021626] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023] Open
Abstract
Corydalis saxicola Bunting (CSB), whose common name in Chinese is Yanhuanglian, is a herb in the family Papaveraceae. When applied in traditional Chinese medicine, it is used to treat various diseases including hepatitis, abdominal pain, and bleeding haemorrhoids. In addition, Corydalis saxicola Bunting injection (CSBI) is widely used against acute and chronic hepatitis. This review aims to provide up-to-date information on the botanical distribution, description, traditional uses, phytochemistry, pharmacology, and clinical applications of CSB. A comprehensive review was implemented on studies about CSB from several scientific databases, such as SciFinder, Elsevier, Springer, ACS Publications, Baidu Scholar, CNKI, and Wanfang Data. Phytochemical studies showed that 81 chemical constituents have been isolated and identified from CSB, most of which are alkaloids. This situation indicates that these alkaloids would be the main bioactive substances and that they have antitumour, liver protective, antiviral, and antibacterial pharmacological activities. CSBI can not only treat hepatitis and liver cancer but can also be used in combination with other drugs. However, the relationships between the traditional uses and modern pharmacological actions, the action mechanisms, quality standards, and the material basis need to be implemented in the future. Moreover, the pharmacokinetics of CSBI in vivo and the toxicology should be further investigated.
Collapse
|
10
|
Investigation of the Therapeutic Effect of Total Alkaloids of Corydalis saxicola Bunting on CCl 4-Induced Liver Fibrosis in Rats by LC/MS-Based Metabolomics Analysis and Network Pharmacology. Metabolites 2022; 13:metabo13010009. [PMID: 36676934 PMCID: PMC9866371 DOI: 10.3390/metabo13010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a pathological result of liver injury that usually leads to a pathophysiological wound healing response. The total alkaloids of Corydalis saxicola Bunting (TACS) have been used for hepatoprotective effects on the liver. However, its exact therapeutic mechanisms of liver fibrosis are not yet well understood. To explore the potential anti-fibrosis mechanism of TACS, metabolomics coupled with network pharmacology were applied to reveal the underlying mechanisms. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with multivariate statistical analyses were performed to estimate changes in metabolic profiles. As a result, a total of 23 metabolites in rats with liver fibrosis were altered; of these, 11 had been downregulated and 12 had been upregulated compared with the control group. After TACS treatment, the levels of 13 metabolites were significantly restored compared with the CCl4-treated group, of which 4 metabolites were up-regulated and 9 metabolites were down-regulated. Many of these metabolites are involved in the bile acid metabolism, glutathione metabolism, tryptophan metabolism and purine metabolism. Then, three key targets, including cytochrome P450 family1 subfamily A member 1 (CYP1A1), ornithine decarboxylase 1 (OCD1) and monoamine oxidase Type B (MAOB) were predicted as potential therapeutic targets of TACS against liver fibrosis through network pharmacology analysis. Finally, palmatine, tetrahydropalmatine and dehydrocavidine were screened as potential active compounds responsible for the anti-fibrosis effect of TACS by molecular docking analysis. This study reveals that TACS exerted anti-fibrosis effects by regulating the liver metabolic pathway with multiple components and multiple targets, which is helpful to further clarify the hepatoprotective mechanisms of natural plant extracts.
Collapse
|
11
|
Effect of Gypenosides on the composition of gut microbiota and metabolic activity in the treatment of CCl4-induced liver injury in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Wang M, Huang X, Liu Y, Zeng J. Effects of Macleaya cordata Extract on Blood Biochemical Indices and Intestinal Flora in Heat-Stressed Mice. Animals (Basel) 2022; 12:ani12192589. [PMID: 36230331 PMCID: PMC9558519 DOI: 10.3390/ani12192589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) leads to disturbance of homeostasis and gut microbiota. Macleaya cordata extract (MCE) has anti-inflammatory, antibacterial, and gut health maintenance properties. Still, the specific effects of MCE on blood biochemical indices and gut microbiota homeostasis in heat-stressed mice are not entirely understood. This study aimed to investigate the impact of MCE on blood biochemical indices and gut microbiota in heat-stressed mice. A control group (CON) (25 °C, n = 6) and HS group (42 °C, n = 6) were gavaged with normal saline 0.2 mL/g body weight/day, and HS plus MCE group (HS-MCE) (42 °C, n = 6) was gavaged with 5 mg MCE/kg/day. HS (2 h/d) on 8–14 d. The experiment lasted 14 days. The results showed that HS increased mice’ serum aspartate transaminase, alanine transferase activities, heat shock protein 70 level, and malondialdehyde concentrations, and decreased serum catalase and superoxide dismutase activities. HS also disrupted microbiota diversity and community structure in mice, increasing the Bacteroidetes and decreasing Firmicutes and Lactobacillus; however, MCE can alleviate the disturbance of biochemical indicators caused by HS and regulate the flora homeostasis. Furthermore, MCE was able to moderate HS-induced metabolic pathways changes in gut microbiota. The Spearman correlation analysis implied that changes in serum redox status potentially correlate with gut microbiota alterations in HS-treated mice.
Collapse
Affiliation(s)
- Mingcan Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Xiuqiong Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Jianguo Zeng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
- Correspondence: ; Tel.: +86-731-84686560
| |
Collapse
|
13
|
Effects of Dietary Macleaya cordata Extract on Growth Performance, Biochemical Indices, and Intestinal Microbiota of Yellow-Feathered Broilers Subjected to Chronic Heat Stress. Animals (Basel) 2022; 12:ani12172197. [PMID: 36077916 PMCID: PMC9454434 DOI: 10.3390/ani12172197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effect of dietary Macleaya cordata extract (MCE) supplementation on the growth performance, serum parameters, and intestinal microbiota of yellow-feather broilers under heat stress. A total of 216 yellow-feather broilers (28-days-old) were randomly allotted into three groups. A control group (CON) (24 ± 2 °C) and heat stress group (HS) (35 ± 2 °C) received a basal diet, and heat-stressed plus MCE groups (HS-MCE) (35 ± 2 °C) were fed the basal diet with 1000 mg/kg MCE for 14 consecutive days. The results revealed that MCE supplementation improved the final body weight, average daily feed intake, average daily gain, and spleen index when compared with the HS group (p < 0.05). In addition, MCE supplementation decreased (p < 0.05) the activities of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatinine, and increased (p < 0.05) the glucose level and alkaline phosphatase activity in heat-stressed yellow-feathered broilers. Moreover, MCE treatment alleviated heat-stress-induced intestinal flora disturbances, decreased the Bacteroidota and Bacteroides relative abundances, and increased Firmicutes. A linear discriminant analysis effect size analysis found five differentially abundant taxa in the HS-MCE group, including Alistipes, Rikenellaceae, Mogibacterium, Butyrivibrio, and Lachnospira. These results suggest that MCE can alleviate HS-induced decline in growth performance by modulating blood biochemical markers and cecal flora composition in broilers.
Collapse
|
14
|
Wu J, Chen P, Ju L, Gao R, Li S, Huang Z, Cheng Y, Gui S, Qiu Z, Cheng J, Huang F. Corydalis saxicola Bunting Total Alkaloids ameliorate diet-induced non-alcoholic steatohepatitis by regulating hepatic PI3K/Akt and TLR4/NF-κB pathways in mice. Biomed Pharmacother 2022; 151:113132. [PMID: 35623174 DOI: 10.1016/j.biopha.2022.113132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
Corydalis saxicola Bunting (Yanhuanglian), distributed in Southwest China, is mainly used for treatment of hepatitis, oral mucosal erosion, conjunctivitis, dysentery, acute abdominal pain and hemorrhoids in the folk. Corydalis saxicola Bunting Total Alkaloids (CSBTA) are the active ingredients extracted from the root of C. saxicola bunting. Non-alcoholic steatohepatitis (NASH) is the hinge between steatosis and cirrhosis in the spectrum of Non-alcoholic fatty liver disease (NAFLD), which has become one of the most common chronic liver diseases in the world. CSBTA can reduce tumors and brain diseases through anti-inflammatory and antioxidant pathways. Our study was designed to clarify the effects of CSBTA on the HFHC (High fat and high carbohydrate drinking) diet induced mice. In our research, A HFHC diet induced NASH mice model was applied to investigate the effects of CSBTA in vivo and obeticholic acid (OA) was set as positive control. Moreover, the underlying mechanisms were explored by palmitic acid (PA) and lipopolysaccharide (LPS) stimulated HepG2 cells in vitro. The in vivo study illustrated that CSBTA could alleviate mice away from the onset of NASH, and reduce intrahepatocellular lipid accumulation and hepatocyte inflammation under high fat condition. Further in vitro analysis confirmed that CSBTA attenuated inflammation and hepatic lipid accumulation by improving hepatic PI3K/Akt and suppressing hepatic TLR4/NF-κB pathways. In summary, this study demonstrated that CSBTA might be a promising compound for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiejie Wu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Ping Chen
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Linjie Ju
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Renhao Gao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Silu Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Ziqian Huang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Yiqiu Cheng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Shuqi Gui
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China; Nanjing Zhongshan Pharmaceutical Co, Ltd., 21 Hengfa Road, Nanjing Economic and Technological Development Zone, Nanjing, PR China
| | - Zhixia Qiu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Jun Cheng
- Nanjing Zhongshan Pharmaceutical Co, Ltd., 21 Hengfa Road, Nanjing Economic and Technological Development Zone, Nanjing, PR China
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China.
| |
Collapse
|
15
|
Sheng C, Guo Y, Ma J, Hong EK, Zhang B, Yang Y, Zhang X, Zhang D. Metabolomic Profiling Reveals Protective Effects and Mechanisms of Sea Buckthorn Sterol against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Molecules 2022; 27:molecules27072224. [PMID: 35408620 PMCID: PMC9000363 DOI: 10.3390/molecules27072224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 12/26/2022] Open
Abstract
The present study was designed to examine the efficacy and protection mechanisms of sea buckthorn sterol (SBS) against acute liver injury induced by carbon tetrachloride (CCl4) in rats. Five-week-old male Sprague-Dawley (SD) rats were divided into six groups and fed with saline (Group BG), 50% CCl4 (Group MG), or bifendate 200 mg/kg (Group DDB), or treated with low-dose (Group LD), medium-dose (Group MD), or high-dose (Group HD) SBS. This study, for the first time, observed the protection of SBS against CCl4-induced liver injury in rats and its underlying mechanisms. Investigation of enzyme activities showed that SBS-fed rats exhibited a significant alleviation of inflammatory lesions, as evidenced by the decrease in cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and gamma-glutamyl transpeptidase (γ-GT). In addition, compared to the MG group, the increased indices (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), total antioxidant capacity (T-AOC), and total protein (TP)) of lipid peroxidation and decreased malondialdehyde (MDA) in liver tissues of SBS-treated groups showed the anti-lipid peroxidation effects of SBS. Using the wide range of targeted technologies and a combination of means (UPLC-MS/MS detection platform, self-built database, and multivariate statistical analysis), the addition of SBS was found to restore the expression of metabolic pathways (e.g., L-malic acid, N-acetyl-aspartic acid, N-acetyl-l-alanine, etc.) in rats, which means that the metabolic damage induced by CCl4 was alleviated. Furthermore, transcriptomics was employed to analyze and compare gene expression levels of different groups. It showed that the expressions of genes (Cyp1a1, Noct, and TUBB6) related to liver injury were regulated by SBS. In conclusion, SBS exhibited protective effects against CCl4-induced liver injury in rats. The liver protection mechanism of SBS is probably related to the regulation of metabolic disorders, anti-lipid peroxidation, and inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Changting Sheng
- College of Medicine, Qinghai University, Xining 810016, China; (C.S.); (Y.G.)
| | - Yang Guo
- College of Medicine, Qinghai University, Xining 810016, China; (C.S.); (Y.G.)
| | - Jing Ma
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Eun-Kyung Hong
- Medvill Co., Ltd., Medvill Research Institute, Seoul 100744, Korea;
| | - Benyin Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Yongjing Yang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Xiaofeng Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Dejun Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
- Correspondence:
| |
Collapse
|
16
|
Martin-Grau M, Marrachelli VG, Monleon D. Rodent models and metabolomics in non-alcoholic fatty liver disease: What can we learn? World J Hepatol 2022; 14:304-318. [PMID: 35317178 PMCID: PMC8891675 DOI: 10.4254/wjh.v14.i2.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) prevalence has increased drastically in recent decades, affecting up to 25% of the world’s population. NAFLD is a spectrum of different diseases that starts with asymptomatic steatosis and continues with development of an inflammatory response called steatohepatitis, which can progress to fibrosis. Several molecular and metabolic changes are required for the hepatocyte to finally vary its function; hence a “multiple hit” hypothesis seems a more accurate proposal. Previous studies and current knowledge suggest that in most cases, NAFLD initiates and progresses through most of nine hallmarks of the disease, although the triggers and mechanisms for these can vary widely. The use of animal models remains crucial for understanding the disease and for developing tools based on biological knowledge. Among certain requirements to be met, a good model must imitate certain aspects of the human NAFLD disorder, be reliable and reproducible, have low mortality, and be compatible with a simple and feasible method. Metabolism studies in these models provides a direct reflection of the workings of the cell and may be a useful approach to better understand the initiation and progression of the disease. Metabolomics seems a valid tool for studying metabolic pathways and crosstalk between organs affected in animal models of NAFLD and for the discovery and validation of relevant biomarkers with biological understanding. In this review, we provide a brief introduction to NAFLD hallmarks, the five groups of animal models available for studying NAFLD and the potential role of metabolomics in the study of experimental NAFLD.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| | - Vannina G Marrachelli
- Department of Physiology, University of Valencia, Valencia 46010, Spain
- Health Research Institute INCLIVA, Valencia 46010, Spain
| | - Daniel Monleon
- Department of Pathology, University of Valencia, Valencia 46010, Spain
- Health Research Institute INCLIVA, Valencia 46010, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid 28029, Spain
| |
Collapse
|
17
|
Guo Y, Zhao L, Chang B, Yu J, Bao J, Yao Q, Luo J. The Traditional Uses, Phytochemistry, Pharmacokinetics, Pharmacology, Toxicity, and Applications of Corydalis saxicola Bunting: A Review. Front Pharmacol 2022; 13:822792. [PMID: 35250571 PMCID: PMC8890665 DOI: 10.3389/fphar.2022.822792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Background:Corydalis saxicola Bunting (CSB) is a perennial herb belonging to genus Corydalis (Papaveraceae), called “Yan-huang-lian” in the Chinese folk. Traditionally, it is used to treat acute conjunctivitis, corneal pannus, acute abdominal pain, hemorrhoidal bleeding, haematochezia, swelling, hepatitis, cirrhosis and liver cancer based on traditional Chinese medicine (TCM) concepts. Purpose: This review aims to summarize and analyze the pharmacokinetics, pharmacological and toxicological properties of CSB and its extracts; to highlight the relevance of modern pharmacology to traditional pharmacology; also to assess its therapeutic potential. Methods: CSB related literatures were searched and screened from databases including PubMed, Web of Science and CNKI. The selected literatures provided reliable source identification evidences. Results: In traditional medicine concepts, CSB has the effects of clearing away heat and detoxification, eliminating dampness, relieving pain, and stopping bleeding. Its modern pharmacology includes hepatoprotective, anticancer, anti-inflammatory, analgesic, antibacterial, anti-oxidative effects. Further, some pharmacological effects support its traditional uses. The CSB total alkaloids (CSBTA) are the main constituents isolated from this plant, and they exert the major of the pharmacological effects. Toxicological studies have shown that the toxicity of CSBTA is mild and reversible in rodents and beagle dogs. Conclusion: Although the present study summarizes the botany, phytochemistry, pharmacokinetics, pharmacology, toxicity, and applications of this plant, it is still necessary to systemically evaluate the chemistry, safety and parameters related to drug metabolism of the extracts or compounds from this plant before or in clinical trials in the future. Meanwhile, cancers and inflammatory-related diseases may be new research directions of this ethnomedicine.
Collapse
Affiliation(s)
- Yanru Guo
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linjun Zhao
- Xintian Community Health Service Center of Guiyang, Guiyang, China
| | - Botao Chang
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jia Yu
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiangping Bao
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Qi Yao, ; Jun Luo,
| | - Jun Luo
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Qi Yao, ; Jun Luo,
| |
Collapse
|
18
|
Zhang Y, Xu S, Liu M, Xu X, Han T, Jia Z, Li X, Lin R. Pharmacokinetic/Pharmacodynamic Study of Salt-Processed Product of Cuscutae Semen with Hepatoprotective Effects. Curr Drug Metab 2022; 23:964-972. [PMID: 36411565 DOI: 10.2174/1389200224666221118112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Salt-processed product of cuscutae semen (SCS), which is documented in Chinese pharmacopoeia (2020 edition), is one of the processed products of cuscustae semen. SCS possesses hepatoprotective effects. However, Pharmacokinetic/Pharmacodynamic (PK-PD) study of SCS with intervening acute liver injury (ALI) has not been reported yet. Effective constituents are still not well addressed. OBJECTIVE This study was performed to study PK-PD properties with the purpose of linking SCS hepatoprotective effects to key therapeutic outlines to guide therapeutic use in clinical settings. METHODS Rats were orally administered SCS after the acute liver injury model was established. Plasma biochemical analysis, antioxidative analysis, and liver histopathology were measured to evaluate the hepatoprotective effects of SCS. Blood samples were collected at different time points (0 h, 0.083 h, 0.25 h, 0.5 h, 1 h, 1.5 h, 2 h, 3 h, 4 h, 8 h, 12 h, 24 h) for PK/PD study after SCS administration. Contents of chlorogenic acid, hyperoside and astragalin were estimated by UHPLC-ESI-MS. The relationship between concentrations of chlorogenic acid, hyperoside, and astragalin and hepatoprotective effects was assessed by PK-PD modeling. RESULTS The results showed that SCS ameliorated liver repair and decreased the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST) markedly. Hepatic oxidative stress was inhibited by SCS, as evidenced by a decrease in malondialdehyde (MDA) and an increase in glutathione (GSH) and superoxide dismutase (SOD) in the liver. PK-PD correlation analysis indicated that concentrations of chlorogenic acid, hyperoside, and astragalin were negatively correlated with level of AST and ALT. CONCLUSION The encouraging finding indicates that SCS has beneficial effects on CCl4-induced liver damage. Chlorogenic acid, hyperoside, and astragalin are three effective constituents to exert hepatoprotective effects while astragalin may have maximum pharmacological activity. PK-PD study reveals the positive relationship between drug concentration and action intensity of SCS against liver injury. This research provides a robust foundation for future studies.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuya Xu
- College of Pharmacy Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Mengnan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinfang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ting Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhe Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiangri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruichao Lin
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
19
|
Yang L, Bi L, Jin L, Wang Y, Li Y, Li Z, He W, Cui H, Miao J, Wang L. Geniposide Ameliorates Liver Fibrosis Through Reducing Oxidative Stress and Inflammatory Respose, Inhibiting Apoptosis and Modulating Overall Metabolism. Front Pharmacol 2021; 12:772635. [PMID: 34899328 PMCID: PMC8651620 DOI: 10.3389/fphar.2021.772635] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a progressive liver damage condition caused by various factors and may progress toward liver cirrhosis, and even hepatocellular carcinoma. Many studies have found that the disfunction in metabolism could contribute to the development of liver fibrosis. Geniposide, derived from Gardenia jasminoides J. Ellis, has been demonstrated with therapeutic effects on liver fibrosis. However, the exact molecular mechanisms of such liver-protection remain largely unknown. The aim of this study was to explored the effect of geniposide on metabolic regulations in liver fibrosis. We used carbon tetrachloride (CCl4) to construct a mouse model of liver fibrosis and subsequently administered geniposide treatment. Therapeutic effects of geniposide on liver fibrosis were accessed through measuring the levels of hepatic enzymes in serum and the pathological changes in liver. We also investigated the effects of geniposide on inflammatory response, oxidative stress and apoptosis in liver. Furthermore, serum untargeted metabolomics were used to explore the metabolic regulatory mechanisms behind geniposide on liver fibrosis. Our results demonstrated that geniposide could reduce the levels of hepatic enzymes in serum and ameliorate the pathological changes in liver fibrosis mice. Geniposide enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased methane dicarboxylic aldehyde (MDA) levels in liver. Geniposide treatment also decreased the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-a) in liver tissue homogenate. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining demonstrated that geniposide could reduce the apoptosis of hepatocytes. Geniposide increased the protein expression of B-cell lymphoma-2 (Bcl-2) and downregulated the protein expression of Bcl-2 Associated X (Bax), cleaved-Caspase 3, and cleaved-Caspase 9. Serum untargeted metabolomics analysis demonstrated that geniposide treatment improved the metabolic disorders including glycerophospholipid metabolism, arginine and proline metabolism, and arachidonic acid (AA) metabolism. In conclusion, our study demonstrated the protective effects of geniposide on liver fibrosis. We found that geniposide could treat liver fibrosis by inhibiting oxidative stress, reducing inflammatory response and apoptosis in the liver, and modulating glycerophospholipid, and arginine, proline, and AA metabolism processes.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Second People's Hospital, Tianjin, China
| | - Liping Bi
- Tianjin Second People's Hospital, Tianjin, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zixuan Li
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Wenju He
- Tianjin First Central Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Li Wang
- Tianjin Second People's Hospital, Tianjin, China
| |
Collapse
|
20
|
Structural Basis for PPARs Activation by The Dual PPARα/γ Agonist Sanguinarine: A Unique Mode of Ligand Recognition. Molecules 2021; 26:molecules26196012. [PMID: 34641558 PMCID: PMC8512631 DOI: 10.3390/molecules26196012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) play crucial roles in glucose and lipid metabolism and inflammation. Sanguinarine is a natural product that is isolated from Sanguinaria Canadensis, a potential therapeutic agent for intervention in chronic diseases. In this study, biochemical and cell-based promoter-reporter gene assays revealed that sanguinarine activated both PPARα and PPARγ, and enhanced their transcriptional activity; thus, sanguinarine was identified as a dual agonist of PPARα/γ. Similar to fenofibrate, sanguinarine upregulates the expression of PPARα-target genes in hepatocytes. Sanguinarine also modulates the expression of key PPARγ-target genes and promotes adipocyte differentiation, but with a lower adipogenic activity compared with rosiglitazone. We report the crystal structure of sanguinarine bound to PPARα, which reveals a unique ligand-binding mode of sanguinarine, dissimilar to the classic Y-shaped binding pocket, which may represent a new pharmacophore that can be optimized for selectively targeting PPARα. Further structural and functional studies uncover the molecular basis for the selectivity of sanguinarine toward PPARα/γ among all three PPARs. In summary, our study identifies a PPARα/γ dual agonist with a unique ligand-binding mode, and provides a promising and viable novel template for the design of dual-targeting PPARs ligands.
Collapse
|
21
|
Zhang ZM, Yang L, Wan Y, Jiang S, Shang EX, Qian DW, Duan JA. The synergic renoprotective effect of Rehmanniae Radix Preparata and Corni Fructus on adenine-induced chronic kidney disease rats based on integrated plasma metabolomics and network pharmacology approach. Life Sci 2021; 278:119545. [PMID: 33930370 DOI: 10.1016/j.lfs.2021.119545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023]
Abstract
AIMS Rehmanniae Radix Preparata (RR) and Corni Fructus (CF) are commonly used together for the treatment of chronic kidney disease (CKD) in the clinical practices for thousands of years. However, little information on their synergy mechanism is available. MAIN METHODS In this study, an integrated approach combining ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabonomics and network pharmacology was adopted to elucidate the cooperation mechanism of RR and CF on the amelioration of CKD. Furthermore, the targets from network pharmacology and metabolism pathways were jointly analyzed. Finally, the activities of key metabolic enzymes were experimentally validated by ELISA. KEY FINDINGS Metabolic profiling indicated that the metabolic disturbance in plasma was markedly alleviated after treatment. Nine putative biomarkers mainly involving in phenylalanine, tyrosine and tryptophan biosynthesis and tyrosine metabolism were identified. Moreover, the compound-target-pathway network of RR and CF for CKD treatment was constructed by network pharmacology, which was related to tyrosine metabolism and arginine and proline metabolism. The results were partly consistent with the findings of plasma metabolomics. SIGNIFICANCE In conclusion, this study solidly supported and enhanced current understanding of the synergy effects of RR and CF on CKD. Meanwhile, it also confirmed the feasibility of combining metabolomics and network pharmacology to identify active components and elucidate the pharmacological effects of traditional Chinese medicines (TCMs).
Collapse
Affiliation(s)
- Zhi-Miao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
22
|
Zhang Y, Xu SY, Jia Z, Han T, Liu MN, Jia TY, Qu WJ, Xu X, Li XR. UPLC-MS/MS Determination of Chlorogenic Acid, Hyperoside and Astragalin in Plasma and its Pharmacokinetic Application in Liver Injury Rats. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200727000551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cuscutae Semen (CS) is reported to show a hepatoprotective effect. Chlorogenic
acid, hyperoside and astragalin are three major biologically active components from CS.
Objective:
A sensitive method based on ultra-high performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) was developed and validated to quantify the three components in rat
plasma and was successfully used to study pharmacokinetics in liver injury rats.
Methods:
Plasma samples were prepared with protein precipitation by acetonitrile. Chromatographic separation
was achieved on ACQUITY-XBridge BEH C18 column with gradient elution using the mobile phase
containing 0.05% formic acid in water (A) and acetonitrile (B). The three components were quantified using
Electrospray Ionization (ESI) source in the negative multiple Reaction Monitoring (MRM) mode.
Results:
Calibration curves of each analyte showed good linearity with correlation coefficients over
0.99. Accuracies (RE%) and precisions (RSD%) were within 15%. The method was stable. Recovery
of the target compounds in plasma samples ranged from 87.00% to 102.29%. No matrix effect was found
to influence the quantitative method.
Conclusion:
The UPLC-MS/MS method met the acceptance criteria and was successfully applied to
the simultaneous determination of chlorogenic acid, hyperoside and astragalin in rat plasma for the first
time. It is suitable for pharmacokinetic application in liver injury rats. It provides the foundation for
further development and utilization of the hepatoprotective effect of cuscutae semen.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Shu-ya Xu
- College of Pharmacy Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Zhe Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Ting Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Meng-nan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Tian-ying Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Wen-jia Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Xinfang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Xiang-ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| |
Collapse
|
23
|
Peng L, Wen L, Shi Q, Gao F, Huang B, Wang C. Chelerythrine Ameliorates Pulmonary Fibrosis via Activating the Nrf2/ARE Signaling Pathway. Cell Biochem Biophys 2021; 79:337-347. [PMID: 33580396 DOI: 10.1007/s12013-021-00967-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Chelerythrine (CHE) is a natural benzophenanthridine alkaloid, which has shown its anti-fibrosis activity in kidney and liver, while the impact of CHE in pulmonary fibrosis is still unclear. This study is developed to explore the impact and mechanism of CHE in pulmonary fibrosis. Pulmonary fibrosis mouse models were established through intratracheal injection of bleomycin (BLM), after which the mice were intraperitoneally injected with CHE (0.375 or 0.75 mg/kg/d) every other day. The mice were sacrificed at the 28th day to collect blood serum, bronchoalveolar lavage fluid (BALF), and pulmonary tissues. Then, the severity of pulmonary fibrosis and the expression of nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) in the pulmonary tissues were detected. Western blot analysis quantified the expressions of fibronectin and alpha-smooth muscle actin (α-SMA). The levels of 4-hydroxynonenal (4-HNE), glutathione (GSH), superoxide dismutase (SOD), TGF-β and hydroxyproline (HP) in the BALF, and pulmonary tissues were measured. The expression levels of Nrf2 and its downstream genes, hemeoxygenase-1 (HO-1) and NAD (P) H: quinone oxidoreductase (NQO1) were examined. CHE at the concentration of 0.375 or 0.75 mg/kg/d could attenuate pulmonary fibrosis. CHE injection reduced the expression levels of fibronectin, α-SMA, and TGF-β, upregulated the levels of SOD and GSH and decreased the levels of 4-HNE and HP. Also, CHE increased the expressions of Nrf2, HO-1, and NQO1. Treatment of Nrf2/antioxidant response element (ARE) inhibitor could block the Nrf2/ARE signaling pathway, thus perturbing the inhibition of CHE on BLM-stimulated pulmonary fibrosis in mice. CHE alleviates BLM-induced pulmonary fibrosis in mice through activating the Nrf2/ARE pathway to increase the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Ling Peng
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Li Wen
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Qingfeng Shi
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Feng Gao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Bin Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Changming Wang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China.
| |
Collapse
|
24
|
Deng AP, Zhang Y, Zhou L, Kang CZ, Lv CG, Kang LP, Nan TG, Zhan ZL, Guo LP, Huang LQ. Systematic review of the alkaloid constituents in several important medicinal plants of the Genus Corydalis. PHYTOCHEMISTRY 2021; 183:112644. [PMID: 33429352 DOI: 10.1016/j.phytochem.2020.112644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The genus Corydalis is a botanical source of various pharmaceutically active components. Its member species have been widely used in traditional medicine systems in Southeast Asia, especially in China for thousands of years. They have been administered to treat the common cold, hypertension, hepatitis, hemorrhage, edema, gastritis, cardiovascular and cerebrovascular diseases, and neurological disorders. Analgesia is the most important effect of Corydalis products, which are relatively non-addictive and associated with low tolerance compared with other analgesics. Certain Corydalis species are rich in alkaloids, which have strong biological activity, and also contain coumarins, flavonoids, steroids, organic acids and other chemical components. These constituents have pharmacological efficacy against diseases of the nervous, cardiovascular and digestive systems. Numerous investigations have been performed on these plants and their components. Here, we systemically summarized the chemical constituents of important medicinal member species of Corydalis that have been reported since 1962. A total 381 alkaloids were enumerated, including 117 quaternary isoquinoline type, 60 Benzophenanthridine type, 37 aporphine type, 10 protopine type, 59 phthalide isoquinoline type, 52 simple isoquinoline-type, 25 lignin amides and 21 other alkaloids. Thus, we have provided a basis for further explorations into the pharmacologically active constituents of Corydalissp.(Papaveraceae) to develop medicines that exert strong effects, are relatively non-addictive, and result in few side effects.
Collapse
Affiliation(s)
- Ai-Ping Deng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yue Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chuan-Zhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chao-Gen Lv
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li-Ping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tie-Gui Nan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhi-Lai Zhan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
25
|
Song L, Zhang Z, Qiu Z, Jiang T. Serum Metabonomic Study of Patients With Acute Coronary Syndrome Using Ultra-Performance Liquid Chromatography Orbitrap Mass Spectrometer. Front Cardiovasc Med 2021; 8:637621. [PMID: 33718457 PMCID: PMC7953136 DOI: 10.3389/fcvm.2021.637621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Acute coronary syndrome (ACS) can cause arrhythmia, heart failure, and even sudden death. Our aim in this study was to identify potential metabolic biomarkers in patients with ACS. The serum metabonomics approach based on ultra-performance liquid chromatography (UPLC)/Orbitrap mass spectrometer (MS) was used to analyze the serum samples from 45 patients with ACS and 29 healthy controls. Multivariate statistical analysis was used to screen for ACS biomarkers. In total, 69 biomarkers were identified to be enriched in 19 metabolic pathways; 43 biomarkers were significantly up-regulated, while 26 biomarkers were significantly down-regulated in the ACS group. The main classes were lyso-sphingolipid (SM), cinnamic acids, cholines, and primary amides. Receiver operating characteristic (ROC) curve analysis showed that lysoPC(20:4(8Z,11Z,14Z,17Z)/0:0) (ROC area under the curve, AUC = 0.936), SM(d18:0/16:0) (ROC AUC = 0.932), and SM(d18:1/14:0) (ROC AUC = 0.923) had a high ACS diagnostic ability. The AUC value of the diagnostic model constructed using these combined biomarkers was 0.96. Therefore, these biomarkers may improve the diagnostic efficacy of ACS. The findings of this study also implied that glycerophospholipid metabolism; the biosynthesis of unsaturated fatty acids; linoleic acid metabolism; and valine, leucine, and isoleucine biosynthesis played important roles in ACS. Network analysis by ingenuity pathway analysis (IPA) showed these biomarkers were correlated to the cardiac hypertrophy signaling pathway, ERK/MAPK signaling pathway, NF-kappa B signaling pathway, nitric oxide (NO) signaling pathway in cardiovascular system, and TLR-signaling pathway. These findings will help to improve the ability of accurate diagnosis and intervention of ACS.
Collapse
Affiliation(s)
- Lei Song
- The First Affiliated Hospital of Soochow University, Suzhou, China.,Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Qiu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingbo Jiang
- The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Yuan Y, Wu Q, Zhao J, Feng Z, Dong J, An M, Wu G, Qin F, Zhao L. Investigation of pathogenesis and therapeutic targets of acute myeloid leukemia based on untargeted plasma metabolomics and network pharmacology approach. J Pharm Biomed Anal 2020; 195:113824. [PMID: 33358300 DOI: 10.1016/j.jpba.2020.113824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease originating from bone marrow hematopoietic stem cells, characterized by anemia, hemorrhage, fever, and infection, with low survival rate. However, the pathogenesis of AML is not fully understood at present. In this work, an integrated approach based untargeted metabolomics and network pharmacology was adopted to elucidate the pathogenesis of AML. Metabolic profiling of plasma samples from 14 patients and 16 healthy individuals were performed based on UHPLC-MS platform. As a result, 23 metabolites were identified by using the human metabolite database based on PLS-DA (partial least squares discriminant analysis) and independent sample test. And metabolic pathways related to AML mainly included fatty acid metabolism, amino acid metabolism, energy metabolism and lipid metabolism. Meanwhile, biomarkers-targets-pathways-disease network was constructed, 75 biomarker targets and 122 disease targets were identified. Furthermore, 30 pathways were predicted, some of which were consistent with these in metabolomics. This is the first time that metabolomics and network pharmacology approach have been combined to investigate the pathogenesis and therapeutic targets of AML. ALDH, CYP2E1 and CYP3A4 were potential therapeutic targets for AML, which provide available way to elucidate the pathogenesis and treatment of AML.
Collapse
Affiliation(s)
- Yunxia Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China
| | - Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, PR China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China
| | - Zhiao Feng
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, PR China
| | - Jiani Dong
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, PR China
| | - Ming An
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, PR China
| | - Guodong Wu
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, PR China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
27
|
Sun L, Zhao M, Zhao Y, Wang M, Man J, Zhao C. Investigation of the therapeutic effect of Shaoyao Gancao decoction on CCL 4 -induced liver injury in rats by metabolomic analysis. Biomed Chromatogr 2020; 34:e4940. [PMID: 32634249 DOI: 10.1002/bmc.4940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Shaoyao Gancao decoction (SGD) is a famous Chinese traditional prescription for treating liver injury. In this research, we investigated the therapeutic effects of SGD on liver injury and its metabolic mechanisms using 1 H NMR and UPLC-MS. Serum biochemical indicators and histopathological methods were used to determine the mechanism of action of SGD in treating liver injury. An orthogonal partial least squares discriminant analysis method was used to screen potential metabolic markers, and the MetaboAnalyst and KEGG PATHWAY databases were used to find relevant metabolic pathways. A total of 26 significant metabolites were identified with significant changes in their abundance levels, and these metabolites are involved in many metabolic pathways such as amino acid and lipid metabolism. The changes in biomarker levels reveal the therapeutic effect of SGD on liver injury, which is of great significance to speculate on possible metabolic mechanisms.
Collapse
Affiliation(s)
- Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingyi Man
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
28
|
Kuai CP, Ju LJ, Hu PP, Huang F. Corydalis saxicola Alkaloids Attenuate Cisplatin-Induced Neuropathic Pain by Reducing Loss of IENF and Blocking TRPV1 Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:407-428. [PMID: 32138533 DOI: 10.1142/s0192415x20500214] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication of cisplatin, which is characterized by intolerable paresthesia, burning, and hyperalgesia, and severely impacts the life quality of patients. However, no clearly potent drug has been found for clinical medication due to its undefined mechanism. Corydalis Saxicola Bunting, a traditional Chinese medicine, has been proven to work well in anti-inflammation, blood circulations improvement, hemostasis, and analgesia. This study was designed to observe the effects of Corydalis saxicola Bunting total alkaloids (CSBTA) on cisplatin-induced neuropathic pain and to explore its potential mechanisms. In this study, the rats received intraperitoneal injection of 2mg/kg cisplatin twice a week for five weeks. Meanwhile, oral administration of low (30mg/kg)-, medium (60mg/kg)- and high (120mg/kg)-dose CSBTA were given daily for five weeks. By using Von-frey hair, heat radiant and -80∘C cold acetone, we found that CSBTA could obviously relieve cisplatin-induced mechanical, heat, and cold hyperalgesia. It has been verified that cisplatin-induced peripheral neuropathy is related to intraepidermal nerve fibers loss and activation of inflammation downstream. Our research found that Tumor necrosis factor-alpha (TNF-α), Interleukin-1beta (IL-1β), and Prostaglandin E2 (PGE2) were significantly increased by 10 intraperitoneal injections of cisplatin, and such pro-inflammation cytokines could be reduced via CSBTA administration. Besides, in the cisplatin model group, the neuronal structures of dorsal root ganglia (DRG) were severely damaged and the loss of intraepidermal nerve fibers occurred; but in the CSBTA administration groups, all above pathological changes were improved. Moreover, CSBTA could normalize the overexpression levels of p-p38 and Transient receptor potential vanilloid receptor (TRPV1) induced by cisplatin in DRG, trigeminal ganglion (TG), spinal cord, and foot of rats. In summary, we considered that CSBTA exerted its therapeutic effects by ameliorating neuronal damages, improving intraepidermal nerve fiber (IENF) loss, and inhibiting inflammation-induced p38 phosphorylation to block TRPV1 activation. These findings were the first to confirm the analgesic effect of CSBTA on CIPN and suggested a novel strategy for treating CIPN in clinic.
Collapse
Affiliation(s)
- Cui-Ping Kuai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China
| | - Lin-Jie Ju
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China
| | - Pei-Pei Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China
| | - Fang Huang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
29
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
30
|
Cao J, Duan Y, Liu Y, Liu H, Wei C, Wang J, Qin X, Wang X, Li Z. Metabolomics coupled with SystemsDock reveal the protective effect and the potential active components of Naozhenning granule against traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112247. [PMID: 31542470 DOI: 10.1016/j.jep.2019.112247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naozhenning granule (NZN), a widely traditional Chinese medicine (TCM) prescription with a long history of clinical, which is mainly used in the treatment of concussion, cerebral post-traumatic syndrome, consists of Di Huang (Radix of Rehmannia glutinosa (Gaertn.) DC.), Dang Gui (Radix of Angelica sinensis (Oliv.) Diels), Chen Pi (Pericarpium of Citrus reticulata Blanco), Dan shen (Radix of Salvia Miltiorrhiza Bunge.), Di Long (Pheretima aspergillum (E. Perrier)), Mu Dan Pi (Cortex of Paeonia suffruticosa Andrews), Suan Zao Ren (Semen of Ziziphus jujuba Mill.), Chuan Xiong (Rhizoma of Ligusticum striatum DC.), Zhu Ru (Phyllostachys nigra (Lodd. Ex Lindl.) Munro), Bai Zi Ren (Semen of Platycladus orientalis (L.) Franco) and Fu Ling (sclerotium of Poria cocos (Schw.)Wolf). AIM OF THE STUDY This study aimed to unravel the mechanism and material basis of NZN against traumatic brain injury. MATERIALS AND METHODS In this study, a 1H nuclear magnetic resonance (NMR) based metabolomic approach combined with systemsDock was employed to study the protective effect of NZN against traumatic brain injury using a cerebral concussion rat model. The morris water maze test and biochemical indexes were used to evaluate the efficacy of NZN. RESULTS The results of morris water maze test suggested NZN can improve the spatial learning and memory of model rats, and the superoxide dismutas (SOD) and malonyldialdehyde (MDA) level indicated that the effect of NZN was related with the regulation of oxidative stress. Multivariate analysis revealed that the effect of NZN was related with regulation of 18 brain metabolites, and the corresponding metabolic pathways were further revealed by MetPA analysis. 13 serum absorbed components were found to hit the targets both related with the metabolic regulation and cerebral trauma through systemsDock-aided molecular docking experiments, and these compounds might be served as the active compounds in NZN against cerebral trauma. CONCLUSION 1H-NMR based metabolomics and molecular docking provided the insights for the synergistic mechanisms and the potential active compounds of NZN in treating cerebral trauma. However, the bioactive compounds and their synergistic effect need to be further validated.
Collapse
Affiliation(s)
- Jianhua Cao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, China
| | - Yahui Duan
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, China
| | - Yanzhi Liu
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Haixia Liu
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Chunhong Wei
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Jiang Wang
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China
| | - Xuwen Wang
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China.
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
31
|
Su G, Wang H, Bai J, Chen G, Pei Y. A Metabonomics Approach to Drug Toxicology in Liver Disease and its Application in Traditional Chinese Medicine. Curr Drug Metab 2019; 20:292-300. [PMID: 30599107 DOI: 10.2174/1389200220666181231124439] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The progression of liver disease causes metabolic transformation in vivo and thus affects corresponding endogenous small molecular compounds. Metabonomics is a powerful technology which is able to assess global low-molecular-weight endogenous metabolites in a biological system. This review is intended to provide an overview of a metabonomics approach to the drug toxicology of diseases of the liver. METHODS The regulation of, and relationship between, endogenous metabolites and diseases of the liver is discussed in detail. Furthermore, the metabolic pathways involved in drug interventions of liver diseases are reviewed. Evaluation of the protective mechanisms of traditional Chinese medicine in liver diseases using metabonomics is also reviewed. Examples of applications of metabolite profiling concerning biomarker discovery are highlighted. In addition, new developments and future prospects are described. RESULTS Metabonomics can measure changes in metabolism relating to different stages of liver disease, so metabolic differences can provide a basis for the diagnosis, treatment and prognosis of various diseases. CONCLUSION Metabonomics has great advantages in all aspects of the therapy of liver diseases, with good prospects for clinical application.
Collapse
Affiliation(s)
- Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Bai
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuehu Pei
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
32
|
Hu XQ, Song YN, Wu R, Cai FF, Zhang Y, Peng JH, Hu YY, Su SB. Metabolic mechanisms of Fuzheng-Huayu formula against liver fibrosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111888. [PMID: 31004725 DOI: 10.1016/j.jep.2019.111888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/31/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng-Huayu formula (FZHY) is traditionally used to treat liver fibrosis in clinic. The study was conducted to investigate the metabolic mechanisms of FZHY against liver fibrosis in rats. MATERIALS AND METHODS Rats with CCl4 -induced liver fibrosis were treated with FZHY and its components, including amygdalin, cordyceps polysaccharide and gypenoside, respecitively. Liver fibrosis and function were assesed by histopathological examination, Western blot and serum biochemical detection. Metabolic profiling of liver tissue, serum and urine in each group were detected by gas chromatography-mass spectrometry (GC-MS) and transcriptomic changes were tested by gene chip. RT-qPCR was used to validate levels of different expressed genes (DEGs) with statistical significance. Metabolic network together with DEGs was constructed based on KEGG database. RESULTS FZHY effectively improved liver fibrosis better than the mixture or single use of gypenoside, cordyceps sinensis mycelia and amygdalin. FZHY treatment widely modulated the metabolic profiles perturbed by liver fibrosis, involving several important metabolic pathways, including glycolysis/gluconeogenesis, glucose-alanine cycle, citrate cycle, galactose metabolism, tryptophan metabolism, urea cycle, etc. It also increased alanine and decreased glucose levels in liver tissue and decreased both of them in serum and urine, which were dysregulated by CCl4 treatment. Additionally, FZHY also upregulated expression of metabolic enzymes including Hk2, Adh1 and Gpt increased, and downregulated Gs and Acss2. CONCLUSION FZHY improved liver fibrosis in rats via altering the metabolic pathways and regulating gene expression of involved metabolic enzymes.
Collapse
Affiliation(s)
- Xue-Qing Hu
- Research Center for Complex System of Traditional Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-Nan Song
- Research Center for Complex System of Traditional Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, china
| | - Rong Wu
- Research Center for Complex System of Traditional Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei-Fei Cai
- Research Center for Complex System of Traditional Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongyu Zhang
- Research Center for Traditional Chinese Medicine and System Biology, Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing-Hua Peng
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shi-Bing Su
- Research Center for Complex System of Traditional Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
33
|
Lin J, Deng C, Peng Y, Zheng J, Wei L, Shi Y, Gong Z, Hu G. Dynamic Changes in MMP1 and TIMP1 in the Antifibrotic Process of Dahuang Zhechong Pill in Rats with Liver Fibrosis. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AbstractOn the basis of carbon tetrachloride (CCl4)induced liver fibrosis in rats, this study aims to investigate the dynamic changes in matrix metalloproteinase 1 (MMP1) and the tissue inhibitor of metalloproteinase 1 (TIMP1) in the antifibrotic process of Dahuang Zhechong Pill (DHZCP). A total of 50 male Sprague Dawley rats, aged 8 weeks, were randomly divided into 3 groups: the control group, the model group (the group treated with CCl4), and the treatment group (the group treated with CCl4 and DHZCP). Rats were sacrificed at Weeks 4 and 8. Liver tissues were separated for RNA sequencing and bioinformatics analysis. Real-time PCR, Western blot analysis, and histological staining were conducted to confirm the gene expression and pathological change in liver tissues. Compared with control group, rats in model group showed poor mental state and slow weight gain. The liver tissues of the rats in the model group exhibited a damaged hepatic lobule structure, fibrous connective tissue hyperplasia, and inflammatory cell infiltration among the hyperplastic tissues. DHZCP could significantly improve the appearance of rats and alleviate CCl4-induced fibrosis. Compared to model group, 798 differentially expressed mRNAs were found in the treatment group, of which 120 were up-regulated and 678 were down-regulated. Differentially expressed mRNAs between the CCl4-induced group and the DHZCP-treated group were mainly focused on the following KEGG pathways: focal adhesion, phagosome, tight junction, and ECM–receptor interactions. Relative to those in the control group, MMP1 was downregulated, whereas, TIMP1 and Col1A1 were upregulated in the CCl4-induced group at Weeks 4 and 8. DHZCP could reverse MMP1, TIMP1, and Col1A1 expression.DHZCP protects against liver injury and exerts an antifibrotic effect on liver fibrosis induced by CCl4 in rats. Its mechanism may be related to the upregulation of MMP1, downregulation of TIMP1, and promotion of collagen degradation.
Collapse
Affiliation(s)
- Jiayu Lin
- Guangzhou Medical University, Guangzhou511436, China
- Department of Gastroenterology, The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen518033, China
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen518036, China
| | - Chaowen Deng
- Department of Traditional Chinese Medicine, Peking University Shenzhen Hospital, Shenzhen518036, China
| | - Yanzhong Peng
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen518036, China
| | - Jie Zheng
- Department of Intensive Care Unit, Southern Medical University Shenzhen Hospital, Shenzhen518010, China
| | - Liya Wei
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Zhenghua Gong
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Guoxin Hu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen518036, China
| |
Collapse
|
34
|
Efficiency of Sophora flavescens-Fructus Ligustri Lucidi Drug Pairs in the Treatment of Liver Fibrosis Based on the Response Surface Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8609490. [PMID: 31057655 PMCID: PMC6463676 DOI: 10.1155/2019/8609490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022]
Abstract
The pairing of Sophora flavescens and Fructus Ligustri lucidi is taken from Shi Jinmo Medicine. The idea behind this pairing was inspired by the similarity in pharmacological effects of the two herbal drugs, both of which are known to be effective in the treatment and protection against liver fibrosis. To quantitatively study the extent of the interaction between these drugs and the effect of pairing on the treatment of liver fibrosis, an animal model of liver fibrosis mice was established by intraperitoneal injection of low-dose carbon tetrachloride. The drugs were then administered individually, or in predefined compatibility ratio pairs, by gavage, and the effects on indexes of liver fibrosis were observed. The multisynthetic index method was adopted using Matlab software in order to construct a three-dimensional response surface map of the integration effect and conduct interaction analysis of Sophora flavescens and Fructus Ligustri lucidi. The quadratic surface fitting pattern was designed by quadratic regression to determine the optimal range of each drug. The obtained results show that when the compatibility ratio of Sophora flavescens-Fructus Ligustri lucidi drug pairs is less than or equal to 1:1, their therapeutic effect is enhanced by synergy (interaction value ranging between -0.2 and -1). Overall, the synergy of the high-dose drug pairs is stronger than that of the low-dose drug pairs. The optimal dose ranges are 6~12 g and 8~17 g for Sophora flavescens and Fructus Ligustri lucidi, respectively.
Collapse
|