1
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167295. [PMID: 37742958 DOI: 10.1016/j.scitotenv.2023.167295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
One of the representative coordination polymers, metal-organic frameworks (MOFs) material, is of hotspot interest in the multi field thanks to their unique structural characteristics and properties. As a novel hierarchical structural class, MOFs show diverse topologies, intrinsic behaviors, flexibility, etc. However, bare MOFs have less desirable biofunction, high humid sensitivity and instability in water, restraining their efficiencies in biomedical and environmental applications. Thus, a structural modification is required to address such drawbacks. Herein, we pinpoint new strategies in the synthesis and functionalization of MOFs to meet demanding requirements in in vitro tests, i.e., antibacterial face masks against corona virus infection and in wound healing and nanocarriers for drug delivery in anticancer. Regarding the treatment of wastewater containing emerging pollutants such as POPs, PFAS, and PPCPs, functionalized MOFs showed excellent performance with high efficiency and selectivity. Challenges in toxicity, vast database of clinical trials for biomedical tests and production cost can be still presented. MOFs-based composites can be, however, a bright candidate for reasonable replacement of traditional nanomaterials in biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
2
|
Oflu S, Erarpat S, Zaman BT, Eroğlu K, Günkara ÖT, Bakırdere S, Turak F. Quantification of trace fenuron in waste water samples by matrix matching calibration strategy and gas chromatography-mass spectrometry after simultaneous derivatization and preconcentration. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1063. [PMID: 37594584 DOI: 10.1007/s10661-023-11575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 08/19/2023]
Abstract
This study presents a highly sensitive and accurate analytical strategy for the determination of fenuron in wastewater samples using gas chromatography-mass spectrometry (GC-MS). Simultaneous derivatization and spray-based fine droplet formation-liquid phase microextraction (SFDF-LPME) method was developed and performed to achieve low detection limits. The parameters of the derivatization and SFDF-LPME method were optimized by univariate approach to improve sensitivity and selectivity. Under the optimum SFDF-LPME-GC-MS conditions, the limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.15 and 0.49 mg/kg, respectively. In addition, the linear range was calculated as 0.51-24.50 mg/kg. Recovery studies were carried out on wastewater samples to determine the accuracy of the developed method and its applicability to real sample matrix. Matrix matching calibration strategy was applied to eliminate/reduce any possible interference effects caused by the complexity of the wastewater matrix and to increase the accuracy of the analytical results. Percent recovery results varied between 85.9 and 120.9% with small percent relative standard deviation values. These results were satisfactory in terms of the accuracy and applicability of the proposed method for wastewater samples.
Collapse
Affiliation(s)
- Sude Oflu
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezin Erarpat
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Buse Tuğba Zaman
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Kumsal Eroğlu
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Ömer Tahir Günkara
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06690, Ankara, Turkey.
| | - Fatma Turak
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey.
| |
Collapse
|
3
|
Ma M, Niu Z, Tang Z, Bai J, Li B, Zhou Y, Wen Y. Coconut shell biochar application in liquid-solid microextraction of triazine herbicides from multi-media environmental samples. Anal Chim Acta 2023; 1261:341225. [PMID: 37147057 DOI: 10.1016/j.aca.2023.341225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
A rapid, fast, widely applicable liquid-solid microextraction and purification method of triazine herbicides (TRZHs) in muti-media samples using salting-out assisted liquid-liquid extraction (SALLE) combined with self-assembled monolithic spin columns-solid phase micro extraction (MSC-SPME) was developed. Environmentally friendly coconut shell biochar (CSB) was used as the adsorbents of MSC-SPME. Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was the separation and determination method. The adsorption kinetics and isotherms were investigated to indicate the interaction between CSB and TRZHs. Several parameters influencing the liquid-solid microextraction efficiency, such as sample pH, salting-out solution volume and pH, sample loading speed, elution speed, elution ratio and volume of eluent were systematically investigated with the aid of orthogonal design. The whole extraction process was operated within 10 min. Under the optimum extraction and determination conditions, good linearities for three TRZHs were obtained in a range of 0.10-200.00 ng mL-1, with linear coefficients (R2) greater than 0.999. The limits of detection (LODs) and limits of quantification (LOQs) were in the range of 6.99-11.00 ng L-1 and 23.33-36.68 ng L-1, respectively. The recoveries of the three TRZHs in multi-media environmental samples were ranged from 69.00% to 124.72%, with relative standard deviations (RSDs) lower than 0.43%. This SALLE-MSC-SPME-UPLC-MS/MS method was successfully applied to the determination of TRZHs in environmental and food samples and exhibited the advantages of high efficiency and sensitivity, low cost, and environmental friendliness. Compared with the methods published before, CSB-MSC was green, rapid, easy-operated, and reduced the whole cost of the experiment; SALLE combined MSC-SPME eliminated the matrix references effectively; what's more, the SALLE-MSC-SPME-UPLC-MS/MS method could be applied to various sample without complicated sample pretreatment procedure.
Collapse
Affiliation(s)
- Mengge Ma
- Department of Environmental Science, School of Tropical Medicine, International School of Public Health and One Health, Hainan Medical University, Haikou, 571199, China
| | - Zongliang Niu
- Laboratory of Pathogenic Biology and Immunology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, 571199, China
| | - Zhuhua Tang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Jinyang Bai
- Department of Environmental Science, School of Tropical Medicine, International School of Public Health and One Health, Hainan Medical University, Haikou, 571199, China
| | - Bei Li
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Yuling Zhou
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China.
| | - Yingying Wen
- Department of Environmental Science, School of Tropical Medicine, International School of Public Health and One Health, Hainan Medical University, Haikou, 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, Haikou, 571199, China.
| |
Collapse
|
4
|
Aryl ketones-derived porous organic polymer for enrichment and sensitive detection of phenylurea herbicides in water, tea drink and mushroom samples. J Chromatogr A 2022; 1685:463621. [DOI: 10.1016/j.chroma.2022.463621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
5
|
Kato R, Ito K, Sue K, Okumura H, Hattori T. Optical Sensing of Phenylurea Pesticides by Hydrogen Bonding with Carboxylate Dyess. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2059494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ryo Kato
- Cooperative Research Facility Center, Toyohashi University of Technology, Toyohashi, Japan
| | - Kouta Ito
- Department of Electrical & Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Koushiro Sue
- Department of Electrical & Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Hiroki Okumura
- Department of Materials Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Toshiaki Hattori
- Department of Electrical & Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Japan
| |
Collapse
|
6
|
Sohrabi H, Arbabzadeh O, Falaki M, Majidi MR, Han N, Yoon Y, Khataee A. Electrochemical layered double hydroxide (LDH)-based biosensors for pesticides detection in food and environment samples: A review of status and prospects. Food Chem Toxicol 2022; 164:113010. [DOI: 10.1016/j.fct.2022.113010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/27/2022]
|
7
|
Wu Y, Chen H, Chen Y, Sun N, Deng C. Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1195-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Uflyand IE, Zhinzhilo VA, Bryantseva JD. Synthesis and Study of Sorption, Antioxidant and Antibacterial Properties of MOF based on Cobalt Terephthalate and 1,10-Phenanthroline. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Uflyand IE, Zhinzhilo VA, Nikolaevskaya VO, Kharisov BI, González CMO, Kharissova OV. Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
11
|
Erarpat S, Bodur S, Bakırdere S. Nanoparticles Based Extraction Strategies for Accurate and Sensitive Determination of Different Pesticides. Crit Rev Anal Chem 2021; 52:1370-1385. [PMID: 33576246 DOI: 10.1080/10408347.2021.1876552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sample preparation methods have become indispensable steps in analytical measurements not only to lower the detection limit but also to eliminate the matrix effect although more sophisticated instruments are being commonly used in routine analyses. Solid phase extraction (SPE) is one of the main extraction/preconcentration methods used to extract and purify target analytes along with simple and rapid procedures but some limitations have led to seek for an easy, sensitive and fast extraction methods with analyte-selective sorbents. Nanoparticles with different modifications have been used as spotlight to enhance extraction efficiency of target pesticides from complicated matrices. Carbon-based, metal and metal oxides, silica and polymer-based nanoparticles have been explored as promising sorbents for pesticide extraction. In this review, different types of nanoparticles used in the preconcentration of pesticides in various samples are outlined and examined. Latest studies in the literature are discussed in terms of their instrumental detection, sample matrix and limit of detection values. Novel strategies and future directions of nanoparticles used in the extraction and preconcentration of pesticides are also discussed.
Collapse
Affiliation(s)
- Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey.,Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
12
|
Fabrication of carboxyl functionalized microporous organic network coated stir bar for efficient extraction and analysis of phenylurea herbicides in food and water samples. J Chromatogr A 2021; 1640:461947. [PMID: 33556684 DOI: 10.1016/j.chroma.2021.461947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Fabrication of novel coatings continues to be an area of great interest and significance in the development and application of stir bar sorptive extraction (SBSE). In this work, a carboxyl-enriched microporous organic network (MON-2COOH) coated stir bar was designed and fabricated as a novel adsorbent for efficient extraction of four phenylurea herbicides (PUHs) before their determination by high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA). The MON-2COOH was represented as an effective adsorbent for PUHs due to its large surface area, rigid porous structure, aromatic pore walls and the desired hydrogen bonding sites of introduced carboxyl groups. Variables affecting the SBSE of target analytes were optimized in detail. Under the optimal extraction conditions, favorable correlation coefficients (R2 > 0.996) in the linear range 0.10-250 μg L-1, low limits of detection (LODs, S/N = 3) of 0.025-0.070 μg L-1 and good enrichment factors (46-49) were obtained. Besides, the proposed SBSE-HPLC-PDA method was successfully applied to determine trace PUHs in food and environmental water samples with recoveries in the range of 80.0-104.8% and the precisions (relative standard deviations, RSDs) lower than 9.9% (n = 3). This work revealed the potential of MONs in SBSE of trace contaminants from environmental samples.
Collapse
|
13
|
Wang Q, Wang X, Wang J, Liu W, Hao L, Zhou J, Wang C, Wu Q, Wang Z. Facile construction of magnetic azobenzene-based framework materials for enrichment and sensitive determination of phenylurea herbicides. J Chromatogr A 2020; 1626:461362. [DOI: 10.1016/j.chroma.2020.461362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/01/2022]
|