1
|
Takizawa R, Minamizono T, Tsuji D, Yan XJ, Lu FL, Yang XR, Li DP, Akagi R, Kashiwada Y, Tanaka N. Methoxyflavone glucosides and caffeoyl phenylethanoid glycoside from Lysionotus pauciflorus: their structures and anti-ferroptosis activity. J Nat Med 2024:10.1007/s11418-024-01851-w. [PMID: 39443396 DOI: 10.1007/s11418-024-01851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Phytochemical investigation on the aerial parts of Lysionotus pauciflorus Maxim. (Gesneriaceae), a medicinal plant used in Guangxi Zhuang Autonomous Region, China, resulted in the isolation of 13 secondary metabolites including two methoxyflavones, six flavonoid glycosides, and five caffeoyl phenylethanoid glycosides. Among these, the chemical structures of previously undescribed metabolites (1-3) were elucidated to be nevadensin 7-O-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranoside (1), nevadensin 7-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (2), and 2-(3,4-dihydroxyphenyl)ethyl-1-O-β-D-apiofuranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 3)-β-D-(6'-O-E-caffeoyl)glucopyranoside (3) by detailed spectroscopic and HPLC analyses. Inhibitory activity of isolated compounds against RSL3-induced ferroptosis on human hepatoma Hep3B cells were evaluated.
Collapse
Affiliation(s)
- Rena Takizawa
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Tomoyo Minamizono
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Daisuke Tsuji
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan
| | - Xiao-Jie Yan
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Xue-Rong Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Dian-Peng Li
- Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Reiko Akagi
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
2
|
Jin J, Xu X, Wang X, Chen B, Miao Y, Chen Z, Yan D, Qiu F. Development and validation of a liquid chromatography-tandem mass spectrometry method for simultaneous quantification of eight Xiakucao Oral liquid-related compounds in rat plasma and its application in pharmacokinetic study. Biomed Chromatogr 2024; 38:e5902. [PMID: 38922974 DOI: 10.1002/bmc.5902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 06/28/2024]
Abstract
Xiakucao Oral Liquid (XKCOL) has been widely used for treating mammary gland hyperplasia and goiter in China. However, its pharmacokinetic data have been missing to date. To conduct its pharmacokinetic study, we established an LC-tandem mass spectrometry method for the simultaneous determination of eight XKCOL-related compounds in rat plasma. Liquid-liquid extraction was used for the sampling process. Chromatographic separation was performed on a Phenomenon Luna C18 column with a mobile phase of methanol and 2 mM ammonium acetate, using gradient elution at a flow rate of 0.8 mL/min. Detection was performed in the multiple reaction monitoring mode using negative electrospray ionization (ESI-) with optimized MS parameters. Endogenous substances and carryover did not interfere in the detection of analytes. The calibration curves showed a good linear relationship within the linear ranges. The intra- and inter-batch accuracy and precision were 94.8%-110.0% and ≤11.2%, respectively. There was no significant matrix effect and the recovery was reproducible. The dilution of samples did not affect the accuracy and precision. The solution and plasma samples were stable under the various test conditions. The major components of XKCOL absorbed into the blood were salvianic acid A and rosmarinic acid. They demonstrated linear kinetics over the dose range used in this study.
Collapse
Affiliation(s)
- Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqing Xu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinwei Wang
- Department of Medicine, Guiyang XinTian Pharmaceutical Co., LTD, Guiyang, China
- Department of Medicine, Haitian Medical Technology Co., LTD, Shanghai, China
| | - Biao Chen
- Department of Medicine, Guiyang XinTian Pharmaceutical Co., LTD, Guiyang, China
- Department of Medicine, Haitian Medical Technology Co., LTD, Shanghai, China
| | - Yingying Miao
- Department of Medicine, Guiyang XinTian Pharmaceutical Co., LTD, Guiyang, China
- Department of Medicine, Haitian Medical Technology Co., LTD, Shanghai, China
| | - Zhongguo Chen
- Department of Medicine, Haitian Medical Technology Co., LTD, Shanghai, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhang X, Zhang Y, Wang N, Liu J, Zhang LT, Zhang ZQ, Li DQ. The mysteries of pharmacokinetics and in vivo metabolism of Oroxylum indicum (L.) Kurz: A new perspective from MSOP method. Heliyon 2024; 10:e33234. [PMID: 39027462 PMCID: PMC11254595 DOI: 10.1016/j.heliyon.2024.e33234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The pharmacological effects of flavonoids in Oroxylum indicum (L.) Kurz against inflammation, bacterial, and oxidation have been well-documented. Additionally, it is commonly consumed as tea. However, the in vivo mechanism of its main compounds has not been well elucidated. In this study, a highly selective and sensitive UHPLC-Q-TOF-MS method combined with Mass Spectrum-based Orthogonal Projection (MSOP) theory and four-step analytical strategy was established and validated to identify metabolites in rats following oral administration Oroxylum indicum (L.) Kurz extract. Furthermore, a sensitive LC-MS/MS method was developed and validated for the first time to analyze the pharmacokinetics of ten main flavonoids in rats. Notably, a total of 47 metabolites were identified in blood, bile, urine, and feces samples. The maximum plasma concentration (Cmax) values for oroxin A, oroxin B, baicalin, chrysin, baicalein, scutellarein, apigenin, quercetin oroxylin A and isorhamnetin were 2945.1 ± 11.23 ng/mL, 3123.9 ± 16.37 ng/mL, 130.40 ± 27.52 ng/mL, 117.20 ± 28.54 ng/mL, 64.12 ± 19.33 ng/mL, 97.22 ± 24.27 ng/mL, 145.22 ± 29.92 ng/mL, 45.19 ± 18.84 ng/mL, 67.32 ± 15.78 ng/mL and 128.44 ± 26.42 ng/mL. A double peak was observed in the drug-time curve of apigenin, due to enterohepatic recirculation. This study demonstrated that MSOP method provided more technical support for the identification of flavonoid metabolites in complex system than traditional methods.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Yuan Zhang
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Na Wang
- Maternal and Child Health Hospital of Gucheng County, Hengshui, China
| | - Jian Liu
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Lan-tong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, China
| | - Zhi-qing Zhang
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - De-qiang Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| |
Collapse
|
4
|
Zhang Z, Zhou J, Guo R, Zhou Q, Wang L, Xiang X, Ge S, Cui Z. Network pharmacology to explore the molecular mechanisms of Prunella vulgaris for treating thyroid cancer. Medicine (Baltimore) 2023; 102:e34871. [PMID: 37960775 PMCID: PMC10637567 DOI: 10.1097/md.0000000000034871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 08/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Thyroid cancer (TC) is the most common endocrine malignancy that has rapidly increased in global incidence. Prunella vulgaris (PV) has manifested therapeutic effects in patients with TC. We aimed to investigate its molecular mechanisms against TC and provide potential drug targets by using network pharmacology and molecular docking. METHODS The ingredients of PV were retrieved from Traditional Chinese Medicine Systematic Pharmacology Database. TC-related gene sets were established using the GeneCard and OMIM databases. The establishment of the TC-PV target gene interaction network was accomplished using the STRING database. Cytoscape constructed networks for visualization. Protein-protein interaction, gene ontology and the biological pathway Kyoto encyclopedia of genes and genomes enrichment analyses were performed to discover the potential mechanism. Molecular docking technology was used to analyze the effective compounds from PV for treating TC. RESULTS 11 active compounds and 192 target genes were screened from PV. 177 potential targets were obtained by intersecting PV and TC gene sets. Network pharmacological analysis showed that the PV active ingredients including Vulgaxanthin-I, quercetin, Morin, Stigmasterol, poriferasterol monoglucoside, Spinasterol, kaempferol, delphinidin, stigmast-7-enol, beta-sitosterol and luteolin showed better correlation with TC target genes such as JUN, AKT1, mitogen-activated protein kinase 1, IL-6 and RELA. The gene ontology and Kyoto encyclopedia of genes and genomes indicated that PV can act by regulating the host defense and response to oxidative stress immune response and several signaling pathways are closely associated with TC, such as the TNF and IL-17. Protein-protein interaction network identified 8 hub genes. The molecular docking was conducted on the most significant gene MYC. Eleven active compounds of PV can enter the active pocket of MYC, namely poriferasterol monoglucoside, stigmasterol, beta-sitosterol, vulgaxanthin-I, spinasterol, stigmast-7-enol, luteolin, delphinidin, morin, quercetin and kaempferol. Further analysis showed that oriferasterol monoglucoside, followed by tigmasterol, were the potential therapeutic compound identified in PV for the treatment of TC. CONCLUSION The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism of PV. MYC is a promising drug target to reduce oxidative stress damage and potential anti-tumor effect. Oriferasterol monoglucoside and kaempferol were 2 bioactive compounds of PV to treat TC. This provides a basis to understand the mechanism of the anti-TC activity of PV.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Otolaryngology Head and Neck Surgery Institute, The Affiliated Hospital of Yanbian University, Yanbian University, Jilin, China
| | - Jiayi Zhou
- Oncology Institute, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar Medical University, Heilongjiang, China
| | - Ruiqian Guo
- Oncology Institute, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar Medical University, Heilongjiang, China
| | - Qijun Zhou
- Basic Medical College of Qiqihar Medical University, Qiqihar Medical University, Heilongjiang, China
| | - Lianzhi Wang
- Basic Medical College of Qiqihar Medical University, Qiqihar Medical University, Heilongjiang, China
| | - Xingyan Xiang
- Oncology Institute, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar Medical University, Heilongjiang, China
| | - Sitong Ge
- Otolaryngology Head and Neck Surgery Institute, The Affiliated Hospital of Yanbian University, Yanbian University, Jilin, China
| | - Zhezhu Cui
- Otolaryngology Head and Neck Surgery Institute, The Affiliated Hospital of Yanbian University, Yanbian University, Jilin, China
| |
Collapse
|
5
|
Yao Y, Yu YC, Cai MR, Zhang ZQ, Bai J, Wu HM, Li P, Zhao TT, Ni J, Yin XB. UPLC-MS/MS method for the determination of the herb composition of Tangshen formula and the in vivo pharmacokinetics of its metabolites in rat plasma. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:402-426. [PMID: 34907611 DOI: 10.1002/pca.3098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Tangshen formula (TSF) is a traditional Chinese medicine composed of seven medicinal herbs including Astragalus membranaceus, Rehmannia glutinosa Libosch, Citrus aurantium L., etc. which is used to treat diabetic nephropathy III, IV qi and yin deficiency and stasis syndrome. Most of the studies on TSF are pharmacological and pharmacodynamic experiments. There are few basic studies on its chemical substances, and the effective constituents are not clear. OBJECTIVE To analyse the main chemical components of TSF and the absorbed components in rat plasma following oral administration based on liquid chromatography tandem mass spectrometry (LC-MS/MS). Moreover, providing a rapid and valid analytical strategy for simultaneous determination of six components in rat plasma and use it in pharmacokinetic studies. RESULTS A total of 132 components were identified in TSF, and 44 components were identified in rat plasma after oral TSF, 35 of which were prototype components and nine were metabolic components. A sensitive and reliable LC-MS/MS method was developed for simultaneous determination of six components in rat plasma. The intra-day and inter-day precision relative standard deviation (RSD) was lower than 15%; the accuracy of low, medium and high concentrations ranged from 80% to 120%. The recovery met the requirements and the RSD of the recoveries was less than 15%. CONCLUSION A total of 132 components were identified in TSF. The LC-MS/MS quantitative method for the simultaneous determination of morroniside, loganin, notoginsenoside R1 , ginsenoside Re, ginsenoside Rb1 and astragaloside IV in rat plasma was established for the first time. The pharmacokinetic parameters are clarified, which can guide the clinical medication of TSF.
Collapse
Affiliation(s)
- Yu Yao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Ying-Chao Yu
- Medical Department, Yujiawu Community Healthcare Center, Beijing, China
| | - Meng-Ru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Qin Zhang
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Bai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Min Wu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ting-Ting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Bin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Chen L, Yao C, Li J, Wang J, Yao S, Shen S, Yang L, Zhang J, Wei W, Bi Q, Guo DA. Systematic characterization of chemical constituents in Mahuang decoction by UHPLC tandem linear ion trap-Orbitrap mass spectrometry coupled with feature-based molecular networking. J Sep Sci 2021; 44:2717-2727. [PMID: 33963673 DOI: 10.1002/jssc.202100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Comprehensive characterization of traditional Chinese medicine prescriptions has long been a hurdle due to the chemical complexity and the lack of analytical tools. Mahuang decoction is a well-known traditional Chinese medicine prescription widely used for sweating and relieving the exterior, relieving cough and asthma, but it was insufficiently chemically scrutinized. In this study, the chemical component information of Mahuang decoction was investigated by ultrahigh-performance liquid chromatography tandem linear ion trap-Orbitrap mass spectrometry. A new data processing tool, feature-based molecular networking, was introduced for grouping and elucidating the compounds. In this way, 156 chemical components were identified or tentatively characterized, including alkaloids, triterpenoid saponins, flavanone-O-glycosides, flavone-C-glycosides, and procyanidins. Thus, this research provides a solid foundation for further development of Mahuang decoction, and the adopted method is expected to be applied to other traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- Ling Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jiayuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jing Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Shuai Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Shijie Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Lin Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - De-An Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
7
|
Zhang C, Liu C, Wu H, Wang J, Sun Y, Liu R, Li T, Yu X, Geng D, Sun YK. Global Analysis the Potential Medicinal Substances of Shuangxia Decoction and the Process In Vivo via Mass Spectrometry Technology. Front Pharmacol 2021; 12:654807. [PMID: 33995072 PMCID: PMC8120809 DOI: 10.3389/fphar.2021.654807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Shuangxia decoction is an effective traditional Chinese medicine formula for treating insomnia. Up to now, there has not been any report about the effective substances. An omics data processing method based on mass spectrometry technology is used to explore the chemical composition changes of Shuangxia decoction, the components absorbed into the blood and brain, and to explore the anti-insomnia mechanism based on molecular docking technology. Forty-nine chemical components in Shuangxia decoction have been identified, and 51 new components generated by co-decoction have been discovered. It was found that 7,404 compounds of Shuangxia decoction were absorbed into the blood. Forty kinds of known compounds were quickly identified, and 15 new compounds generated by co-decoction were also found to be absorbed into the blood. By using UPLC-MS/MS method, it was confirmed that 10 compounds were absorbed into the blood and 9 compounds were absorbed into the brain. Furthermore, it is found that rosmarinic acid is mainly distributed in the hypothalamus and striatum, and caffeic acid is mainly distributed in the hypothalamus, striatum, and hippocampus. Molecular docking results showed rosmarinic acid, danshensu, and HMLA with GABAA receptor have excellent binding characteristics, even surpassing the proligand. Danshensu and HMLA with dopamine D2 receptor also showed good binding energy. Our findings will help to further confirm the mechanism of Shuangxia decoction for relieving insomnia, and we also establish a novel data processing method for supplementing the mechanism of the efficacy of other traditional Chinese medicine formula.
Collapse
Affiliation(s)
- Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runhua Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Di Geng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Kun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Fang F, Wen WB, Xie XH, Yang L, Zhang X, Zhao J. The Mechanism of Jian-Gan-Xiao-Zhi Decoction in Insulin Resistant Adipocytes and Its Component Analysis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21997678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Jian-Gan-Xiao-Zhi decoction (JGXZ) is a traditional Chinese medicine formula to treat patients with non-alcoholic fatty liver disease (NAFLD). The study aimed to analyze the mechanism of JGXZ in adipocytes and detect the main components of the drug in rat serum. Methods: 3T3-L1 preadipocytes were used to establish an insulin resistant (IR) adipocyte model. Lipid accumulation in adipocytes was detected by oil red O staining. After JGXZ treatment, glucose consumption, total cholesterol (TC), and triglyceride (TG) were analyzed using the corresponding kits. ROS levels were measured by flow cytometry. In addition, Western blot was used to assess LKB1/AMPK and JNK/IRS/PI3k/AKT expressions. The main components of JGXZ in rat serum samples were detected by LC-MS/MS using a Phenomenex Luna C18 column, a mobile phase of methanol and 0.1% formic acid solution, and ESI detection. Results: JGXZ significantly decreased glucose levels and adipogenesis, accompanied by decreased IR ( P < 0.01). Besides, JGXZ markedly affected ROS, LKB1/AMPK, and JNK/IRS/PI3k/AKT levels ( P < 0.01). R1, Rg1, paeoniflorin, Rb1, astragaloside IV, and tanshinone could be significantly quantified. Conclusions: JGXZ decreased glucose and lipid synthesis, possibly via the ROS/AMPK/JNK pathway. R1, Rg1, paeoniflorin, Rb1, astragaloside IV, and tanshinone in JGXZ could play major roles in treating NAFLD, which could assist in the study of the mechanism of JGXZ in treating NAFLD.
Collapse
Affiliation(s)
- Fang Fang
- Nanjing University of Chinese Medicine, Nanjing, China
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Wei-Bo Wen
- Nanjing University of Chinese Medicine, Nanjing, China
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Xue-Hua Xie
- Nanjing University of Chinese Medicine, Nanjing, China
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Ling Yang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Xu Zhang
- Department of Dermatology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Jie Zhao
- Department of Senile Disease, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Feng R, Li L, Zhang X, Zhang Y, Chen Y, Feng X, Zhang L, Zhang G. Assessment of a developed HPLC-MS/MS approach for determining plasma eupatorin in rats and its application in pharmacokinetics analysis. RSC Adv 2020; 10:32020-32026. [PMID: 35518153 PMCID: PMC9056642 DOI: 10.1039/d0ra03350b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/23/2020] [Indexed: 11/22/2022] Open
Abstract
Eupatorin, a bioactive compound extracted from Java tea (Orthosiphon stamineus), possesses potent anti-cancer, anti-inflammatory and vasodilation activities. To date, no pharmacokinetics studies on eupatorin have yet been performed. Here, we established and validated a sensitive and selective LC-MS/MS (liquid chromatography-tandem mass spectrometry) approach for determining plasma eupatorin in rats. Chromatographic fractionation was conducted on a Wonda Cract ODS-2 C18 Column (4.6 mm × 150 mm, 5 μm) with a mobile phase containing aqueous 0.1% formic acid and acetonitrile using a flow rate of 0.8 ml min−1. In multiple reaction monitoring mode, precursor-to-product ion transitions for quantification of eupatorin and the internal standard were set at 343.1 → 328.1 and 252.0 → 155.9, respectively. The intra- and inter-day precision and accuracy were found to be below 6.72% and within ±8.26% in rat plasma, respectively. Meanwhile, all values of the matrix effect, recovery and stability were within the accepted ranges. Furthermore, we carried out the pharmacokinetic analysis using the developed method. The pharmacokinetic study revealed that while the Cmax (maximum plasma concentration) of eupatorin and time for reaching the Cmax (Tmax) were 974.886 ± 293.898 μg L−1 and 0.25 h, respectively, the half-life was 0.353 ± 0.026 h. This study will be of great significance to the research on the pharmacology, clinical pharmacy and drug action mechanism of eupatorin. Eupatorin, a bioactive compound extracted from Java tea (Orthosiphon stamineus), possesses potent anti-cancer, anti-inflammatory and vasodilation activities.![]()
Collapse
Affiliation(s)
- Rui Feng
- Department of Pharmacy
- The Fourth Hospital of Hebei Medical University
- Shijiazhuang 050011
- P. R. China
| | - Luya Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Xiaowei Zhang
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- P. R. China
| | - Yuqian Zhang
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- P. R. China
| | - Yuting Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Xue Feng
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Guohua Zhang
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- P. R. China
| |
Collapse
|
10
|
Li L, Feng R, Feng X, Chen Y, Liu X, Sun W, Zhang L. The development and validation of an HPLC-MS/MS method for the determination of eriocitrin in rat plasma and its application to a pharmacokinetic study. RSC Adv 2020; 10:10552-10558. [PMID: 35492908 PMCID: PMC9050387 DOI: 10.1039/c9ra10925k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Eriocitrin is one of the major active constituents of lemon fruit, and it possesses strong antioxidant, lipid-lowering, anticancer and anti-inflammatory activities and has long been used in food, beverages and wine.
Collapse
Affiliation(s)
- Luya Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Rui Feng
- Department of Pharmacy
- The Fourth Hospital of Hebei Medical University
- Shijiazhuang 050011
- P.R. China
| | - Xue Feng
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Yuting Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Xin Liu
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Wenjing Sun
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| |
Collapse
|