1
|
Bržezická T, Kohútová L, Glatz Z. Atypical applications of transverse diffusion of laminar flow profiles methodology for in-capillary reactions in capillary electrophoresis. J Sep Sci 2024; 47:e2400157. [PMID: 38982555 DOI: 10.1002/jssc.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Capillary electrophoresis (CE) is a powerful separation technique offering quick and efficient analyses in various fields of bioanalytical chemistry. It is characterized by many well-known advantages, but one, which is perhaps the most important for this application field, is somewhat overlooked. It is the possibility to perform chemical and biochemical reactions at the nL scale inside the separation capillary. There are two basic formats applicable for this purpose, heterogeneous and homogeneous. In the former, one reactant is immobilized onto a particle or monolithic support or directly on the capillary wall, and the other is injected. In the latter, the reactant mixing inside a capillary is based on electromigration or diffusion. One of the diffusion-based methodologies, termed Transverse Diffusion of Laminar Flow Profiles, is the subject of this review. Since most studies utilizing in-capillary reactions in CE focus on enzymes, which are being continuously and exhaustively reviewed, this review covers the atypical applications of this methodology, but still in the bioanalytical field. As can be seen from the demonstrated applications, they are not limited to reactions, but can also be utilized for other biochemical systems.
Collapse
Affiliation(s)
- Taťána Bržezická
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Kohútová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Zhang Y, Zhao M, Wang CB, Wang Y, Nsanzamahoro S, Zhu LL, Wang WF, Yang JL. Screening prolyl hydroxylase domain 2 inhibitory activity of traditional Chinese medicine by CZE-UV. Electrophoresis 2022; 43:1601-1610. [PMID: 35405037 DOI: 10.1002/elps.202200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022]
Abstract
Prolyl hydroxylase domain 2 (PHD2) is a key enzyme regulating the expression of hypoxia inducible factor (HIF). Its inhibitors can improve the expression of HIF and downstream genes, which can treat hypoxia-related diseases. Therefore, the establishment of a reliable PHD2 inhibitors screening method is of great significance for the drug development of hypoxia-related diseases. In this work, an accurate, rapid, and simple screening method for PHD2 inhibitors was introduced by capillary zone electrophoresis (CZE). In order to improve the detection sensitivity, the derivative reaction of α-ketoglutaric acid (α-OG) and 1,2-diaminobenzene (OPD) was used to enhance the UV absorption of α-OG (the substrate in the enzymatic reaction). The CZE method selected 20 mM Na2 B4 O7 buffer (pH 9.0) as the separation buffer, +25 kV as the separation voltage, 25°C as the cartridge temperature, and 210 nm as the detection wavelength. Under this condition, the analysis of a single sample can be realized within 9 min. Compared with the existing reported methods, the present work can directly screen the PHD2 inhibitory activity of traditional Chinese medicine (TCM) extracts, which is of significance for the target-purification of bioactive individual compounds from TCMs. Under the optimal conditions, the PHD2 inhibitor screening platform was successfully established, and it was found that 70% methanol/water extracts of Astragali Radix and Codonopsis pilosula had good PHD2 inhibitory activity. Furthermore, the present work provides a novel approach for screening the PHD2 inhibitory activity of TCM extracts and the discovery of anti-hypoxia bioactive compounds.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ming Zhao
- Department of Cognitive Science, Institute of Cognition and Brain Sciences, Beijing, P. R. China
| | - Cheng-Bo Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| | - Yu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ling-Ling Zhu
- Department of Cognitive Science, Institute of Cognition and Brain Sciences, Beijing, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| |
Collapse
|
3
|
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta 2022; 1209:339447. [DOI: 10.1016/j.aca.2022.339447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
|
4
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
5
|
Rozenski J, Asfaw AA, Van Schepdael A. Overview of in-capillary enzymatic reactions using capillary electrophoresis. Electrophoresis 2021; 43:57-73. [PMID: 34510496 DOI: 10.1002/elps.202100161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review summarizes the research that has recently been performed on in-capillary enzymatic reactions integrated with capillary electrophoresis. The manuscript is subdivided in homogeneous and heterogeneous approaches. The main homogeneous techniques are Electrophoretically Mediated Microanalysis, At-inlet and Transverse Diffusion of Laminar Flow Profiles. The main heterogeneous ones are Immobilized MicroEnzyme Reactors with enzymes grafted on either non-magnetic or magnetic particles. The overview covers the period from 2018 to early 2021. The applications range from drug discovery over natural products to food, beverage and pesticide analysis.
Collapse
Affiliation(s)
- Jef Rozenski
- Department ofPharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Adissu Alemayehu Asfaw
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven- University of Leuven, Leuven, Belgium.,Department of Pharmaceutical Analysis and Quality Assurance, College of Health Sciences, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven- University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Soltani S, Hallaj-Nezhadi S, Rashidi MR. A comprehensive review of in silico approaches for the prediction and modulation of aldehyde oxidase-mediated drug metabolism: The current features, challenges and future perspectives. Eur J Med Chem 2021; 222:113559. [PMID: 34119831 DOI: 10.1016/j.ejmech.2021.113559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
The importance of aldehyde oxidase (AOX) in drug metabolism necessitates the development and application of the in silico rational drug design methods as an integral part of drug discovery projects for the early prediction and modulation of AOX-mediated metabolism. The current study represents an up-to-date and thorough review of in silico studies of AOX-mediated metabolism and modulation methods. In addition, the challenges and the knowledge gap that should be covered have been discussed. The importance of aldehyde oxidase (AOX) in drug metabolism is a hot topic in drug discovery. Different strategies are available for the modulation of the AOX-mediated metabolism of drugs. Application of the rational drug design methods as an integral part of drug discovery projects is necessary for the early prediction of AOX-mediated metabolism. The current study represents a comprehensive review of AOX molecular structure, AOX-mediated reactions, AOX substrates, AOX inhibition, approaches to modify AOX-mediated metabolism, prediction of AOX metabolism/substrates/inhibitors, and the AOX related structure-activity relationship (SAR) studies. Furthermore, an up-to-date and thorough review of in silico studies of AOX metabolism has been carried out. In addition, the challenges and the knowledge gap that should be covered in the scientific literature have been discussed in the current review.
Collapse
Affiliation(s)
- Somaieh Soltani
- Pharmaceutical Analysis Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Stem Cell and Regenerative Medicine Institute and Pharmacy faculty, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
7
|
Huang S, Celá A, Adams E, Glatz Z, Van Schepdael A. Aldehyde oxidase assay by capillary electrophoresis: From off-line, online up to immobilized enzyme reactor. J Sep Sci 2020; 43:3565-3572. [PMID: 32627385 DOI: 10.1002/jssc.202000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022]
Abstract
Capillary electrophoresis is a modern separation technique characterized by many benefits, which qualify it also for enzyme assays and the study of enzyme kinetics during drug development. Homogeneous or heterogeneous approaches can be followed for the enzymatic incubation. In this study, an immobilization procedure of aldehyde oxidase on magnetic particles was developed considering their integration with capillary electrophoresis. A number of magnetic nano/microparticle types were tested for this purpose, showing that aldehyde oxidase was most active when immobilized on bare silica magnetic nanoparticles. Primarily, the reusability of the enzyme immobilized on bare silica nanoparticles was tested. Three consecutive incubations with substrate could be performed, but the activity considerably dropped after the first incubation. One reason could be an enzyme detachment from the nanoparticles, but no release was detected neither at 4°C nor at 37°C during 5 h. The drop in enzymatic activity observed in consecutive incubations, could also be due to inactivation of the enzyme over time at given temperature. For the immobilized enzyme stored at 4°C, the activity decreased to 83% after 5 h, in contrast with a steep decrease at 37°C to 37%.
Collapse
Affiliation(s)
- Shengyun Huang
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Andrea Celá
- Faculty of Science, Department of Biochemistry, Masaryk University, Brno, Czech Republic
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Zdenĕk Glatz
- Faculty of Science, Department of Biochemistry, Masaryk University, Brno, Czech Republic
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|