1
|
Lněničková K, Vrba J, Kosina P, Papoušková B, Mekadim C, Mrázek J, Sova M, Sovová E, Valentová K, Křen V, Kouřilová P, Vrbková J, Ulrichová J. Metabolic profiling of silymarin constituents in urine and feces of healthy volunteers: A 90-day study. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
2
|
Li W, Che YN, Chen YY, Wang Z, Wang Z, Jiang LL, Shi HC, Liu Y. Inhibition of UGT1A1*1 and UGT1A1*6 catalyzed glucuronidation of SN-38 by silybins. Chem Biol Interact 2022; 368:110248. [DOI: 10.1016/j.cbi.2022.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
3
|
Křen V, Valentová K. Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep 2022; 39:1264-1281. [PMID: 35510639 DOI: 10.1039/d2np00013j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2015 up to 2022 (Feb)Silymarin, an extract of milk thistle (Silybum marianum) fruits, has been used in various medicinal applications since ancient times. A major component of silymarin is the flavonolignan silybin and its relatives isosilybin, silychristin, silydianin, 2,3-dehydrosilybin, and some others. Except for silydianin, they occur in nature as two stereomers. This review focuses on recent developments in chemistry, biosynthesis, modern advanced analytical methods, and transformations of flavonolignans specifically reflecting their chirality. Recently described chemotypes of S. marianum, but also the newest findings regarding the pharmacokinetics, hepatoprotective, antiviral, neuroprotective, and cardioprotective activity, modulation of endocrine functions, modulation of multidrug resistance, and safety of flavonolignans are discussed. A growing number of studies show that the respective diastereomers of flavonolignans have significantly different activities in anisotropic biological systems. Moreover, it is now clear that flavonolignans do not act as antioxidants in vivo, but as specific ligands of biological targets and therefore their chirality is crucial. Many controversies often arise, mainly due to the non-standard composition of this phytopreparation, the use of various undefined mixtures, the misattribution of silymarin vs. silybin, and also the failure to consider the chemistry of the respective components of silymarin.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| |
Collapse
|
4
|
Lessigiarska I, Peng Y, Tsakovska I, Alov P, Lagarde N, Jereva D, Villoutreix BO, Nicot AB, Pajeva I, Pencheva T, Miteva MA. Computational Analysis of Chemical Space of Natural Compounds Interacting with Sulfotransferases. Molecules 2021; 26:molecules26216360. [PMID: 34770768 PMCID: PMC8588419 DOI: 10.3390/molecules26216360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.
Collapse
Affiliation(s)
- Iglika Lessigiarska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Yunhui Peng
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ivanka Tsakovska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Nathalie Lagarde
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 Rue Conté, Hésam Université, 75003 Paris, France;
| | - Dessislava Jereva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | | | - Arnaud B. Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, F-44000 Nantes, France;
| | - Ilza Pajeva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Tania Pencheva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
- Correspondence: (T.P.); (M.A.M.)
| | - Maria A. Miteva
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Correspondence: (T.P.); (M.A.M.)
| |
Collapse
|
5
|
Xia H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer's disease. Drug Metab Rev 2021; 53:563-591. [PMID: 34491868 DOI: 10.1080/03602532.2021.1977316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder, the incidence of which is climbing with ever-growing aged population, but no cure is hitherto available. The epidemiological studies unveiled that chronic intake of flavonoids was negatively associated with AD risk. Flavonoids, a family of natural polyphenols widely distributed in human daily diets, were readily conjugated by phase II drug metabolizing enzymes after absorption in vivo, and glucuronidation could occur in 1 min following intravenous administration. Recently, as many as 191 metabolites were obtained after intragastric administration of a single flavonoid, indicating that other bioactive metabolites, besides conjugates, might be formed and account for the contradiction between efficacy of flavonoids in human or animal models and low systematic exposure of flavonoid glycosides or aglycones. In this review, metabolism of complete 68 flavonoid monomers potential for AD treatment, grouped in flavonoid O-glycosides, flavonoid aglycones, flavonoid C-glycosides, flavonoid dimers, flavonolignans and prenylated flavonoids according to their common structural elements, respectively, has been systematically retrospected, summarized and discussed, including their unequivocally identified metabolites, metabolic interconversions, metabolic locations, metabolic sites (regio- or stereo-selectivity), primarily involved metabolic enzymes or intestinal bacteria, and interspecies correlations or differences in metabolism, and their bioactive metabolites and the underlying mechanism to reverse AD pathology were also reviewed, providing whole perspective about advances on extensive metabolism of diverse potent flavonoids in vivo and in vitro up to date and aiming at elucidation of mechanism of actions of flavonoids on AD or other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Hongjun Xia
- Medical College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
6
|
Křen V. Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners. Int J Mol Sci 2021; 22:ijms22157885. [PMID: 34360650 PMCID: PMC8346157 DOI: 10.3390/ijms22157885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
7
|
Tvrdý V, Pourová J, Jirkovský E, Křen V, Valentová K, Mladěnka P. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med Res Rev 2021; 41:2195-2246. [PMID: 33587317 DOI: 10.1002/med.21791] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Silymarin is an extract from the seeds (fruits) of Silybum marianum that contains flavonolignans and flavonoids. Although it is frequently used as a hepatoprotective agent, its application remains somewhat debatable, in particular, due to the low oral bioavailability of flavonolignans. Moreover, there are claims of its potential interactions with concomitantly used drugs. This review aims at a systematic summary and critical assessment of known information on the pharmacokinetics of particular silymarin flavonolignans. There are two known major reasons for poor systemic oral bioavailability of flavonolignans: (1) rapid conjugation in intestinal cells or the liver and (2) efflux of parent flavonolignans or formed conjugates back to the lumen of the gastrointestinal tract by intestinal cells and rapid excretion by the liver into the bile. The metabolism of phase I appears to play a minor role, in contrast to extensive conjugation and indeed the unconjugated flavonolignans reach low plasma levels after common doses. Only about 1%-5% of the administered dose is eliminated by the kidneys. Many in vitro studies tested the inhibitory potential of silymarin and its components toward different enzymes and transporters involved in the absorption, metabolism, and excretion of xenobiotics. In most cases, effective concentrations are too high to be relevant under real biological conditions. Most human studies showed no silymarin-drug interactions explainable by these suggested interferences. More interactions were found in animal studies, likely due to the much higher doses administered.
Collapse
Affiliation(s)
- Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Li Y, Qin J, Wu H, Xu Y, Zhang L, Su K, Cui Y, Wang H. In vitro inhibitory effect of lysionotin on the activity of cytochrome P450 enzymes. PHARMACEUTICAL BIOLOGY 2020; 58:695-700. [PMID: 32673137 PMCID: PMC7470033 DOI: 10.1080/13880209.2020.1787468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CONTEXT Lysionotin, a major extraction of Lysionotus pauciflorus Maxim (Gesneriaceae), has a variety of pharmacological properties commonly used in the treatment of lung disease. A study of lysionotin on the activity of human liver cytochrome P450 (CYP) enzymes can provide guidance on the clinical application of lysionotin. OBJECTIVE This study investigated the interaction between lysionotin and CYPs. MATERIAL AND METHOD The effects of 100 μM lysionotin on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs) with specific inhibitor as positive control and untreated HLMs as control. Meanwhile, the enzyme kinetic parameters were calculated. A time-dependent study was performed with a time interval of 5 min in 30 min. RESULTS Lysionotin was found to inhibit the activity of CYP3A4, 2C19, and 2C8, with IC50 values of 13.85, 24.95, and 30.05 μM, respectively. The inhibition of CYP3A4 was performed in a non-competitive manner with the Ki value of 6.83 μM, while the inhibition of CYP2C19 and 2C8 was performed in a competitive manner with Ki values of 12.41 and 14.51 μM. Moreover, it was found that the inhibition of CYP3A4 was time-dependent with K I/K inact value of 6.618/0.048 min/μM. Discussion and conclusions: The in vitro inhibitory effect of lysionotin on the activity of CYP3A4, 2C19, and 2C8 indicated potential drug interactions between lysionotin and drugs metabolised by CYP3A4, 2C19, and 2C8. Further in vivo experiments are needed to assess the potential interactions.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Neurology, Zibo No. 4 People’s Hospital, Zibo, China
| | - Jing Qin
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, China
| | - Hong Wu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, China
| | - Yongmei Xu
- Department of Cardiology, Shanxian Central Hospital, Heze, China
| | - Li Zhang
- Department of Pharmacy, Shanxian Central Hospital, Heze, China
| | - Keren Su
- Department of Pharmacy, Shanxian Central Hospital, Heze, China
| | - Ying Cui
- Department of Hematology and Nephrology, Shanxian Central Hospital, Heze, China
- CONTACT Ying Cui Department of Hematology and Nephrology, Shanxian Central Hospital, No. 1, Wenhua Road, Heze274300, Shandong, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Haiping Wang Department of Neurology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao266000, Shandong, China
| |
Collapse
|
9
|
Wang H, Xia B, Lin M, Wang Y, Sun B, Li Y. Succinic acid inhibits the activity of cytochrome P450 (CYP450) enzymes. PHARMACEUTICAL BIOLOGY 2020; 58:1150-1155. [PMID: 33327821 PMCID: PMC7751394 DOI: 10.1080/13880209.2020.1839110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
CONTEXT Succinic acid, extracted from amber, is widely used in cardiovascular therapy. OBJECTIVE The effect of succinic acid on the activity of cytochrome P450 (CYP450) enzymes was investigated in this study. MATERIALS AND METHODS The effect of succinic acid (100 μM) on the activity of eight isoforms of CYP450 (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) was investigated compared to the specific inhibitor and blank controls in pooled human liver microsomes in vitro. The inhibition of CYPs was fitted with competitive or non-competitive inhibition models and corresponding parameters were also obtained. RESULTS Succinic acid exerted inhibitory effect on the activity of CYP3A4, 2D6, and 2C9 with the IC50 values of 12.82, 14.53, and 19.60 μM, respectively. Succinic acid inhibited the activity of CYP3A4 in a non-competitive manner with the Ki value of 6.18 μM, and inhibited CYP2D6 and 2C9 competitively with Ki values of 7.40 and 9.48 μM, respectively. Furthermore, the inhibition of CYP3A4 was found to be time-dependent with the KI/Kinact value of 6.52/0.051 min-1·μM-1. DISCUSSION AND CONCLUSIONS Succinic acid showed in vitro inhibitory effects on the activity of CYP3A4, 2D6, and 2C9, which indicated the potential drug-drug interactions. Succinic acid should be carefully co-administrated with the drugs metabolized by CYP3A4, 2D6, and 2C9.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Bingyan Xia
- Department of Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Mei Lin
- The outpatient department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yongpeng Wang
- Department of Cardiovascular Medicine, Yidu Central Hospital of Weifang, Weifang, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, China
| | - Yuzhu Li
- Department of Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, China
| |
Collapse
|
10
|
Vrba J, Papoušková B, Kosina P, Lněničková K, Valentová K, Ulrichová J. Identification of Human Sulfotransferases Active towards Silymarin Flavonolignans and Taxifolin. Metabolites 2020; 10:metabo10080329. [PMID: 32806559 PMCID: PMC7465014 DOI: 10.3390/metabo10080329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on major flavonolignan constituents, including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin, as well as the flavonoid taxifolin. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS), individual flavonolignans and taxifolin were found to be sulfated by human liver and human intestinal cytosols. Moreover, experiments with recombinant enzymes revealed that human sulfotransferases (SULTs) 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C4, and 1E1 catalyzed the sulfation of all of the tested compounds, with the exception of silydianin, which was not sulfated by SULT1B1 and SULT1C4. The sulfation products detected were monosulfates, of which some of the major ones were identified as silybin A 20-O-sulfate, silybin B 20-O-sulfate, and isosilybin A 20-O-sulfate. Further, we also observed the sulfation of the tested compounds when they were tested in the silymarin mixture. Sulfates of flavonolignans and of taxifolin were produced by incubating silymarin with all of the above SULT enzymes, with human liver and intestinal cytosols, and also with human hepatocytes, even though the spectrum and amount of the sulfates varied among the metabolic models. Considering our results and the expression patterns of human sulfotransferases in metabolic tissues, we conclude that flavonolignans and taxifolin can potentially undergo both intestinal and hepatic sulfation, and that SULTs 1A1, 1A3, 1B1, and 1E1 could be involved in the biotransformation of the constituents of silymarin.
Collapse
Affiliation(s)
- Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
- Correspondence:
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech Republic;
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| | - Kateřina Lněničková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic;
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| |
Collapse
|
11
|
Valentová K, Havlík J, Kosina P, Papoušková B, Jaimes JD, Káňová K, Petrásková L, Ulrichová J, Křen V. Biotransformation of Silymarin Flavonolignans by Human Fecal Microbiota. Metabolites 2020; 10:E29. [PMID: 31936497 PMCID: PMC7023230 DOI: 10.3390/metabo10010029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Flavonolignans occur typically in Silybum marianum (milk thistle) fruit extract, silymarin, which contains silybin, isosilybin, silychristin, silydianin, and their 2,3-dehydroderivatives, together with other minor flavonoids and a polymeric phenolic fraction. Biotransformation of individual silymarin components by human microbiota was studied ex vivo, using batch incubations inoculated by fecal slurry. Samples at selected time points were analyzed by ultrahigh-performance liquid chromatography equipped with mass spectrometry. The initial experiment using a concentration of 200 mg/L showed that flavonolignans are resistant to the metabolic action of intestinal microbiota. At the lower concentration of 10 mg/L, biotransformation of flavonolignans was much slower than that of taxifolin, which was completely degraded after 16 h. While silybin, isosilybin, and 2,3-dehydrosilybin underwent mostly demethylation, silychristin was predominantly reduced. Silydianin, 2,3-dehydrosilychristin and 2,3-dehydrosilydianin were reduced, as well, and decarbonylation and cysteine conjugation proceeded. No low-molecular-weight phenolic metabolites were detected for any of the compounds tested. Strong inter-individual differences in the biotransformation profile were observed among the four fecal-material donors. In conclusion, the flavonolignans, especially at higher (pharmacological) doses, are relatively resistant to biotransformation by gut microbiota, which, however, depends strongly on the individual structures of these isomeric compounds, but also on the stool donor.
Collapse
Affiliation(s)
- Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.K.); (L.P.); (V.K.)
| | - Jaroslav Havlík
- Department of Food Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (J.H.); (J.D.J.)
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (J.U.)
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic;
| | - José Diógenes Jaimes
- Department of Food Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (J.H.); (J.D.J.)
| | - Kristýna Káňová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.K.); (L.P.); (V.K.)
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 16628 Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.K.); (L.P.); (V.K.)
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (J.U.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.K.); (L.P.); (V.K.)
| |
Collapse
|