1
|
Salatin S, Azarfarin M, Farjami A, Hamidi S. The simultaneous use of nanovesicles and magnetic nanoparticles for cancer targeting and imaging. Ther Deliv 2024:1-15. [PMID: 39564978 DOI: 10.1080/20415990.2024.2426447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Cancer is increasingly being recognized as a global health issue with considerable unmet medical need. Despite the rapid progression of anticancer pharmaceuticals, there are still significant challenges for the effective management of cancer. In many circumstances, cancer cells are difficult to detect and treat. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred as magnetic nanovesicles (MNVs), is now well recognized as a potential theranostic option for improving cancer treatment outcomes and reducing adverse effects. MNVs can be used for monitoring the long-term fate and functional benefits of cancer therapy. Moreover, MNV-mediated hyperthermia mechanism has been explored as a potential technique for triggering cancer cell death, and/or controlled release of laden cargo. In this review, we focus on the unique characteristics of MNVs as a promising avenue for targeted drug delivery, diagnosis, and treatments of cancer or tumor. Moreover, we discuss critical considerations related to the issues raised in this area, which will guide future research toward better anti-cancer therapeutics for clinical applications.
Collapse
Affiliation(s)
- Sara Salatin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azarfarin
- School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Pakzad S, Taghavi R, Hasanzadeh A, Rostamnia S. A biocompatible cellulose gum based CMC/PVA/SBA-15 film as a colloidal antibacterial agent against MRSA. RSC Adv 2024; 14:36246-36252. [PMID: 39539531 PMCID: PMC11559378 DOI: 10.1039/d4ra07129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The development of biocompatible antibacterial films plays a crucial role in the fight against antibiotic-resistant bacteria strains. Here, we developed an SBA-15-NH2 decorated biocompatible CMC/PVA film containing Ag NPs as an antibacterial material against Gram-positive and Gram-negative bacteria strains. The structure of the manufactured film was studied by XRD, SEM, mapping, and TGA analysis showing its formation and firm structure. The prepared film has a flexible structure which makes it suitable for a variety of bio-related applications. The CMC/PVA/SBA-15-NH2@AgNPs film was used as a bactericidal agent against pathogens (especially MRSA; methicillin-resistant Staphylococcus aureus) isolated from surgical site infections, showing promising results.
Collapse
Affiliation(s)
- Shiva Pakzad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Reza Taghavi
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Amir Hasanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
3
|
Hangyu W, Panpan L, Jie S, Hongyan W, Linmiao W, Kangning H, Yichen S, Shuai W, Cheng W. Advancements in Antiviral Drug Development: Comprehensive Insights into Design Strategies and Mechanisms Targeting Key Viral Proteins. J Microbiol Biotechnol 2024; 34:1376-1384. [PMID: 38934770 PMCID: PMC11294656 DOI: 10.4014/jmb.2403.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024]
Abstract
Viral infectious diseases have always been a threat to human survival and quality of life, impeding the stability and progress of human society. As such, researchers have persistently focused on developing highly efficient, low-toxicity antiviral drugs, whether for acute or chronic infectious diseases. This article presents a comprehensive review of the design concepts behind virus-targeted drugs, examined through the lens of antiviral drug mechanisms. The intention is to provide a reference for the development of new, virus-targeted antiviral drugs and guide their clinical usage.
Collapse
Affiliation(s)
- Wang Hangyu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Li Panpan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shen Jie
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Hongyan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wei Linmiao
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Han Kangning
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shi Yichen
- School of Stomatology, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Shuai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| | - Wang Cheng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| |
Collapse
|
4
|
Wang J, Qu J, Hou Q, Huo X, Zhao X, Chang L, Xu C. Strategies for the Isolation and Identification of Gastric Cancer Stem Cells. Stem Cells Int 2024; 2024:5553852. [PMID: 38882596 PMCID: PMC11178399 DOI: 10.1155/2024/5553852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Gastric cancer stem cells (GCSCs) originate from both gastric adult stem cells and bone marrow cells and are conspicuously present within the histological milieu of gastric cancer tissue. GCSCs play pivotal and multifaceted roles in the initiation, progression, and recurrence of gastric cancer. Hence, the characterization of GCSCs not only facilitates precise target identification for prospective therapeutic interventions in gastric cancer but also has significant implications for targeted therapy and the prognosis of gastric cancer. The prevailing techniques for GCSC purification involve their isolation using surface-specific cell markers, such as those identified by flow cytometry and immunomagnetic bead sorting techniques. In addition, in vitro culture and side-population cell sorting are integral methods in this context. This review discusses the surface biomarkers, isolation techniques, and identification methods of GCSCs, as well as their role in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jianhua Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Jie Qu
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Qiang Hou
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
5
|
Salatin S, Farhoudi M, Sadigh-Eteghad S, Mahmoudi J. Magnetic hybrid nanovesicles for the precise diagnosis and treatment of central nervous system disorders. Expert Opin Drug Deliv 2024; 21:521-535. [PMID: 38555483 DOI: 10.1080/17425247.2024.2336496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Central nervous system (CNS)-related disorders are increasingly being recognized as a global health challenge worldwide. There are significant challenges for effective diagnosis and treatment due to the presence of the CNS barriers which impede the management of neurological diseases. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred to as magnetic nanovesicles (MNVs), is now well suggested as a potential theranostic option for improving the management of neurological disorders with increased targeting efficiency and minimized side effects. AREAS COVERED This review provides a summary of major CNS disorders and the physical barriers limiting the access of imaging/therapeutic agents to the CNS environment. A special focus on the unique features of MNPs and NV is discussed which make them attractive candidates for neuro-nanomedicine. Furthermore, a deeper understanding of MNVs as a promising combined strategy for diagnostic and/or therapeutic purposes in neurological disorders is provided. EXPERT OPINION The multifunctionality of MNVs offers the ability to overcome the CNS barriers and can be used to monitor the effectiveness of treatment. The insights provided will guide future research toward better outcomes and facilitate the development of next-generation, innovative treatments for CNS disorders.
Collapse
Affiliation(s)
- Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Karimi F, Karimi-Maleh H, Rouhi J, Zare N, Karaman C, Baghayeri M, Fu L, Rostamnia S, Dragoi EN, Ayati A, Krivoshapkin P. Revolutionizing cancer monitoring with carbon-based electrochemical biosensors. ENVIRONMENTAL RESEARCH 2023; 239:117368. [PMID: 37827366 DOI: 10.1016/j.envres.2023.117368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cancer monitoring plays a critical role in improving patient outcomes by providing early detection, personalized treatment options, and treatment response tracking. Carbon-based electrochemical biosensors have emerged in recent years as a revolutionary technology with the potential to revolutionize cancer monitoring. These sensors are useful for clinical applications because of their high sensitivity, selectivity, rapid response, and compatibility with miniaturized equipment. This review paper gives an in-depth look at the latest developments and the possibilities of carbon-based electrochemical sensors in cancer surveillance. The essential principles of carbon-based electrochemical sensors are discussed, including their structure, operating mechanisms, and critical qualities that make them suited for cancer surveillance. Furthermore, we investigate their applicability in detecting specific cancer biomarkers, evaluating therapy responses, and detecting cancer recurrence early. Additionally, a comparison of carbon-based electrochemical sensor performance measures, including sensitivity, selectivity, accuracy, and limit of detection, is presented in contrast to existing monitoring methods and upcoming technologies. Finally, we discuss prospective tactics, future initiatives, and commercialization opportunities for improving the capabilities of these sensors and integrating them into normal clinical practice. The review highlights the potential impact of carbon-based electrochemical sensors on cancer diagnosis, treatment, and patient outcomes, as well as the importance of ongoing research, collaboration, and validation studies to fully realize their potential in revolutionizing cancer monitoring.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran.
| | - Najmeh Zare
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Ceren Karaman
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey
| | - Mehdi Baghayeri
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. B 397, Sabzevar, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld Mangeron No 73, Iasi, 700050, Romania
| | - Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
7
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Toyos-Rodríguez C, Valero-Calvo D, de la Escosura-Muñiz A. Advances in the screening of antimicrobial compounds using electrochemical biosensors: is there room for nanomaterials? Anal Bioanal Chem 2023; 415:1107-1121. [PMID: 36445455 PMCID: PMC9707421 DOI: 10.1007/s00216-022-04449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The abusive use of antimicrobial compounds and the associated appearance of antimicrobial resistant strains are a major threat to human health. An improved antimicrobial administration involves a faster diagnosis and detection of resistances. Antimicrobial susceptibility testing (AST) are the reference techniques for this purpose, relying mainly in the use of culture techniques. The long time required for analysis and the lack of reproducibility of these techniques have fostered the development of high-throughput AST methods, including electrochemical biosensors. In this review, recent electrochemical methods used in AST have been revised, with particular attention on those used for the evaluation of new drug candidates. The role of nanomaterials in these biosensing platforms has also been questioned, inferring that it is of minor importance compared to other applications.
Collapse
Affiliation(s)
- Celia Toyos-Rodríguez
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain
| | - David Valero-Calvo
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain.
| |
Collapse
|
9
|
Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Farjami A, Farjami A, Mahmoudian M, Salatin S. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr Pharm Des 2022; 28:1985-2000. [PMID: 35676838 DOI: 10.2174/1381612828666220608093639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The mean global lifetime risk of neurological disorders such as stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) has shown a large effect on economy and society.Researchersare stillstruggling to find effective drugs to treatneurological disordersand drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between the peripheral blood circulation and the neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration.BBB disruption is evident in many neurologicalconditions.Nevertheless, the majority of currently available therapies have tremendous problems for drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered as a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm whichcan encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD as well as the factors affecting their efficacy after systemic administration.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Costa B, Vale N. Drug Metabolism for the Identification of Clinical Biomarkers in Breast Cancer. Int J Mol Sci 2022; 23:3181. [PMID: 35328602 PMCID: PMC8951384 DOI: 10.3390/ijms23063181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is classified into four major molecular subtypes, and is considered a heterogenous disease. The risk profiles and treatment of breast cancer differ according to these subtypes. Early detection dramatically improves the prospects of successful treatment, resulting in a reduction in overall mortality rates. However, almost 30% of women primarily diagnosed with the early-stage disease will eventually develop metastasis or resistance to chemotherapies. Immunotherapies are among the most promising cancer treatment options; however, long-term clinical benefit has only been observed in a small subset of responding patients. The current strategies for diagnosis and treatment rely heavily on histopathological examination and molecular diagnosis, disregarding the tumor microenvironment and microbiome involving cancer cells. In this review, we aim to praise the use of pharmacogenomics and pharmacomicrobiomics as a strategy to identify potential biomarkers for guiding and monitoring therapy in real-time. The finding of these biomarkers can be performed by studying the metabolism of drugs, more specifically, immunometabolism, and its relationship with the microbiome, without neglecting the information provided by genetics. A larger understanding of cancer biology has the potential to improve patient care, enable clinical decisions, and deliver personalized medicine.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory RISE-Health Research Network, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
11
|
Wang R, Wang M, Hun X. Photoelectrochemical biosensor for Coxsackievirus B3 detection with recombinase polymerase amplification coupled with ZnSeNSs/AuNPs/BNNSs modified electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Ag Nanoislands Modified Carbon Fiber Nanostructure: A Versatile and Ultrasensitive Surface-Enhanced Raman Scattering Platform for Antiepileptic Drug Detection. COATINGS 2021. [DOI: 10.3390/coatings12010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A high-efficiency surface-enhanced Raman scattering (SERS) detection method with ultra-high sensitivity has been widely applied in drug component detection to optimize the product quality verification standards. Herein, a controllable strategy of sputtering Ag nanoislands on carbon fiber (C-fiber) via magnetron sputtering technology was proposed to fabricate a versatile Ag-C-fiber SERS active substrate. A wide range of multi-level electromagnetic enhancement “hot spots” distributed on Ag-C-fiber nanostructures can efficiently amplify Raman signals and the experimental enhancement factor (EEF) value was 3.871 × 106. Furthermore, substantial “hot spots” of large-scale distribution guaranteed the superior reproducibility of Raman signal with relative standard deviation (RSD) values less than 12.97%. Limit of detection (LOD) results indicated that when crystal violet (CV) is employed as probe molecule, the LOD was located at 1 × 10−13 M. By virtue of ultra-sensitivity and good flexibility of the Ag-C-fiber nanotemplate, Raman signals of two kinds of antiepileptic drugs called levetiracetam and sodium valproate were successfully obtained using an SERS-based spectral method. The Ag-C-fiber SERS detection platform demonstrated a good linear response (R2 = 0.97486) in sensing sodium valproate concentrations in the range of 1 × 103 ng/μL−1–1 ng/μL. We believe that this reliable strategy has potential application for trace detection and rapid screening of antiepileptic drugs in the clinic.
Collapse
|
13
|
Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9322282. [PMID: 34746313 PMCID: PMC8570876 DOI: 10.1155/2021/9322282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The emerging science of nanotechnology sparked a research attention in its potential benefits in comparison to the conventional materials used. Oral products prepared via nanoparticles (NPs) have garnered great interest worldwide. They are used commonly to incorporate nutrients and provide antimicrobial activity. Formulation into NPs can offer opportunities for targeted drug delivery, improve drug stability in the harsh environment of the gastrointestinal (GI) tract, increase drug solubility and bioavailability, and provide sustained release in the GI tract. However, some issues like the management of toxicity and safe handling of NPs are still debated and should be well concerned before their application in oral preparations. This article will help the reader to understand safety issues of NPs in oral drug delivery and provides some recommendations to the use of NPs in the drug industry.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Demircan Yalçın Y, Töral TB, Sukas S, Yıldırım E, Zorlu Ö, Gündüz U, Külah H. A microfluidic device enabling drug resistance analysis of leukemia cells via coupled dielectrophoretic detection and impedimetric counting. Sci Rep 2021; 11:13193. [PMID: 34162990 PMCID: PMC8222334 DOI: 10.1038/s41598-021-92647-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
We report the development of a lab-on-a-chip system, that facilitates coupled dielectrophoretic detection (DEP-D) and impedimetric counting (IM-C), for investigating drug resistance in K562 and CCRF-CEM leukemia cells without (immuno) labeling. Two IM-C units were placed upstream and downstream of the DEP-D unit for enumeration, respectively, before and after the cells were treated in DEP-D unit, where the difference in cell count gave the total number of trapped cells based on their DEP characteristics. Conductivity of the running buffer was matched the conductivity of cytoplasm of wild type K562 and CCRF-CEM cells. Results showed that DEP responses of drug resistant and wild type K562 cells were statistically discriminative (at p = 0.05 level) at 200 mS/m buffer conductivity and at 8.6 MHz working frequency of DEP-D unit. For CCRF-CEM cells, conductivity and frequency values were 160 mS/m and 6.2 MHz, respectively. Our approach enabled discrimination of resistant cells in a group by setting up a threshold provided by the conductivity of running buffer. Subsequent selection of drug resistant cells can be applied to investigate variations in gene expressions and occurrence of mutations related to drug resistance.
Collapse
Affiliation(s)
- Yağmur Demircan Yalçın
- Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey. .,Mikro Biyosistemler A.Ş., Ankara, Turkey. .,Neuro-Nanoscale Engineering, Mechanical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | - Sertan Sukas
- Mikro Biyosistemler A.Ş., Ankara, Turkey.,Mechanical Engineering Department, Microsystems Section, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ender Yıldırım
- Mikro Biyosistemler A.Ş., Ankara, Turkey.,Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Özge Zorlu
- Mikro Biyosistemler A.Ş., Ankara, Turkey
| | - Ufuk Gündüz
- Biology Department, Middle East Technical University, Ankara, Turkey
| | - Haluk Külah
- Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey.,Mikro Biyosistemler A.Ş., Ankara, Turkey.,METU MEMS Center, Ankara, Turkey
| |
Collapse
|