1
|
Merghany RM, Salem MA, Ezzat SM, Moustafa SFA, El-Sawi SA, Meselhy MR. A comparative UPLC-orbitrap-MS-based metabolite profiling of three Pelargonium species cultivated in Egypt. Sci Rep 2024; 14:22765. [PMID: 39353957 PMCID: PMC11445532 DOI: 10.1038/s41598-024-72153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Several Pelargonium species are cultivated mainly to produce essential oils used in perfume industry and for ornamental purposes. Although the chemical composition and biological activities of their essential oils were extensively investigated, there is limited information about the chemical composition of their non-volatile constituents. In this study, we report an Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS)-based metabolomics approach for the annotation and analysis of various metabolites in three species; P. graveolens, P. denticulatum, and P. fragrans utilizing The Global Natural Product Social Molecular Networking (GNPS) and multivariate data analyses for clustering of the metabolites. A total of 154 metabolites belonging to different classes were annotated. The three species are good sources of coumarins, benzoic acid derivatives, organic acids, fatty acids, and phospholipids. However, the highest level of flavonols (mono- and di-O-glycosides) and cinnamic acid derivatives was found in P. graveolens and P. denticulatum, whereas tannins and flavone C-glycosides were abundant in P. fragrans. The metabolic profiles clarified here provide comprehensive information on the non-volatile constituents of the three Pelargonium species and can be employed for their authentication and possible therapeutic applications.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El Buhouth St., Cairo, 12622, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibîn el Kôm, 32511, Menoufia, Egypt
- The BioActives Lab, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El Buhouth St., Cairo, 12622, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Xiao X, Wu F, Wang B, Cai Z, Wang L, Zhang Y, Yu X, Luo Y. Clerodendranthus spicatus (Thunb.) Water Extracts Reduce Lipid Accumulation and Oxidative Stress in the Caenorhabditis elegans. Int J Mol Sci 2024; 25:9655. [PMID: 39273603 PMCID: PMC11394974 DOI: 10.3390/ijms25179655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Clerodendranthus spicatus (Thunb.) (Kidney tea) is a very distinctive ethnic herbal medicine in China. Its leaves are widely used as a healthy tea. Many previous studies have demonstrated its various longevity-promoting effects; however, the safety and specific health-promoting effects of Clerodendranthus spicatus (C. spicatus) as a dietary supplement remain unclear. In order to understand the effect of C. spicatus on the longevity of Caenorhabditis elegans (C. elegans), we evaluated its role in C. elegans; C. spicatus water extracts (CSw) were analyzed for the major components and the effects on C. elegans were investigated from physiological and biochemical to molecular levels; CSw contain significant phenolic components (primarily rosmarinic acid and eugenolinic acid) and flavonoids (primarily quercetin and isorhamnetin) and can increase the lifespan of C. elegans. Further investigations showed that CSw modulate stress resistance and lipid metabolism through influencing DAF-16/FoxO (DAF-16), Heat shock factor 1 (HSF-1), and Nuclear Hormone Receptor-49 (NHR-49) signalling pathways; CSw can improve the antioxidant and hypolipidemic activity of C. elegans and prolong the lifespan of C. elegans (with the best effect at low concentrations). Therefore, the recommended daily use of C. spicatus should be considered when consuming it as a healthy tea on a daily basis.
Collapse
Affiliation(s)
- Xian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fanhua Wu
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Bing Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zeping Cai
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lanying Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yunfei Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xudong Yu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yanping Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Li Z, Cao Q, Chen H, Yang J, Wang Z, Qu X, Yao Y, Zhou Z, Zhang W. Dual Phytochemical/Activity-Guided Optimal Preparation and Bioactive Material Basis of Orthosiphon Stamineus Benth. (Shen Tea) against Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18561-18572. [PMID: 39121367 DOI: 10.1021/acs.jafc.4c05125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Orthosiphon stamineus Benth. (OSB) is a popular plant used for making "Shen tea" or "Java tea". It has been demonstrated with antioxidant, anti-inflammatory, and hepatoprotective activities. However, its potential beneficial effects and bioactive material basis for nonalcoholic fatty liver disease (NAFLD) has not been convincingly studied. In the present work, we conducted dual phytochemical/activity-guided extraction optimization and component fractionation of OSB, and evaluated its beneficial effects on NAFLD. Flavonoids and polyphenols (caffeic acid/protocatechuic acid derivatives) were determined as the dominant phytochemicals in OSB. The extraction process for these phytochemicals was optimized by using response surface methodology. Noticeably, flavonoids showed a stronger correlation with the antioxidant activities of OSB than polyphenols. Likewise, the flavonoid-rich fraction of OSB exerted antioxidant activities stronger than those of other fractions. As expected, in vitro and in vivo studies demonstrated that the flavonoid-rich fraction effectively attenuated weight increase, improved lipid metabolism, alleviated hepatic steatosis, and reversed hepatic inflammation. Importantly, this fraction showed equivalent beneficial effects to the total extract of OSB, suggesting that flavonoids were the main bioactive constituents of OSB. The action mechanism was indicated as direct antioxidant effect through chemical interaction with free radicals and indirect mitochondria-mediated antioxidant defense. Our research offers bioactive substances for further exploitation and expands the potential application of OSB.
Collapse
Affiliation(s)
- Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| | - Qiongyue Cao
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Haoyu Chen
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Junyi Yang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhihao Wang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiangquan Qu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yuqin Yao
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhengkun Zhou
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P. R. China
| |
Collapse
|
4
|
Ouyang J, Lin D, Chen X, Li Y, Liu Q, Li D, Quan H, Fu X, Wu Q, Wang X, Wu S, Li C, Feng Y, Mao W. Analysis of the chemical constituents and their metabolites in Orthosiphon stamineus Benth. via UHPLC-Q exactive orbitrap-HRMS and AFADESI-MSI techniques. PLoS One 2024; 19:e0304852. [PMID: 38917120 PMCID: PMC11198764 DOI: 10.1371/journal.pone.0304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Known for its strong diuretic properties, the perennial herbaceous plant Orthosiphon stamineus Benth. is believed to preserve the kidney disease. This study compared the boiling water extract with powdered Orthosiphon stamineus Benth. and used a highly sensitive and high resolution UHPLC-Q-Exactive-Orbitrap-HRMS technology to evaluate its chemical composition. RESULTS Furthermore, by monitoring the absorption of prototype components in rat plasma following oral treatment, the beneficial ingredients of the Orthosiphon stamineus Benth. decoction was discovered. Approximately 92 substances underwent a preliminary identification utilizing relevant databases, relevant literature, and reference standards. As the compound differences between the powdered Orthosiphon stamineus Benth. and its water decoction were analyzed, it was found that boiling produced additional compounds, 48 of which were new. 45 blood absorption prototype components and 49 OS metabolites were discovered from rat serum, and a kidney tissue homogenate revealed an additional 28 prototype components. Early differences in the distribution of ferulic acid, cis 4 coumaric acid, and rosmarinic acid were shown using spatial metabolomics. It was elucidated that the renal cortex region is where rosmarinic acid largely acts, offering a theoretical foundation for further studies on the application of OS in the prevention and treatment of illness as well as the preservation of kidney function. SIGNIFICANCE In this study, UHPLC-Q Exactive Orbitrap-HRMS was employed to discern OS's chemical composition, and a rapid, sensitive, and broad-coverage AFADESI-MSI method was developed to visualize the spatial distribution of compounds in tissues.
Collapse
Affiliation(s)
- Jianting Ouyang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Danyao Lin
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xuesheng Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yimeng Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qin Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Delun Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Haohao Quan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xinwen Fu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qiaoru Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaowan Wang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Chuang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yi Feng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Department of Pharmacokinetics of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Wei Mao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Wang J, Zhang X, Li S, Zhang T, Sui W, Zhang M, Yang S, Chen H. Physical properties, phenolic profile and antioxidant capacity of Java tea (Clerodendranthus spicatus) stems as affected by steam explosion treatment. Food Chem 2024; 440:138190. [PMID: 38113648 DOI: 10.1016/j.foodchem.2023.138190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Java tea (Clerodendranthus spicatus) has been favored for its various health benefits and abundance of phenolic substances. Steam explosion (SE) treatment was performed in the pretreatment of Java tea stems and the physical properties, phenolic profile and antioxidant capacity were investigated. Extraction kinetics study showed that the phenolics yields of Java tea stems treated at 2.4 MPa for 10 min reached the maximum in 40 min, which was approximately 3 times the yields of raw stems in 180 min. The antioxidant activities of the extracts of Java tea stems were also significantly increased after SE treatment (P < 0.05). In addition, 19 phenolics were detected in Java tea stems by HPLC/QTOF-MS/MS, and rosmarinic acid was found to be hydrolyzed to danshensu during the SE process. SE could be an efficient pretreatment technology to improve the extraction rates of phenolics and conversions of their high-value hydrolyzed products, which could facilitate further research of Java tea products.
Collapse
Affiliation(s)
- Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China; School of Medicine, Shanxi Datong University, Shanxi, Datong 037009, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wenjie Sui
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Agricultural University, Tianjin 300384, PR China
| | - Shuyu Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
6
|
Dallali D, Fakhfakh J, Paris C, Aoiadni N, Philippot S, Risler A, Varbanov M, Allouche N. HPLC-HESI-MS/MS Analysis of Phenolic Compounds from Cynoglossum tubiflorus Leaf Extracts: An Assessment of Their Cytotoxic, Antioxidant, and Antibacterial Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:909. [PMID: 38592935 PMCID: PMC10974341 DOI: 10.3390/plants13060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
The current study aimed to investigate the chemical composition, antioxidant, antibacterial, and cytotoxic properties of three extracts (hexane, dichloromethane, and methanol) from Cynoglossum tubiflorus. The composition of the methanolic extract was elucidated using HPLC-HESI-MS/MS analysis. The antioxidant effect was examined using NO, DPPH, FRAP, and TAC assays. Antimicrobial activity was evaluated by broth microdilution using various bacterial strains such as S. aureus, S. epidermidis, P. aeruginosa, E. coli, and K. pneumoniae. Structural disruptions in Gram-positive bacteria were visualized using scanning electron microscopy (SEM). Cytotoxic effects were evaluated on human MRC-5 in culture according to the MTT assay. The outcomes suggest that methanol extract contained a high amount of phenolic compounds (254.35 ± 0.360 mg GAE/g DE and 211.59 ± 0.939 mg QE/g DE). By applying the HPLC-HESI-MS/MS analysis, 32 compounds were identified, including phenolic acids, flavonoids, lignans, and fatty acids. This extract showed strong antioxidant (IC50 = 0.043 ± 0.001 mg/mL) and antimicrobial (MIC = 156 µg/mL) activities. The SEM suggests that cells exhibited membrane distortions characterized by surface depressions and alterations in bacterial shape, including dents, when compared to untreated cells. The in vitro cytotoxicity effect on human MRC-5 cells showed no toxicity effects at a concentration of 600 µg/mL. In silico analysis predicted low toxicity for all tested compounds across four different administration routes. This research indicates that this plant could be explored as a powerful source of natural drugs to target pathogens, with applications in the food, pharmaceutical, and medical industries.
Collapse
Affiliation(s)
- Dhouha Dallali
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| | - Jawhar Fakhfakh
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| | - Cédric Paris
- Université de Lorraine, LIBio, F-54000 Nancy, France;
| | - Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Sfax P.O. Box 1171, Tunisia;
| | - Stéphanie Philippot
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
| | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.P.); (A.R.); (M.V.)
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax P.O. Box 1171, Tunisia; (D.D.); (J.F.)
| |
Collapse
|
7
|
Serrano CA, Villena GK, Rodríguez EF, Calsino B, Ludeña MA, Ccana-Ccapatinta GV. Phytochemical analysis for ten Peruvian Mentheae (Lamiaceae) by liquid chromatography associated with high resolution mass spectrometry. Sci Rep 2023; 13:10714. [PMID: 37400603 DOI: 10.1038/s41598-023-37830-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
The profile of secondary metabolites in ten members of tribe Mentheae (Nepetoideae, Lamiaceae) from Peru by liquid chromatography associated with high resolution mass spectrometry, is presented. Salvianolic acids and their precursors were found, particularly rosmarinic acid, caffeic acid ester derivatives, as well as a diversity of free and glycosylated flavonoids as main substances. At all, 111 structures were tentatively identified.
Collapse
Affiliation(s)
- Carlos A Serrano
- Laboratorio de Química Orgánica, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru.
| | - Gretty K Villena
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Eric F Rodríguez
- Herbarium Truxillense (HUT), Universidad Nacional de Trujillo, Trujillo, Peru
| | | | - Michael A Ludeña
- Laboratorio de Química Orgánica, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | |
Collapse
|
8
|
Investigation on Antioxidant Activity and Different Metabolites of Mulberry ( Morus spp.) Leaves Depending on the Harvest Months by UPLC-Q-TOF-MS with Multivariate Tools. Molecules 2023; 28:molecules28041947. [PMID: 36838934 PMCID: PMC9961089 DOI: 10.3390/molecules28041947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The changes in active components in mulberry leaves harvested in different months and their antioxidant activities were investigated. Ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) with multivariate statistical tools was used to investigate the chemical constituents in the extracts of mulberry leaves. The results indicated that mulberry leaves were rich in phenolic acids, flavonoids, organic acids, and fatty acid derivatives. In addition, 25 different compounds were identified in the different batches of mulberry leaves. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was measured to evaluate the in vitro antioxidant activities of mulberry leaves. Among the four batches, batch A, harvested in December, exhibited the strongest DPPH radical-scavenging activity, while batch B, harvested in March, showed the weakest activity. This was related to the total phenolic content in the mulberry leaves of each batch. The optimal harvest time of mulberry leaves greatly influences the bioactivity and bioavailability of the plant.
Collapse
|
9
|
Liu M, Zhao X, Ma Z, Qiu Z, Sun L, Wang M, Ren X, Deng Y. Discovery of potential Q-marker of traditional Chinese medicine based on chemical profiling, chemometrics, network pharmacology, and molecular docking: Centipeda minima as an example. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1225-1234. [PMID: 36117130 DOI: 10.1002/pca.3173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The characteristics of chemical components or groups of chemical components in traditional Chinese medicines (TCMs) determine their clinical efficacy. Quality markers (Q-markers) is of great significance for standardizing the quality control system of TCM. OBJECTIVES We aimed to develop a new strategy to discover potential Q-markers of TCM by integrating chemometrics, network pharmacology, and molecular docking, using Centipeda minima (also known as ebushicao [EBSC]) as an example. MATERIALS AND METHODS First, fingerprints of different batches of EBSC and its counterfeit Arenaria oreophila (also known as zaozhui [ZZ]) were established. Second, chemometric analysis was conducted to determine the influence of varying authenticity/batches of herbs on quality and the chemical markers were screened out. Third, network pharmacology and molecular docking simulations were used to verify the relationship between active ingredients and targets. Lastly, potential Q-markers were selected based on TCM theory. RESULTS The chemical profiles of EBSC and ZZ were investigated. It was found that different batches of EBSC have differences in chemical composition. Based on our chemometric analysis, chlorogenic acid, rutin, isochlorogenic acid A, quercetin, arnicolide D, and brevilin A were selected as candidate active ingredients. ATIL6, EGFR, CASP3, MYC, HIF1A, and VEGFA were the main targets. Molecular docking was used to verify the binding ability. Based on the concept of Q-marker, arnicolide D and brevilin A were identified as potential Q-markers for EBSC. CONCLUSIONS Our strategy could be used as a practical approach to discover Q-markers of TCM to evaluate overall chemical consistency.
Collapse
Affiliation(s)
- Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoran Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zicheng Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziying Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Alshehade SA, Al Zarzour RH, Murugaiyah V, Lim SYM, El-Refae HG, Alshawsh MA. Mechanism of action of Orthosiphon stamineus against non-alcoholic fatty liver disease: Insights from systems pharmacology and molecular docking approaches. Saudi Pharm J 2022; 30:1572-1588. [PMID: 36465851 PMCID: PMC9715956 DOI: 10.1016/j.jsps.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of a metabolic syndrome caused by excessive accumulation of fat in the liver. Orthosiphon stamineus also known as Orthosiphon aristatus is a medicinal plant with possible potential beneficial effects on various metabolic disorders. This study aims to investigate the in vitro inhibitory effects of O. stamineus on hepatic fat accumulation and to further use the computational systems pharmacology approach to identify the pharmacokinetic properties of the bioactive compounds of O. stamineus and to predict their molecular mechanisms against NAFLD. METHODS The effects of an ethanolic extract of O. stamineus leaves on cytotoxicity, fat accumulation and antioxidant activity were assessed using HepG2 cells. The bioactive compounds of O. stamineus were identified using LC/MS and two bioinformatics databases, namely the Traditional Chinese Medicine Integrated Database (TCMID) and the Bioinformatics Analysis Tool for the Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Pathway enrichment analysis was performed on the predicted targets of the bioactive compounds to provide a systematic overview of the molecular mechanism of action, while molecular docking was used to validate the predicted targets. RESULTS A total of 27 bioactive compounds corresponding to 50 potential NAFLD-related targets were identified. O. stamineus exerts its anti-NAFLD effects by modulating a variety of cellular processes, including oxidative stress, mitochondrial β-oxidation, inflammatory signalling pathways, insulin signalling, and fatty acid homeostasis pathways. O. stamineus is significantly targeting many oxidative stress regulators, including JNK, mammalian target of rapamycin (mTOR), NFKB1, PPAR, and AKT1. Molecular docking analysis confirmed the expected high affinity for the potential targets, while the in vitro assay indicates the ability of O. stamineus to inhibit hepatic fat accumulation. CONCLUSION Using the computational systems pharmacology approach, the potentially beneficial effect of O. stamineus in NAFLD was indicated through the combination of multiple compounds, multiple targets, and multicellular components.
Collapse
Affiliation(s)
- Salah Abdulrazak Alshehade
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Raghdaa Hamdan Al Zarzour
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Arab International University (AIU), Damascus, Syria
| | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | | | | |
Collapse
|
11
|
Kashchenko NI, Jafarova GS, Isaev JI, Olennikov DN, Chirikova NK. Caucasian Dragonheads: Phenolic Compounds, Polysaccharides, and Bioactivity of Dracocephalum austriacum and Dracocephalum botryoides. PLANTS (BASEL, SWITZERLAND) 2022; 11:2126. [PMID: 36015428 PMCID: PMC9413935 DOI: 10.3390/plants11162126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Dracocephalum botryoides Steven and Dracocephalum austriacum L. are unexplored species of the Dracocephalum genus (Lamiaceae family) with a distribution in the Caucasus, where they are used in folk medicine and local cuisine. There are no data on the chemical composition of these Dracocephalum species. In this study, the application of a liquid chromatography-mass spectrometry technique for the metabolite profiling of methanol extracts from herbs and roots of D. austriacum and D. botryoides resulted in the identification of 50 compounds, including benzoic acid derivatives, phenylpropanoids, flavonoids and lignans. Water-soluble polysaccharides of the herbs and roots of D. austriacum and D. botryoides were isolated and characterized as mostly pectins with additive arabinogalactan-protein complexes and starch-like compounds. The antioxidant potential of the studied extracts of Dracocephalum and selected phenolics and water-soluble polysaccharides were investigated via radical-scavenging and ferrous (II) ion chelating assays. This paper demonstrates that herbs and roots of D. austriacum and D. botryoides are rich sources of metabolites and could be valuable plants for new biologically active products. To the best of our knowledge, this is the first study of whole plant metabolites and their antioxidant activity in D. austriacum and D. botryoides.
Collapse
Affiliation(s)
- Nina I. Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 670047 Ulan-Ude, Russia
| | - Gunay S. Jafarova
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, AZ1022 Baku, Azerbaijan
| | - Javanshir I. Isaev
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, AZ1022 Baku, Azerbaijan
| | - Daniil N. Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 670047 Ulan-Ude, Russia
| | - Nadezhda K. Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia
| |
Collapse
|
12
|
Yang M, Wu C, Zhang T, Shi L, Li J, Liang H, Lv X, Jing F, Qin L, Zhao T, Wang C, Liu G, Feng S, Li F. Chicoric Acid: Natural Occurrence, Chemical Synthesis, Biosynthesis, and Their Bioactive Effects. Front Chem 2022; 10:888673. [PMID: 35815211 PMCID: PMC9262330 DOI: 10.3389/fchem.2022.888673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Chicoric acid has been widely used in food, medicine, animal husbandry, and other commercial products because of its significant pharmacological activities. However, the shortage of chicoric acid limits its further development and utilization. Currently, Echinacea purpurea (L.) Moench serves as the primary natural resource of chicoric acid, while other sources of it are poorly known. Extracting chicoric acid from plants is the most common approach. Meanwhile, chicoric acid levels vary in different plants as well as in the same plant from different areas and different medicinal parts, and different extraction methods. We comprehensively reviewed the information regarding the sources of chicoric acid from plant extracts, its chemical synthesis, biosynthesis, and bioactive effects.
Collapse
Affiliation(s)
- Min Yang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Wu
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Preparation Technology, Department of Pharmaceutical Engineering, Shandong Drug and Food Vocational College, Weihai, China
| | - Tianxi Zhang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian Li
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation, Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongbao Liang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Xuzhen Lv
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengtang Jing
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Qin
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianlun Zhao
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenxi Wang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangxu Liu
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Feng
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Li
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Faramayuda F, Mariani TS, Elfahmi, Sukrasno. Influence of elicitation and precursors on major secondary metabolite production in cultures of purple Orthosiphon aristatus Blume Miq. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Popowski D, Zentek J, Piwowarski JP, Granica S. Gut Microbiota of Pigs Metabolizes Extracts of Filipendula ulmaria and Orthosiphon aristatus-Herbal Remedies Used in Urinary Tract Disorders. PLANTA MEDICA 2022; 88:254-261. [PMID: 34624904 DOI: 10.1055/a-1647-2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Urinary tract infections influence the mortality rate in pigs and are linked to extensive antibiotic usage in the farm industry. Filipendula ulmaria (L.) Maxim. and Orthosiphon aristatus (Blume) Miq. are widespread medicinal plants traditionally used to treat urinary tract disorders. As their preparations are orally administered, the metabolism of their constituents by gut microbiota before absorption should be considered. Until now, no experiments had been performed to describe the biotransformation of tthose plants' extracts by animal gut microbiota. The study evaluates the influence of pig intestinal microbiota on the structure of active compounds in flowers of F. ulmaria and leaves of O. aristatus. The incubations of the extracts with piglet gut microbiota were performed in anaerobic conditions, and the samples of the batch culture were collected for 24 h. In F. ulmaria, the main metabolites were quercetin and kaempferol, which were products of the deglycosylation of flavonoids. After 24 h incubation of O. aristatus extract with the piglet gut microbiota, 2 main metabolites were observed. One, tentatively identified as 3-(3-dihydroxyphenyl)propionic acid, is likely the primary metabolite of the most abundant depsides and phenolic acids. The results confirm the formation of the compounds with anti-inflammatory and diuretic activity in the microbiota cultures, which might suggest F. ulmaria and O. aristatus for treating urinary tract disorders in piglets. Based on the similarities of human and pig gut microbiota, the pig model can help estimate the metabolic pathways of natural products in humans.
Collapse
Affiliation(s)
- Dominik Popowski
- MicrobiotaLab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, Warsaw, Poland
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jakub P Piwowarski
- MicrobiotaLab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, Warsaw, Poland
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Granica
- MicrobiotaLab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Patel K, Patel DK. Therapeutic Effectiveness of Sinensetin Against Cancer and Other Human Complications: A Review of Biological Potential and Pharmacological Activities. Cardiovasc Hematol Disord Drug Targets 2022; 22:144-154. [PMID: 36503465 DOI: 10.2174/1871529x23666221207121955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/14/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plant and their active phytoproducts have been used in modern medicine and playing an important role in the health sectors since a very early age. Human beings need a considerable amount of these plant-based phytochemicals for their health. The flavonoidal class phytochemical is an important class of natural products in modern healthcare because of their different pharmacological activities and health benefits. Flavonoidal class phytochemicals have been used to treat diabetes and related secondary complications in humans. Flavonoids have antiapoptotic, anti-hyperlipidemic, anti-inflammatory, and anti-oxidant potential in the health sectors. Sinensetin, also called 3',4',5,6,7-pentametoksiflavon is a colorless compound with a molecular weight 372.37g/mol and is found to be present in the Orthosiphon stamineus. METHODS In the present investigation, we aim to collect scientific information on sinensetin and analyze it for its biological potential and therapeutic benefits against various types of disorders and complications. Medicinal importance and pharmacological activities data have been collected and analyzed in the present work for sinensetin through literature data analysis of different research works. Google Science Direct, PubMed, Scopus, and Google Scholar were mainly searched to collect the scientific information in the present work. The present work analyzed sinensetin biological potential, pharmacological activities, and analytical aspects. RESULTS Literature data analysis of different scientific research works revealed the biological potential of phytochemicals in medicine, including flavonoids. Sinensetin has anti-tumor, antiinflammatory, anti-oxidant, anti-diabetic, and antibacterial activities through their testing in different in vitro and in vivo models. Sinensetin has physiological functions, including anti-oxidant, antiinflammation, and anti-cancer potential in medicine. Scientific data analysis signified the biological importance of sinensetin against tumors, gastric cancer, colorectal cancer, breast cancer, diabetes, influenza H1N1 infection, obesity, inflammation, colitis, brain disorders, and microbial infections. Further biological potential of sinensetin on enzymes and angiogenesis has been analyzed in the present work. Sinensetin was isolated through different analytical and extraction techniques, including chromatographic techniques. CONCLUSION Literature data analysis signified sinensetin's biological potential and pharmacological activities in medicine.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
16
|
Li Z, Qu B, Zhou L, Chen H, Wang J, Zhang W, Chen C. A New Strategy to Investigate the Efficacy Markers Underlying the Medicinal Potentials of Orthosiphon stamineus Benth. Front Pharmacol 2021; 12:748684. [PMID: 34630118 PMCID: PMC8497827 DOI: 10.3389/fphar.2021.748684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Orthosiphon stamineus Benth. (OSB) is a well-known herbal medicine exerting various pharmacological effects and medicinal potentials. Owing to its complex of phytochemical constituents, as well as the ambiguous relationship between phytochemical constituents and varied bioactivities, it is a great challenge to explore which constituents make a core contribution to the efficacy of OSB, making it difficult to determine the efficacy makers underlying the varied efficacies of OSB. In our work, a new strategy was exploited and applied for investigating efficacy markers of OSB consisting of phytochemical analysis, in vivo absorption analysis, bioactive compound screening, and bioactive compound quantification. Using liquid chromatography coupled with mass spectrometry, a total of 34 phytochemical components were detected in the OSB extract. Subsequently, based on in vivo absorption analysis, 14 phytochemical constituents in the form of prototypes were retained as potential bioactive compounds. Ten diseases were selected as the potential indications of OSB based on previous reports, and then the overall interaction between compounds, action targets, action pathways, and diseases was revealed based on bioinformatic analysis. After refining key pathways and targets, the interaction reversing from pathways, targets to constituents was deduced, and the core constituents, including tanshinone IIA, sinensetin, salvianolic acid B, rosmarinic acid, and salvigenin, were screened out as the efficacy markers of OSB. Finally, the contents of these five constituents were quantified in three different batches of OSB extracts. Among them, the content of salvianolic acid B was the highest while the content of tanshinone IIA was the lowest. Our work could provide a promising direction for future research on the quality control and pharmacological mechanism of OSB.
Collapse
Affiliation(s)
- Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Biao Qu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Lei Zhou
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Caifa Chen
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
17
|
Luo Y, Liu Y, Wen Q, Feng Y, Tan T. Comprehensive chemical and metabolic profiling of anti-hyperglycemic active fraction from Clerodendranthi Spicati Herba. J Sep Sci 2021; 44:1805-1814. [PMID: 33569908 DOI: 10.1002/jssc.202000834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 11/06/2022]
Abstract
Extensive pharmacological research has demonstrated that Clerodendranthi Spicati Herba has an obvious anti-hyperglycemic effect via α-glucosidase inhibitory activity. However, the anti-hyperglycemic active fraction and its metabolic behavior in vivo have not been elaborated clearly. In this study, ultra-high-performance liquid chromatography coupled to quadrupole time of flight tandem mass spectrometry with data filtering strategy, including mass defect screening, diagnostic product ions and neutral loss identification, was established for chemical and metabolic profiling of anti-hyperglycemic active fraction from Clerodendranthi Spicati Herba. A total of 28 methoxylated flavonoids and 61 diterpenoids were rapidly identified. Four main known methoxylated flavonoids were purified and unambiguously identified by nuclear magnetic resonance analysis. Thirty-one absorbed diterpenoids, 12 absorbed methoxylated flavonoids, and 56 methoxylated flavonoids metabolites were identified in rat plasma, urine, bile, and feces after oral administration of anti-hyperglycemic active fraction. The methoxylated flavonoids were predominantly metabolized by demethylation, sulfation, and glucuronidation. Glucuronidation metabolites found in bile and urine after demethylation were dominant metabolites. Diterpenoids were absorbed into the blood mainly in the form of prototypes and excreted through bile and urine. These results indicated that methoxylated flavonoids and diterpenoids were responsible for α-glucosidase inhibitory activity, which might provide novel drug candidates for the management of diabetes mellitus.
Collapse
Affiliation(s)
- Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
| | - Yue Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
| | - Quan Wen
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
| | - Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
18
|
Montero L, Schmitz OJ, Meckelmann SW. Chemical characterization of eight herbal liqueurs by means of liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. J Chromatogr A 2020; 1631:461560. [PMID: 32992146 DOI: 10.1016/j.chroma.2020.461560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
Herbal liqueurs are a large group of diverse alcoholic beverages with an ancient tradition produced by maceration of various herbs and spices and are commonly drunken before or after a meal to aid in the digestion because of their potential functional properties. In the presented work, eight different commercial herbal liqueurs were investigated with regard to their composition of phenolic compounds by liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS). This multidimensional analytical platform uses all-ion fragmentation for a deep coverage of the foodome. After an extensive data clean-up, 3225 features were found. 213 features were manually annotated due to the absence of databases and software tools able to consider the drift time or Collison Cross Section (CCS) together with high resolution MS/MS spectra for identification. The identified compounds reflected the large variance between the investigated samples and a wealth of potential bioactive compounds that these liqueurs harbor.
Collapse
Affiliation(s)
- Lidia Montero
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstrasse 5, Essen 45141, Germany.
| |
Collapse
|
19
|
Separation, UPLC-QTOF-MS/MS analysis, and antioxidant activity of hydrolyzable tannins from water caltrop (Trapa quadrispinosa) pericarps. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Xu WH, Wang HT, Sun Y, Xue ZC, Liang ML, Su WK. Antihyperuricemic and nephroprotective effects of extracts from Orthosiphon stamineus in hyperuricemic mice. ACTA ACUST UNITED AC 2020; 72:551-560. [PMID: 31910301 DOI: 10.1111/jphp.13222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To investigate the antihyperuricemia and nephroprotective effects of Orthosiphon stamineus extracts on hyperuricemia (HUA) mice and explore the potential mechanisms. METHODS Orthosiphon stamineus extracts were extracted using 50% ethanol and enriched using ethyl acetate, and characterised utilising UPLC/ESI-MS. A potassium oxonate (PO) induced hyperuricemic mouse model was used to evaluate antihyperuricemia and nephroprotective effects of O. stamineus ethyl acetate extracts (OSE). KEY FINDINGS Eight constituents from OSE were identified and OSE treatment ameliorated HUA by regulating key indicators of kidney dysfunction and xanthine oxidase, adenosine deaminase activity and urate transporters in hyperuricemic mice. Moreover, in renal histopathology analysis, OSE significantly alleviated kidney injury. CONCLUSIONS These findings demonstrate that OSE has antihyperuricemic and nephroprotective effects on PO-induced HUA mice and those results indicate that OSE could be a safe and effective agent or functional ingredient for treating HUA.
Collapse
Affiliation(s)
- Wen-Hao Xu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Han-Tao Wang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ying Sun
- Zhejiang Xianju Pharmaceutical Technology Co., Ltd, Hangzhou, China
| | - Zhen-Cheng Xue
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ming-Li Liang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Wei-Ke Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Feng R, Li L, Zhang X, Zhang Y, Chen Y, Feng X, Zhang L, Zhang G. Assessment of a developed HPLC-MS/MS approach for determining plasma eupatorin in rats and its application in pharmacokinetics analysis. RSC Adv 2020; 10:32020-32026. [PMID: 35518153 PMCID: PMC9056642 DOI: 10.1039/d0ra03350b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/23/2020] [Indexed: 11/22/2022] Open
Abstract
Eupatorin, a bioactive compound extracted from Java tea (Orthosiphon stamineus), possesses potent anti-cancer, anti-inflammatory and vasodilation activities. To date, no pharmacokinetics studies on eupatorin have yet been performed. Here, we established and validated a sensitive and selective LC-MS/MS (liquid chromatography-tandem mass spectrometry) approach for determining plasma eupatorin in rats. Chromatographic fractionation was conducted on a Wonda Cract ODS-2 C18 Column (4.6 mm × 150 mm, 5 μm) with a mobile phase containing aqueous 0.1% formic acid and acetonitrile using a flow rate of 0.8 ml min−1. In multiple reaction monitoring mode, precursor-to-product ion transitions for quantification of eupatorin and the internal standard were set at 343.1 → 328.1 and 252.0 → 155.9, respectively. The intra- and inter-day precision and accuracy were found to be below 6.72% and within ±8.26% in rat plasma, respectively. Meanwhile, all values of the matrix effect, recovery and stability were within the accepted ranges. Furthermore, we carried out the pharmacokinetic analysis using the developed method. The pharmacokinetic study revealed that while the Cmax (maximum plasma concentration) of eupatorin and time for reaching the Cmax (Tmax) were 974.886 ± 293.898 μg L−1 and 0.25 h, respectively, the half-life was 0.353 ± 0.026 h. This study will be of great significance to the research on the pharmacology, clinical pharmacy and drug action mechanism of eupatorin. Eupatorin, a bioactive compound extracted from Java tea (Orthosiphon stamineus), possesses potent anti-cancer, anti-inflammatory and vasodilation activities.![]()
Collapse
Affiliation(s)
- Rui Feng
- Department of Pharmacy
- The Fourth Hospital of Hebei Medical University
- Shijiazhuang 050011
- P. R. China
| | - Luya Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Xiaowei Zhang
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- P. R. China
| | - Yuqian Zhang
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- P. R. China
| | - Yuting Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Xue Feng
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Guohua Zhang
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- P. R. China
| |
Collapse
|
22
|
Luo Y, Wen Q, Lai CJS, Feng Y, Tan T. Characterization of polymeric phenolic acids and flavonoids in Clerodendranthi Spicati Herba using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry with target and nontarget data mining strategy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1884-1893. [PMID: 31295373 DOI: 10.1002/rcm.8527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Clerodendranthi Spicati Herba (CSH) is often used to treat urinary stones, urinary tract infections and nephritis in China. Much literature has reported that polymeric phenolic acids and flavonoids are the major bioactive components in CSH. Therefore, it is very meaningful to identify the polymeric phenolic acids and flavonoids in CSH. METHODS Ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC/QTOF-MS/MS) analysis with target and nontarget data mining strategy was proposed to rapidly profile the polymeric phenolic acids and flavonoids in CSH. Diagnostic product ions and neutral loss filter were beneficial for identifying the polymeric phenolic acids and flavonoids from complex compounds in CSH. RESULTS A total of 118 compounds, including 85 polymeric phenolic acids and 33 flavonoids, were reasonably identified in CSH by comparing their main fragmentation pathways with literature data, and 85 of them were discovered in CSH firstly by nontarget analysis. Nine potential compounds were characterized tentatively as new pentameric and hexameric phenolic acids in CSH. Six types of polymeric phenolic acids (monomer, dimer, trimer, tetramer, pentamer and hexamer) and four types of flavonoids (apigenin, kaempferol, luteolin and quercetin) were identified in CSH. CONCLUSIONS The results indicated that the UHPLC/QTOF-MS/MS method coupled with target and nontarget data mining strategy was feasible and rational for identifying the polymeric phenolic acids and flavonoids in complex chemical constituents of CSH. The findings will be conducive to the discovery of the active ingredients of CSH and the establishment of quality standards.
Collapse
Affiliation(s)
- Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Quan Wen
- National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| | - Chang-Jiang-Sheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| | - Ting Tan
- National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| |
Collapse
|
23
|
Yang L, Liu RH, He JW. Rapid Analysis of the Chemical Compositions in Semiliquidambar cathayensis Roots by Ultra High-Performance Liquid Chromatography and Quadrupole Time-of-Flight Tandem Mass Spectrometry. Molecules 2019; 24:E4098. [PMID: 31766221 PMCID: PMC6891699 DOI: 10.3390/molecules24224098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
Semiliquidambar cathayensis Chang was a traditional medicinal plant and used to treat rheumatism arthritis and rheumatic arthritis for centuries in China with no scientific validation, while only 15 components were reported. Thus, a rapid, efficient, and precise method based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) was applied in both positive- and negative-ion modes to rapidly analysis the main chemical compositions in S. cathayensis for the first time. Finally, a total of 85 chemical compositions, including 35 alkaloids, 12 flavonoids, 7 terpenoids, 5 phenylpropanoids, 9 fatty acids, 7 cyclic peptides, and 10 others were identified or tentatively characterized in the roots of S. cathayensis based on the accurate mass within 5 ppm error. Moreover, alkaloid, flavonoid, phenylpropanoid, and cyclic peptide were reported from S. cathayensis for the first time. This rapid and sensitive method was highly useful to comprehend the chemical compositions and will provide scientific basis for further study on the material basis, mechanism and clinical application of S. cathayensis roots.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang 330004, China;
| | - Rong-Hua Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jun-Wei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
24
|
Zhang J, Wen Q, Qian K, Feng Y, Luo Y, Tan T. Metabolic profile of rosmarinic acid from Java tea (Orthosiphon stamineus) by ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry with a three-step data mining strategy. Biomed Chromatogr 2019; 33:e4599. [PMID: 31108569 DOI: 10.1002/bmc.4599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
Rosmarinic acid (RA) is a caffeic acid derivative and one of the most abundant and bioactive constituents in Java tea (Orthosiphon stamineus), which has significant biological activities. However, relatively few studies have been conducted to describe this compound's metabolites in vivo. Therefore, an ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) analysis with a three-step data mining strategy was established for the metabolic profile of RA. Firstly, the exogenously sourced ions were filtered out by the MarkerView software and incorporated with Microsoft Office Excel software. Secondly, a novel modified mass detects filter strategy based on the predicted metabolites was developed for screening the target ions with narrow, well-defined mass detection ranges. Thirdly, the diagnostic product ions and neutral loss filtering strategy were applied for the rapid identification of the metabolites. Finally, a total of 16 metabolites were reasonably identified in urine, bile and feces, while metabolites were barely found in plasma. The metabolites of RA could also be distributed rapidly in liver and kidney. Glucuronidation, methylation and sulfation were the primary metabolic pathways of RA. The present findings might provide the theoretical basis for evaluating the biological activities of RA and its future application.
Collapse
Affiliation(s)
- Jing Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| | - Quan Wen
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| | - Kai Qian
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| |
Collapse
|
25
|
Guo Z, Li B, Gu J, Zhu P, Su F, Bai R, Liang X, Xie Y. Simultaneous Quantification and Pharmacokinetic Study of Nine Bioactive Components of Orthosiphon stamineus Benth. Extract in Rat Plasma by UHPLC-MS/MS. Molecules 2019; 24:molecules24173057. [PMID: 31443519 PMCID: PMC6749594 DOI: 10.3390/molecules24173057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
Orthosiphon stamineus Benth. (OS) is a traditional folk medicine for the treatment of kidney stones and other urinary tract diseases. In this study, a rapid and sensitive Ultra high-performance liquid chromatography (UHPLC)-MS/MS approach was established and validated for the simultaneous quantification of nine bioactive components in rat plasma. The nine components from OS extract detected in rat plasma were danshensu, protocatechuic acid, caffeic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, cichoric acid, sinensetin and eupatorin. After liquid-liquid extraction with ethyl acetate, the plasma samples were subjected to a triple quadrupole mass spectrometer employing electrospray ionization (ESI) technique and operating in multiple reaction monitoring (MRM) with both positive and negative ion modes. The standard curves showed good linear regression (r > 0.9915) over the concentration range for the nine analytes. The inter-day and intra-day precision and accuracy were found to be within 15% of the nominal concentration. The recovery and stability of nine compounds were all demonstrated to be within acceptable limits. The approach was successfully applied to investigate the pharmacokinetic analysis of the nine bioactive components after oral administration of OS extract in rats.
Collapse
Affiliation(s)
- Zili Guo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China
| | - Bo Li
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China
| | - Peixi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China
| | - Feng Su
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China
| | - Xianrui Liang
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China.
| | - Yuanyuan Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China.
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310000, China.
| |
Collapse
|
26
|
Cai X, Yang F, Zhu L, Xia Y, Wu Q, Xue H, Lu Y. Rosmarinic Acid, the Main Effective Constituent of Orthosiphon stamineus, Inhibits Intestinal Epithelial Apoptosis Via Regulation of the Nrf2 Pathway in Mice. Molecules 2019; 24:E3027. [PMID: 31438521 PMCID: PMC6749311 DOI: 10.3390/molecules24173027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
Many studies have shown that Orthosiphon stamineus extract (OE) has antioxidant activity, and we previously reported that OE protects the intestine against injury from a high-fat diet. However, the molecular mechanism underlying this protective effect of OE was unclear. Here, OE was separated according to polarity and molecular weight, and the antioxidant activity of each component was compared. The components with the highest antioxidant activity were analyzed by HPLC, which confirmed that rosmarinic acid (RA) was the main effective constituent in OE. OE and RA were then tested in a mouse high-fat diet-induced intestinal injury model. The antioxidant indices and morphological characteristics of the mouse jejunum were measured, and activation of the nuclear factor E2-related factor 2 (Nrf2) pathway and apoptosis of jejunal epithelial cells were analyzed. Of all the constituents in OE, RA contributed the most. Both RA and OE activated the Nrf2 pathway and increased downstream antioxidant enzyme activity. RA and OE protected the mouse intestine against high-fat diet-induced oxidative stress by preventing intestinal epithelial cell apoptosis via both extracellular and intracellular pathways. Thus, RA, the main effective constituent in OE, inhibits intestinal epithelial apoptosis by regulating the Nrf2 pathway in mice.
Collapse
Affiliation(s)
- Xuan Cai
- Shanghai Shenfeng Animal Husbandry and Veterinary Science Technology Co., Ltd., Shanghai 201106, China.
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai 201106, China.
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| | - Fan Yang
- Biology Department, College of Life and Environment Science, Shanghai Normal University,100 Guilin Road, Shanghai 200234, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lihui Zhu
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai 201106, China
| | - Ye Xia
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai 201106, China
| | - Qingyuan Wu
- Biology Department, College of Life and Environment Science, Shanghai Normal University,100 Guilin Road, Shanghai 200234, China
| | - Huiqin Xue
- Shanghai Shenfeng Animal Husbandry and Veterinary Science Technology Co., Ltd., Shanghai 201106, China.
| | - Yonghong Lu
- Shanghai Shenfeng Animal Husbandry and Veterinary Science Technology Co., Ltd., Shanghai 201106, China.
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai 201106, China.
| |
Collapse
|
27
|
Li L, Chen Y, Feng X, Yin J, Li S, Sun Y, Zhang L. Identification of Metabolites of Eupatorin in Vivo and in Vitro Based on UHPLC-Q-TOF-MS/MS. Molecules 2019; 24:E2658. [PMID: 31340434 PMCID: PMC6680898 DOI: 10.3390/molecules24142658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
Eupatorin is the major bioactive component of Java tea (Orthosiphon stamineus), exhibiting strong anticancer and anti-inflammatory activities. However, no research on the metabolism of eupatorin has been reported to date. In the present study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) combined with an efficient online data acquisition and a multiple data processing method were developed for metabolite identification in vivo (rat plasma, bile, urine and feces) and in vitro (rat liver microsomes and intestinal flora). A total of 51 metabolites in vivo, 60 metabolites in vitro were structurally characterized. The loss of CH2, CH2O, O, CO, oxidation, methylation, glucuronidation, sulfate conjugation, N-acetylation, hydrogenation, ketone formation, glycine conjugation, glutamine conjugation and glucose conjugation were the main metabolic pathways of eupatorin. This was the first identification of metabolites of eupatorin in vivo and in vitro and it will provide reference and valuable evidence for further development of new pharmaceuticals and pharmacological mechanisms.
Collapse
Affiliation(s)
- Luya Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuting Chen
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xue Feng
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Jintuo Yin
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Shenghao Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Yupeng Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Lantong Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
28
|
Hernadi E, Rohaeti E, Rafi M, Wahyuni WT, Putri SP, Fukusaki E. HPLC fingerprinting coupled with linear discriminant analysis for the detection of adulteration in Orthosiphon aristatus. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1629956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Elan Hernadi
- Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor, Indonesia
- Balai Pengujian Mutu Produk Tanaman, Kementerian Pertanian Republik Indonesia, Jakarta, Indonesia
| | - Eti Rohaeti
- Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor, Indonesia
- Pusat Studi Biofarmaka Tropika-Lembaga Penelitian dan Pengabdian kepada Masyarakat, Institut Pertanian Bogor, Bogor, Indonesia
| | - Mohamad Rafi
- Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor, Indonesia
- Pusat Studi Biofarmaka Tropika-Lembaga Penelitian dan Pengabdian kepada Masyarakat, Institut Pertanian Bogor, Bogor, Indonesia
| | - Wulan Tri Wahyuni
- Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor, Indonesia
- Pusat Studi Biofarmaka Tropika-Lembaga Penelitian dan Pengabdian kepada Masyarakat, Institut Pertanian Bogor, Bogor, Indonesia
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|