1
|
Rajoo A, Siva SP, Siew Sia C, Chan ES, Ti Tey B, Ee Low L. Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals. Eur J Pharm Biopharm 2024:114572. [PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
Collapse
Affiliation(s)
- Akashni Rajoo
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sangeetaprivya P Siva
- Centre for Sustainable Design, Modelling and Simulation, Faculty of Engineering, Built Environment and IT, SEGi University, 47810 Petaling Jaya, Malaysia
| | - Chin Siew Sia
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Medical Engineering and Technology (MET) Hub, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Shadloo A, Peyvandi K, Shojaeian A, Shariat S. How the designed processing parameters affect the liquid mixture density and viscosity of the tretinoin-loaded niosomes at different temperatures? Heliyon 2024; 10:e37925. [PMID: 39364242 PMCID: PMC11447365 DOI: 10.1016/j.heliyon.2024.e37925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
The current study was conducted to present novel thermophysical data on tretinoin-loaded niosomes paired with a combination of span 60 and tween 80. Measurements were carried out to analyze the liquid mixture density and viscosity of the mentioned multilayered structures for the first time, with consideration given to the diverse molecular weights of surfactants and various stabilizers at different temperatures. Through the application of equations of state, this study has the ability to set the stage for thermodynamic modeling of solutions that involve niosomes, presenting a promising avenue for further research. So, tretinoin-loaded formulations were prepared by investigating the effects of different co-surfactants, including cholesterol or dodecanol, as well as the impact of surfactant molecular weight limited to 650.525-1090.175 g mol-1. This novel investigation was conducted to assess the superior stabilizing capabilities of dodecanol in comparison to cholesterol, with a specific emphasis on optimized vesicle size, highest incorporation efficiency, and lowest zeta potential. In particulars, the response surface methodology (RSM) was applied to optimize the operative factors and the number of experiments. The experimental evidence clearly indicates that the use of dodecanol in the manufacturing process significantly improves the stability of niosomes, while the inclusion of cholesterol leads to higher liquid mixture density and viscosity in the prepared niosomes.
Collapse
Affiliation(s)
- Azam Shadloo
- Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan, Iran
| | - Kiana Peyvandi
- Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan, Iran
| | - Abolfazl Shojaeian
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Sheida Shariat
- Department of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
3
|
Singh AK, Pal P, Pandey B, Goksen G, Sahoo UK, Lorenzo JM, Sarangi PK. Development of "Smart Foods" for health by nanoencapsulation: Novel technologies and challenges. Food Chem X 2023; 20:100910. [PMID: 38144773 PMCID: PMC10740092 DOI: 10.1016/j.fochx.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
Importance of nanotechnology may be seen by penetration of its application in diverse areas including the food sector. With investigations and advancements in nanotechnology, based on feedback from these diverse areas, ease, and efficacy are also increasing. The food sector may use nanotechnology to encapsulate smart foods for increased health, wellness, illness prevention, and effective targeted delivery. Such nanoencapsulated targeted delivery systems may further add to the economic and nutritional properties of smart foods like stability, solubility, effectiveness, safeguard against disintegration, permeability, and bioavailability of smart/bioactive substances. But in the way of application, the fabrication of nanomaterials/nanostructures has several challenges which range from figuring out the optimal technique for obtaining them to determining the most suitable form of nanostructure for a bioactive molecule of interest. This review precisely addresses concepts, recent advances in fabrication techniques as well as current challenges/glitches of nanoencapsulation with special reference to smart foods/bioactive components. Since dealing with food materials also raises the quest for safety and regulatory norms a brief overview of the safety and regulatory aspects of nanomaterials/nanoencapsulation is also presented.
Collapse
Affiliation(s)
- Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad, Road, Lucknow 226028, India
| | - Brijesh Pandey
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Turkey
| | | | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| |
Collapse
|
4
|
Patel P, Pal R, Butani K, Singh S, Prajapati BG. Nanomedicine-fortified cosmeceutical serums for the mitigation of psoriasis and acne. Nanomedicine (Lond) 2023; 18:1769-1793. [PMID: 37990979 DOI: 10.2217/nnm-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Cosmetics have a long history of use for regenerative and therapeutic purposes that are appealing to both genders. The untapped potential of nanotechnology in cosmeceuticals promises enhanced efficacy and addresses the issues associated with conventional cosmetics. In the field of cosmetics, the incorporation of nanomedicine using various nanocarriers such as vesicle and solid lipid nanoparticles significantly enhances product effectiveness and promotes satisfaction, especially in tackling prevalent skin diseases. Moreover, vesicle-fortified serum is known for high skin absorption with the capacity to incorporate and deliver various therapeutics. Additionally, nano-embedded serum-based cosmeceuticals hold promise for treating various skin disorders, including acne and psoriasis, heralding potential therapeutic advancements. This review explores diverse nanotechnology-based approaches for delivering cosmetics with maximum benefits.
Collapse
Affiliation(s)
- Priya Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Rohit Pal
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Krishna Butani
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics & Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, 384012, India
| |
Collapse
|
5
|
Karnwal A, Shrivastava S, Al-Tawaha ARMS, Kumar G, Singh R, Kumar A, Mohan A, Yogita, Malik T. Microbial Biosurfactant as an Alternate to Chemical Surfactants for Application in Cosmetics Industries in Personal and Skin Care Products: A Critical Review. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2375223. [PMID: 37090190 PMCID: PMC10118887 DOI: 10.1155/2023/2375223] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023]
Abstract
Cosmetics and personal care items are used worldwide and administered straight to the skin. The hazardous nature of the chemical surfactant utilized in the production of cosmetics has caused alarm on a global scale. Therefore, bacterial biosurfactants (BS) are becoming increasingly popular in industrial product production as a biocompatible, low-toxic alternative surfactant. Chemical surfactants can induce allergic responses and skin irritations; thus, they should be replaced with less harmful substances for skin health. The cosmetic industry seeks novel biological alternatives to replace chemical compounds and improve product qualities. Most of these chemicals have a biological origin and can be obtained from plant, bacterial, fungal, and algal sources. Various biological molecules have intriguing capabilities, such as biosurfactants, vitamins, antioxidants, pigments, enzymes, and peptides. These are safe, biodegradable, and environmentally friendly than chemical options. Plant-based biosurfactants, such as saponins, offer numerous advantages over synthetic surfactants, i.e., biodegradable, nontoxic, and environmentally friendly nature. Saponins are a promising source of natural biosurfactants for various industrial and academic applications. However, microbial glycolipids and lipopeptides have been used in biotechnology and cosmetics due to their multifunctional character, including detergency, emulsifying, foaming, and skin moisturizing capabilities. In addition, some of them have the potential to be used as antibacterial agents. In this review, we like to enlighten the application of microbial biosurfactants for replacing chemical surfactants in existing cosmetic and personal skincare pharmaceutical formulations due to their antibacterial, skin surface moisturizing, and low toxicity characteristics.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Shrivastava
- Department of Plant Pathology, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | | | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rattandeep Singh
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anupam Kumar
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anand Mohan
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yogita
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|
6
|
Schoenfelder H, Liu Y, Jasmin Lunter D. Systematic investigation of factors, such as the impact of emulsifiers, which influence the measurement of skin barrier integrity by in-vitro trans-epidermal water loss (TEWL). Int J Pharm 2023; 638:122930. [PMID: 37028576 DOI: 10.1016/j.ijpharm.2023.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
Trans-epidermal water loss (TEWL) has been the most widely used method to assess the integrity of the skin barrier and evaluate the irritation potential or the protective properties of topical products for many years. It detects the amount of water that diffuses across the stratum corneum (SC) to the external environment. As one of the most important functions of the skin is to keep water inside the body, an increase in TEWL is used to indicate the skin's impaired barrier function. So far, a variety of commercial instruments are available to measure the TEWL. Their applications mainly focus on the in-vivo TEWL measurements for dermatological examinations or formulation development. Recently, an in-vitro TEWL probe has also been commercially released enabling preliminary tests with excised skin samples. In our study, we first aimed to optimize the experimental procedures for detecting the in-vitro TEWL of porcine skin. Secondly, different kinds of emulsifiers were applied to the skin, including polyethylene glycol-containing emulsifiers (PEG-ylated emulsifiers), sorbitan esters, cholesterol, and lecithin. Sodium lauryl sulfate (SLS) was used as a positive control, and water as a negative control. Based on the findings, we established a protocol for accurately measuring the in-vitro TEWL values, emphasizing that the temperature of the skin sample should be constantly maintained at 32℃. Subsequently, the influences of emulsifiers on the in-vitro TEWL were analyzed. They indicated a significant skin barrier impairment of PEG-20 cetyl ether, PEG-20 stearyl ether, and SLS on in-vitro skin. Furthermore, we interestingly found that there consistently was an alteration of the TEWL values, even after the application of water to the skin. Our findings are of special interest, as the European Medicines Agency (EMA) recommends the use of in-vitro TEWL to determine skin barrier intactness during Franz cell experiments. Thus, this study provides a validated protocol for measuring the in-vitro TEWL and elucidates the impact of emulsifiers on the skin barrier. It also improves the understanding of tolerable variations of in-vitro TEWL and offers recommendations for its use in research.
Collapse
Affiliation(s)
- Hans Schoenfelder
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Yali Liu
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Dominique Jasmin Lunter
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
7
|
Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study. Int J Mol Sci 2022; 23:ijms232315112. [PMID: 36499432 PMCID: PMC9736248 DOI: 10.3390/ijms232315112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9% w/w and transethosomes based on phosphatidylcholine 0.9 or 2.7% w/w plus polysorbate 80 0.3% w/w as an edge activator were prepared and characterized. The vesicle mean size, morphology and deformability were influenced by both phosphatidylcholine and polysorbate 80. Indeed, the mean diameters of ethosome were around 200 nm, while transethosome's mean diameters were 146 or 350 nm in the case of phosphatidylcholine 0.9 or 2.7%, w/w, respectively. The highest deformability was achieved by transethosomes based on phosphatidylcholine 0.9%, w/w. The three types of vesicular nanosystems were applied on explanted human skin maintained in a bioreactor. Transmission electron microscopy demonstrated that all vesicles were able to enter the skin, keeping their structural integrity. Notably, the vesicle penetration capability was influenced by their physical-chemical features. Indeed, ethosomes reached keratinocytes and even the dermis, phosphatidylcholine 0.9% transethosomes were found in keratinocytes and phosphatidylcholine 2.7% transethosomes were found only in corneocytes of the outer layer. These findings open interesting perspectives for a differentiated application of these vesicles for transdermal drug delivery as a function of the cutaneous pathology to be addressed.
Collapse
|
8
|
Crisóstomo LCCF, Carvalho GSG, Leal LKAM, de Araújo TG, Nogueira KAB, da Silva DA, de Oliveira Silva Ribeiro F, Petrilli R, Eloy JO. Sorbitan Monolaurate-Containing Liposomes Enhance Skin Cancer Cell Cytotoxicity and in Association with Microneedling Increase the Skin Penetration of 5-Fluorouracil. AAPS PharmSciTech 2022; 23:212. [PMID: 35918472 DOI: 10.1208/s12249-022-02356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Squamous cell carcinoma (SCC) represents 20% of cases of non-melanoma skin cancer, and the most common treatment is the removal of the tumor, which can leave large scars. 5-Fluorouracil (5FU) is a drug used in the treatment of SCC, but it is highly hydrophilic, resulting in poor skin penetration in topical treatment. Some strategies can be used to increase the cutaneous penetration of the drug, such as the combination of liposomes containing penetration enhancers, for instance, surfactants, associated with the use of microneedling. Thus, the present work addresses the development of liposomes with penetration enhancers, such as sorbtitan monolaurate, span 20, for topical application of 5-FU and associated or not with the use of microneedling for skin delivery. Liposomes were developed using the lipid film hydration, resulting in particle size, polydispersity index, zeta potential, and 5-FU encapsulation efficiency of 88.08 nm, 0.169, -12.3 mV, and 50.20%, respectively. The presence of span 20 in liposomes potentiated the in vitro release of 5-FU. MTT assay was employed for cytotoxicity evaluation and the IC50 values were 0.62, 30.52, and 24.65 μM for liposomes with and without span 20 and 5-FU solution, respectively after 72-h treatment. Flow cytometry and confocal microscopy analysis evidenced high cell uptake for the formulations. In skin penetration studies, a higher concentration of 5-FU was observed in the epidermis + dermis, corresponding to 1997.71, 1842.20, and 2585.49 ng/cm2 in the passive penetration and 3214.07, 2342.84, and 5018.05 ng/cm2 after pretreatment with microneedles, for solution, liposome without and with span 20, respectively. Therefore, herein, we developed a nanoformulation for 5-FU delivery, with suitable physicochemical characteristics, potent skin cancer cytotoxicity, and cellular uptake. Span 20-based liposomes increased the skin penetration of 5-FU in association of microneedling. Altogether, the results shown herein evidenced the potential of the liposome containing span 20 for topical delivery of 5-FU.
Collapse
Affiliation(s)
| | | | | | - Tamara Gonçalves de Araújo
- Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, Parnaíba, PI, Brazil
| | | | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony- UNILAB, Redenção, CE, Brazil
| | - Josimar O Eloy
- Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
9
|
Mancuso A, Tarsitano M, Udongo BP, Cristiano MC, Torella D, Paolino D, Fresta M. A comparison between silicone free and silicone-based emulsions: technological features and in vivo evaluation. Int J Cosmet Sci 2022; 44:514-529. [PMID: 35815903 PMCID: PMC9545630 DOI: 10.1111/ics.12800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Objective Nowadays, the use of silicones in cosmetic formulation is still controversial, given that “natural” or “biodegradable” components are preferred. Often, the exclusion and/or the discrimination of these excipients from cosmetic field are unmotivated because all things cannot be painted with the same brush. Hence, we want to bring to light and underline the advantages of including silicones in cosmetic emulsions, refuting and debunking some myths related to their use. Methods Silicone‐free and silicone‐based emulsions were obtained within an easy homogenization process. Droplet size distribution was assessed by laser diffraction particle size analyser Mastersizer 2000™, and by optical microscopy. The long‐time stability profiles were investigated thanks to the optical analyser Turbiscan® Lab Expert. Diffusing wave spectroscopy (DWS) by Rheolaser Master™ and frequency sweep measurements by Kinexus® Pro Rotational Rheometer were carried out to assess a full rheological characterization. In vivo studies were carried out by the evaluation of Trans Epidermal Water Loss (TEWL) over time on healthy human volunteers. A skin feeling rating was collected from the same volunteers by questionnaire. Results From size distribution analysis, a better coherence of data appeared for silicone‐based emulsion, as the size of the droplets was kept unchanged after 1 month, as well as the uniformity parameter. Morphological investigation confirmed a homogenous droplet distribution for both samples. Silicones enhanced the viscosity, compactness and strength of the cream, providing a suitable stability profile both at room temperature and when heated at 40°C. The solid‐like viscoelastic behaviour was assessed in the presence of dynamic oscillatory stresses. The monitoring of TEWL over time demonstrated non‐occlusive properties of emulsions containing silicones, the values of which were comparable to the negative control. Silicone‐based emulsions gained higher scores from the volunteers in silkiness, freshness and softness features, while lower scores were obtained in greasiness compared to silicone‐free emulsions. No cases of irritation were recorded by the candidates. Conclusion The presence of specific silicones inside a cosmetic product improved its technological characteristics. The rheological identity and the stability feature showed the real suitability of prepared emulsion as a cosmetic product. Moreover, this study demonstrated that silicone‐based emulsions are safe for the skin and did not cause skin occlusion. Improved skin sensations are registered by potential consumers when silicones are included in the formulation.
Collapse
Affiliation(s)
| | - Martine Tarsitano
- Department of Health Science University "Magna Graecia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, Catanzaro, Italy
| | - Betty P Udongo
- Pincer Training and Research Institute Plot 1127, Lukuli, Zone 5, Uganda
| | | | | | | | - Massimo Fresta
- Department of Health Science University "Magna Graecia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, Catanzaro, Italy
| |
Collapse
|
10
|
Moisture retention of glycerin solutions with various concentrations: a comparative study. Sci Rep 2022; 12:10232. [PMID: 35715536 PMCID: PMC9205919 DOI: 10.1038/s41598-022-13452-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
Various methods of evaluating a humectant's moisture retention have unique mechanisms. Hence, for designing advanced or efficient ingredients of cosmetic products, a clear understanding of differences among methods is required. The aim of this study was to analyze the moisture-retention capacity of glycerin, a common ingredient in cosmetic products. Specifically, this study applied gravimetric analysis, transepidermal water loss (TEWL) analysis, and differential scanning calorimetry (DSC) to examine the evaporation of glycerin solutions of different concentrations. The results revealed that the moisture-retention capacity of glycerin increased with the glycerin concentration from 0 to 60 wt%, and glycerin at concentration of 60-70 wt% did not exhibit weight change during the evaporation process. When the glycerin concentration exceeded 70 wt%, moisture sorption occurred in the glycerin solution. Furthermore, the results revealed a deviation between the evaporation rates measured using gravimetric analysis and those measured using TEWL analysis. However, normalizing the results of these analyses yielded the relative evaporation rates to water, which were consistent between these two analyses. DSC thermograms further confirmed the consistent results and identified two hydrated water microstructures (nonfreezable water and free water) in the glycerin solutions, which explained why the measured evaporation rate decreased with the glycerin concentration. These findings can be applied to prove the moisture-retention capacity of a humectant in cosmetic products by different measuring methods.
Collapse
|
11
|
Subedi L, Pandey P, Shim JH, Kim KT, Cho SS, Koo KT, Kim BJ, Park JW. Preparation of topical bimatoprost with enhanced skin infiltration and in vivo hair regrowth efficacy in androgenic alopecia. Drug Deliv 2022; 29:328-341. [PMID: 35040730 PMCID: PMC8774136 DOI: 10.1080/10717544.2022.2027046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To prepare a topical formulation of bimatoprost (BIM) with high skin permeability, we designed a solvent mixture system composed of ethanol, diethylene glycol monoethyl ether, cyclomethicone, and butylated hydroxyanisole, serving as a volatile solvent, nonvolatile co-solvent, spreading agent, and antioxidant, respectively. The ideal topical BIM formulation (BIM–TF#5) exhibited 4.60-fold higher human skin flux and a 529% increase in dermal drug deposition compared to BIM in ethanol. In addition, compared to the other formulations, BIM–TF#5 maximally activated human dermal papilla cell proliferation at a concentration of 5 μM BIM, equivalent to 10 μM minoxidil. Moreover, BIM–TF#5 (0.3% [w/w] BIM) significantly promoted hair regrowth in the androgenic alopecia mouse model and increased the area covered by hair at 10 days by 585% compared to the vehicle-treated mice, indicating that entire telogen area transitioned into the anagen phase. Furthermore, at day 14, the hair weight of mice treated with BIM–TF#5 (5% [w/w] BIM) was 8.45- and 1.30-fold greater than in the 5% (w/w) BIM in ethanol and 5% (w/v) minoxidil treated groups, respectively. In the histological examination, the number and diameter of hair follicles in the deep subcutis were significantly increased in the BIM–TF#5 (0.3 or 5% [w/w] BIM)-treated mice compared to the mice treated with vehicle or 5% (w/w) BIM in ethanol. Thus, our findings suggest that BIM–TF#5 is an effective formulation to treat scalp alopecia, as part of a novel therapeutic approach involving direct prostamide F2α receptor-mediated stimulation of dermal papilla cells within hair follicles.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Kyo-Tan Koo
- BioBelief Co., Ltd., Seoul, Republic of Korea
| | - Beum Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
12
|
Rutin-Loaded Nanovesicles for Improved Stability and Enhanced Topical Efficacy of Natural Compound. J Funct Biomater 2021; 12:jfb12040074. [PMID: 34940553 PMCID: PMC8704772 DOI: 10.3390/jfb12040074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
Rutin is a natural compound with several pharmacological effects. Among these, antioxidant activity is one of the best known. Despite its numerous benefits, its topical application is severely limited by its physicochemical properties. For this reason, the use of suitable systems could be necessary to improve its delivery through skin, thus enhancing its pharmacological effects. In this regard, the aim of this work is to optimize the ethosomal dispersion modifying both lipid and ethanol concentrations and encapsulating different amounts of rutin. Characterization studies performed on the realized systems highlighted their great stability properties. Studies of encapsulation efficiency and loading degree allowed us to identify a better formulation (EE% 67.5 ± 5.2%, DL% 27 ± 1.7%), which was used for further analyses. The data recorded from in vitro studies showed that the encapsulation into these nanosystems allowed us to overcome the photosensitivity limitation of rutin. Indeed, a markable photostability of the loaded formulation was recorded, compared with that reported from the free rutin solution. The efficacy of the nanosystems was finally evaluated both in vitro on keratinocyte cells and in vivo on human healthy volunteers. The results confirmed the potentiality of rutin-loaded nanosystems for skin disease, mainly related to their anti-inflammatory and antioxidant effects.
Collapse
|
13
|
Ulloa Rojas JE, Oliveira VLD, de Araujo DR, Tofoli GR, de Oliveira MM, Carastan DJ, Palaci M, Giuntini F, Alves WA. Silk Fibroin/Poly(vinyl Alcohol) Microneedles as Carriers for the Delivery of Singlet Oxygen Photosensitizers. ACS Biomater Sci Eng 2021; 8:128-139. [PMID: 34752076 DOI: 10.1021/acsbiomaterials.1c00913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitizing drug and visible light produces highly cytotoxic reactive oxygen species (ROS) that leads to cell death. One of the main drawbacks of PDT for topical treatments is the limited skin penetration of some photosensitizers commonly used in this therapy. In this study, we propose the use of polymeric microneedles (MNs) prepared from silk fibroin and poly(vinyl alcohol) (PVA) to increase the penetration efficiency of porphyrin as possible applications in photodynamic therapy. The microneedle arrays were fabricated from mixtures in different proportions (1:0, 7:3, 1:1, 3:7, and 0:1) of silk fibroin and PVA solutions (7%); the polymer solutions were cast in polydimethylsiloxane (PDMS) molds and dried overnight. Patches containing grids of 10 × 10 microneedles with a square-based pyramidal shape were successfully produced through this approach. The polymer microneedle arrays showed good mechanical strength under compression force and sufficient insertion depth in both Parafilm M and excised porcine skin at different application forces (5, 20, 30, and 40 N) using a commercial applicator. We observe an increase in the cumulative permeation of 5-[4-(2-carboxyethanoyl) aminophenyl]-10,15,20-tris-(4-sulphonatophenyl) porphyrin trisodium through porcine skin treated with the polymer microneedles after 24 h. MNs may be a promising carrier for the transdermal delivery of photosensitizers for PDT, improving the permeation of photosensitizer molecules through the skin, thus improving the efficiency of this therapy for topical applications.
Collapse
Affiliation(s)
- Jose Eduardo Ulloa Rojas
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Vivian Leite de Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | | | - Giovana Radomille Tofoli
- São Leopoldo Mandic Faculty, São Leopoldo Mandic Research Institute, Campinas, 01332-000 São Paulo, Brazil
| | - Matheus Mendes de Oliveira
- Center for Engineering Modeling and Applied Social Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Danilo Justino Carastan
- Center for Engineering Modeling and Applied Social Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Moises Palaci
- Center for Health Sciences, Federal University of Espirito Santo, Vitória, 29075-910 ES, Brazil
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Wendel Andrade Alves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| |
Collapse
|
14
|
Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
EtoGel for Intra-Articular Drug Delivery: A New Challenge for Joint Diseases Treatment. J Funct Biomater 2021; 12:jfb12020034. [PMID: 34065713 PMCID: PMC8162362 DOI: 10.3390/jfb12020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ethosomes® have been proposed as potential intra-articular drug delivery devices, in order to obtain a longer residence time of the delivered drug in the knee joint. To this aim, the conventional composition and preparation method were modified. Ethosomes® were prepared by using a low ethanol concentration and carrying out a vesicle extrusion during the preparation. The modified composition did not affect the deformability of ethosomes®, a typical feature of this colloidal vesicular topical carrier. The maintenance of sufficient deformability bodes well for an effective ethosome® application in the treatment of joint pathologies because they should be able to go beyond the pores of the dense collagen II network. The investigated ethosomes® were inserted in a three-dimensional network of thermo-sensitive poloxamer gel (EtoGel) to improve the residence time in the joint. Rheological experiments evidenced that EtoGel could allow an easy intra-articular injection at room temperature and hence transform itself in gel form at body temperature into the joint. Furthermore, EtoGel seemed to be able to support the knee joint during walking and running. In vitro studies demonstrated that the amount of used ethanol did not affect the viability of human chondrocytes and nanocarriers were also able to suitably interact with cells.
Collapse
|
16
|
Cristiano MC, Mancuso A, Fresta M, Torella D, De Gaetano F, Ventura CA, Paolino D. Topical Unsaturated Fatty Acid Vesicles Improve Antioxidant Activity of Ammonium Glycyrrhizinate. Pharmaceutics 2021; 13:548. [PMID: 33919824 PMCID: PMC8070842 DOI: 10.3390/pharmaceutics13040548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/06/2023] Open
Abstract
Linoleic and oleic acids are natural unsaturated fatty acids involved in several biological processes and recently studied as structural components of innovative nanovesicles. The use of natural components in the pharmaceutical field is receiving growing attention from the scientific world. The aim of this research work is to design, to perform physico-chemical characterization and in vitro/in vivo studies of unsaturated fatty acids vesicles containing ammonium glycyrrhizinate, obtaining a new topical drug delivery system. The chosen active substance is well known as an anti-inflammatory compound, but its antioxidant activity is also noteworthy. In this way, the obtained nanocarriers are totally natural vesicles and they have shown to have suitable physico-chemical features for topical administration. Moreover, the proposed nanocarriers have proven their ability to improve the in vitro percutaneous permeation and antioxidant activity of ammonium glycyrrhizinate on human keratinocytes (NCTC 2544 cells). In vivo studies, carried out on human volunteers, have demonstrated the biocompatibility of unsaturated fatty acid vesicles toward skin tissue, indicating a possible clinical application of unsaturated fatty acid vesicles for the treatment of topical diseases.
Collapse
Affiliation(s)
- Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| | - Antonia Mancuso
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (A.M.); (M.F.)
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (A.M.); (M.F.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| | - Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (C.A.V.)
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (C.A.V.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| |
Collapse
|
17
|
Paolino D, Mancuso A, Cristiano MC, Froiio F, Lammari N, Celia C, Fresta M. Nanonutraceuticals: The New Frontier of Supplementary Food. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:792. [PMID: 33808823 PMCID: PMC8003744 DOI: 10.3390/nano11030792] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
In the last few decades, the combination between nanotechnology and nutraceutics has gained the attention of several research groups. Nutraceuticals are considered as active compounds, abundant in natural products, showing beneficial effects on human health. Unfortunately, the uses, and consequently the health benefits, of many nutraceutical products are limited by their unsuitable chemico-physical features. For example, many nutraceuticals are characterized by low water solubility, low stability and high susceptibility to light and oxygen, poor absorption and potential chemical modifications after their administration. Based on the potential efficacy of nutraceuticals and on their limiting features, nanotechnology could be considered a revolutionary innovation in empowering the beneficial properties of nutraceuticals on human health, thus enhancing their efficacy in several diseases. For this reason, nanotechnology could represent a new frontier in supplementary food. In this review, the most recent nanotechnological approaches are discussed, focusing on their ability to improve the bioavailability of the most common nutraceuticals, providing an overview regarding both the advantages and the possible limitations of the use of several nanodelivery systems. In fact, although the efficacy of smart nanocarriers in improving health benefits deriving from nutraceuticals has been widely demonstrated, the conflicting opinions on the mechanism of action of some nanosystems still reduce their applicability in the therapeutic field.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy; (D.P.); (M.C.C.); (F.F.)
| | - Antonia Mancuso
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy; (D.P.); (M.C.C.); (F.F.)
| | - Francesca Froiio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy; (D.P.); (M.C.C.); (F.F.)
| | - Narimane Lammari
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, 25000 Constantine, Algeria;
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, I-66100 Chieti, Italy;
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy;
| |
Collapse
|
18
|
Oleuropein-Laded Ufasomes Improve the Nutraceutical Efficacy. NANOMATERIALS 2021; 11:nano11010105. [PMID: 33406805 PMCID: PMC7824463 DOI: 10.3390/nano11010105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023]
Abstract
Ufasomes are unsaturated fatty acid liposomes made up of oleic and linoleic acids, natural components required in various biological processes. This kind of nanocarrier is characterized by a simple and dynamic structure and is able to improve the bioavailability of unsaturated fatty acids. The aim of this investigation was to evaluate ufasomes as natural compound delivery systems to deliver oleuropein and improve its antioxidant activity. Oleuropein is a phenolic compound mainly present in olives and olive oil, with several biological properties, such as the antioxidant activity. However, to improve their biological activity, antioxidant compounds should be able to cross cell membranes and uniformly incorporate in cells. Because of the great similarity between their constituents and cell membranes, ufasomes could be advantageous carriers for oleuropein delivery. The physico-chemical characteristics of ufasomes were investigated. A regular shape was shown by transmission electron microscopy studies, while the mean sizes were dependent on the ufasomes composition. In vitro studies highlighted that empty ufasomes did not lead to cell mortality at the tested concentrations and a good carrier internalization in CaCo-2 cells, further studies in vitro studies demonstrated that oleuropein-loaded ufasomes were able to enhance the antioxidant activity of the free active substance making this carrier a suitable one for nutraceutical application.
Collapse
|
19
|
Apolinário AC, Hauschke L, Nunes JR, Lopes LB. Towards nanoformulations for skin delivery of poorly soluble API: What does indeed matter? J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Mancuso A, Cristiano MC, Fresta M, Paolino D. The Challenge of Nanovesicles for Selective Topical Delivery for Acne Treatment: Enhancing Absorption Whilst Avoiding Toxicity. Int J Nanomedicine 2020; 15:9197-9210. [PMID: 33239876 PMCID: PMC7682599 DOI: 10.2147/ijn.s237508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Acne is a common skin disease that affect over 80% of adolescents. It is characterized by inflammation of the hair bulb and the attached sebaceous gland. To date, many strategies have been used to treat acne as a function of the disease severity. However, common treatments for acne seem to show several side effects, from local irritation to more serious collateral effects. The use of topical vesicular carriers able to deliver active compounds is currently considered as an excellent approach in the treatment of different skin diseases. Many results in the literature have proven that drug delivery systems are useful in overcoming the toxicity induced by common drug therapies, while maintaining their therapeutic efficacy. Starting from these assumptions, the authors reviewed drug delivery systems already realized for the topical treatment of acne, with a focus on their limitations and advantages over conventional treatment strategies. Although their exact mechanism of permeation is not often completely clear, deformable vesicles seem to be the best solution for obtaining a specific delivery of drugs into the deeper skin layers, with consequent increased local action and minimized collateral effects.
Collapse
Affiliation(s)
- Antonia Mancuso
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| |
Collapse
|
21
|
Sanabria-de la Torre R, Fernández-González A, Quiñones-Vico MI, Montero-Vilchez T, Arias-Santiago S. Bioengineered Skin Intended as In Vitro Model for Pharmacosmetics, Skin Disease Study and Environmental Skin Impact Analysis. Biomedicines 2020; 8:E464. [PMID: 33142704 PMCID: PMC7694072 DOI: 10.3390/biomedicines8110464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
This review aims to be an update of Bioengineered Artificial Skin Substitutes (BASS) applications. At the first moment, they were created as an attempt to replace native skin grafts transplantation. Nowadays, these in vitro models have been increasing and widening their application areas, becoming important tools for research. This study is focus on the ability to design in vitro BASS which have been demonstrated to be appropriate to develop new products in the cosmetic and pharmacology industry. Allowing to go deeper into the skin disease research, and to analyze the effects provoked by environmental stressful agents. The importance of BASS to replace animal experimentation is also highlighted. Furthermore, the BASS validation parameters approved by the OECD (Organisation for Economic Co-operation and Development) are also analyzed. This report presents an overview of the skin models applicable to skin research along with their design methods. Finally, the potential and limitations of the currently available BASS to supply the demands for disease modeling and pharmaceutical screening are discussed.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
22
|
Jabeen M, Boisgard AS, Danoy A, El Kholti N, Salvi JP, Boulieu R, Fromy B, Verrier B, Lamrayah M. Advanced Characterization of Imiquimod-Induced Psoriasis-Like Mouse Model. Pharmaceutics 2020; 12:pharmaceutics12090789. [PMID: 32825447 PMCID: PMC7558091 DOI: 10.3390/pharmaceutics12090789] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Many autoimmune disorders such as psoriasis lead to the alteration of skin components which generally manifests as unwanted topical symptoms. One of the most widely approved psoriasis-like animal models is the imiquimod (IMQ)-induced mouse model. This representation mimics various aspects of the complex cutaneous pathology and could be appropriate for testing topical treatment options. We perform a thorough characterization of this model by assessing some parameters that are not fully described in the literature, namely a precise description of skin disruption. It was evaluated by transepidermal water loss measurements and analyses of epidermis swelling as a consequence of keratinocyte hyperproliferation. The extent of neo-angiogenesis and hypervascularity in dermis were highlighted by immunostaining. Moreover, we investigated systemic inflammation through cytokines levels, spleen swelling and germinal centers appearance in draining lymph nodes. The severity of all parameters was correlated to IMQ concentration in skin samples. This study outlines new parameters of interest useful to assess this model. We highlight the skin barrier disruption and report a systemic inflammatory reaction occurring at distance both in spleen and lymph nodes. These newly identified biological endpoints could be exploited to investigate the efficacy of therapeutic candidates for psoriasis and more extensively for several other skin inflammatory diseases.
Collapse
Affiliation(s)
- Mehwish Jabeen
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Anne-Sophie Boisgard
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Alix Danoy
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Naima El Kholti
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Jean-Paul Salvi
- UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Université de Lyon, Université Lyon 1, 69373 Lyon CEDEX 08, France; (J.-P.S.); (R.B.)
| | - Roselyne Boulieu
- UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Université de Lyon, Université Lyon 1, 69373 Lyon CEDEX 08, France; (J.-P.S.); (R.B.)
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, 69002 Lyon, France
| | - Bérengère Fromy
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Bernard Verrier
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Myriam Lamrayah
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
- Correspondence:
| |
Collapse
|