1
|
Ma X, He Y, Lv D, Chen X, Hong Z, Chai Y, Liu Y. Optimization of metabolomics pretreatment method of cholangiocarcinoma cells based on ultrahigh performance liquid chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2025; 252:116508. [PMID: 39426275 DOI: 10.1016/j.jpba.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Metabolomics intends to maximize the quantity of available metabolites for the global metabolome, which largely depends on sample pretreatment protocols. However, there are few studies that comprehensively examined the effects of extraction and reconstitution solvents on metabolome coverage of adherent mammalian cells. In this study, the human cholangiocarcinoma TFK-1 cells were chosen as a cell model, and eight extraction solvents and five reconstitution solvents were used for the pretreatment based on ultrahigh performance liquid chromatography coupled with mass spectrometry (UPLC/MS). The coverage, reproducibility, and stability of the data were norms to evaluate the effectiveness of different extraction solvents and reconstitution solvents. Based on the number of metabolites, the mean Euclidean distance (EDMEAN) in the principal component analysis (PCA) 3D score plots and the relative standard deviation (RSD) distribution of metabolites, it was demonstrated that MeOH-CHCl3-H2O (8:1:1, v/v/v) was the optimal extraction solvent and MeOH-H2O (1:1, v/v) or H2O was superior to other reconstitution solvents for RP column analysis, and the extraction solvent MeOH-ACN-H2O (2:2:1, v/v/v) and the reconstitution solvents ACN-H2O (4:1, v/v) or MeOH-H2O (1:1, v/v) provide the best performance for HILIC column analysis. The optimized pretreatment methods explored in this study expand the coverage of polar and non-polar metabolites and improve the reproducibility and stability of the metabolic data, which can be applied to UPLC/MS-based global metabolomics study on cholangiocarcinoma cells, potentially providing better extraction solvents and reconstitution solvents for other adherent mammalian cells with similar chemical and physical properties.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yongping He
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Department of Pharmacy, Chongzuo People's Hospital, Chongzuo 532200, China
| | - Diya Lv
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Xiaofei Chen
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Zhanying Hong
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| | - Yifeng Chai
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| | - Yue Liu
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| |
Collapse
|
2
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Song Z, Tang G, Zhuang C, Wang Y, Wang M, Lv D, Lu G, Meng J, Xia M, Zhu Z, Chai Y, Yang J, Liu Y. Metabolomic profiling of cerebrospinal fluid reveals an early diagnostic model for central nervous system involvement in acute lymphoblastic leukaemia. Br J Haematol 2022; 198:994-1010. [PMID: 35708546 DOI: 10.1111/bjh.18307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
The pathogenesis of central nervous system involvement (CNSI) in patients with acute lymphoblastic leukaemia (ALL) remains unclear and a robust biomarker of early diagnosis is missing. An untargeted cerebrospinal fluid (CSF) metabolomics analysis was performed to identify independent risk biomarkers that could diagnose CNSI at the early stage. Thirty-three significantly altered metabolites between ALL patients with and without CNSI were identified, and a CNSI evaluation score (CES) was constructed to predict the risk of CNSI based on three independent risk factors (8-hydroxyguanosine, l-phenylalanine and hypoxanthine). This predictive model could diagnose CNSI with positive prediction values of 95.9% and 85.6% in the training and validation sets respectively. Moreover, CES score increased with the elevated level of central nervous system (CNSI) involvement. In addition, we validated this model by tracking the changes in CES at different stages of CNSI, including before CNSI and during CNSI, and in remission after CNSI. The CES showed good ability to predict the progress of CNSI. Finally, we constructed a nomogram to predict the risk of CNSI in clinical practice, which performed well compared with observed probability. This unique CSF metabolomics study may help us understand the pathogenesis of CNSI, diagnose CNSI at the early stage, and sequentially achieve personalized precision treatment.
Collapse
Affiliation(s)
- Zhiqiang Song
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chunlin Zhuang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Mian Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Diya Lv
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Guihua Lu
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jie Meng
- Department of Laboratory Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Min Xia
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jianmin Yang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yue Liu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
4
|
Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: current technologies and perspectives. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Gilardoni M, Léonço D, Caffin F, Gros-Désormeaux F, Eldin C, Béal D, Ouzia S, Junot C, Fenaille F, Piérard C, Douki T. Evidence for the systemic diffusion of (2-chloroethyl)-ethyl-sulfide, a sulfur mustard analog, and its deleterious effects in brain. Toxicology 2021; 462:152950. [PMID: 34534560 DOI: 10.1016/j.tox.2021.152950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Sulfur mustard, a chemical warfare agent known to be a vesicant of skin, readily diffuses in the blood stream and reaches internal organs. In the present study, we used the analog (2-chloroethyl)-ethyl-sulfide (CEES) to provide novel data on the systemic diffusion of vesicants and on their ability to induce brain damage, which result in neurological disorders. SKH-1 hairless mice were topically exposed to CEES and sacrificed at different time until 14 days after exposure. A plasma metabolomics study showed a strong systemic impact following a self-protection mechanism to alleviate the injury of CEES exposure. This result was confirmed by the quantification of specific biomarkers in plasma. Those were the conjugates of CEES with glutathione (GSH-CEES), cysteine (Cys-CEES) and N-acetyl-cysteine (NAC-CEES), as well as the guanine adduct (N7Gua-CEES). In brain, N7Gua-CEES could be detected both in DNA and in organ extracts. Similarly, GSH-CEES, Cys-CEES and NAC-CEES were present in the extracts until day14. Altogether, these results, based on novel exposure markers, confirm the ability of vesicants to induce internal damage following dermal exposure. The observation of alkylation damage to glutathione and DNA in brain provides an additional mechanism to the neurological insult of SM.
Collapse
Affiliation(s)
- Marie Gilardoni
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Daniel Léonço
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Fanny Caffin
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Fanny Gros-Désormeaux
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Camille Eldin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Sadia Ouzia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France.
| |
Collapse
|