1
|
Furbish A, Allinder M, Austin G, Tynan B, Byrd E, Gomez IP, Peterson Y. First analytical confirmation of drug-induced crystal nephropathy in felines caused by GS-441524, the active metabolite of Remdesivir. J Pharm Biomed Anal 2024; 247:116248. [PMID: 38823223 PMCID: PMC11229044 DOI: 10.1016/j.jpba.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
GS-441524 is an adenosine nucleoside antiviral demonstrating significant efficacy in the treatment of feline infectious peritonitis (FIP), an otherwise fatal illness, resulting from infection with feline coronavirus. However, following the emergence of COVID-19, veterinary development was halted, and Gilead pursued clinical development of a GS-441524 pro-drug, resulting in the approval of Remdesivir under an FDA emergency use authorization. Despite lack of regulatory approval, GS-441524 is available without a prescription through various unlicensed online distributors and is commonly purchased by pet owners for the treatment of FIP. Herein, we report data obtained from the analytical characterization of two feline renal calculi, demonstrating the propensity for GS-441524 to cause renal toxicity through drug-induced crystal nephropathy in vivo. As definitive diagnosis of drug-induced crystal nephropathy requires confirmation of the lithogenic material to accurately attribute a mechanism of toxicity, renal stone composition and crystalline matrix were characterized using ultra-performance liquid chromatography photodiode array detection (UPLC-PDA), ultra-performance liquid chromatography mass spectrometry (LCMS), nuclear magnetic resonance (NMR) spectroscopy, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). This work serves to provide the first analytical confirmation of GS-441524-induced crystal nephropathy in an effort to support toxicologic identification of adverse renal effects caused by administration of GS-441524 or any pro-drug thereof.
Collapse
Affiliation(s)
- Amelia Furbish
- Dept. of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St, Charleston, SC 29425, USA
| | - Marissa Allinder
- Charleston Veterinary Referral Center, 3484 Shelby Ray Court, Charleston, SC, USA
| | - Glenn Austin
- Louis C. Herring and Company, 1111 S. Orange Ave., Orlando, FL, USA
| | - Beth Tynan
- Charleston Veterinary Referral Center, 3484 Shelby Ray Court, Charleston, SC, USA
| | - Emilee Byrd
- Dept. of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St, Charleston, SC 29425, USA
| | - Ivette Pina Gomez
- Dept. of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St, Charleston, SC 29425, USA
| | - Yuri Peterson
- Dept. of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Mostafa A. Insights into the sustainability of liquid chromatographic methods for favipiravir bioanalysis: a comparative study. RSC Adv 2024; 14:19658-19679. [PMID: 38899032 PMCID: PMC11185049 DOI: 10.1039/d4ra03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
The introduction of favipiravir as a broad-spectrum antiviral agent, particularly in treating influenza and exploring its potential against COVID-19, emphasizes the necessity for efficient analytical methods. Liquid chromatography has emerged as a commonly utilized technique for quantifying favipiravir in biological fluids. However, the environmental and health concerns linked to classical analytical methods mean a transition toward green analytical chemistry is required. This study investigates the environmental impact of 19 liquid chromatographic methods utilized in the bioanalysis of favipiravir. Recognizing the importance of eco-friendly practices in pharmaceutical analysis, the study employs three widely accepted greenness assessment tools: Analytical Eco-Scale (AES), Green Analytical Procedure Index (GAPI), and Analytical Greenness Calculator (AGREE). Moreover, it incorporates a comprehensive evaluation on a global scale utilizing the whiteness assessment tool Red-Green-Blue 12 (RGB 12). The comprehensive evaluation aims to extend beyond traditional validation criteria and considerations of green chemistry, providing insights into the development of practically efficient, eco-friendly and economical analytical methods for favipiravir determination. This study emphasizes the necessity of planning for the environmental impact and overall sustainability of analytical methods before laboratory trials. Additionally, the integration of greenness/whiteness evaluation in method validation protocols is strongly advocated, emphasizing the importance of critical and global evaluations in analytical chemistry.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Eastern Province Saudi Arabia (+966) 56 262 3776
| |
Collapse
|
3
|
Safari E, Seyfinejad B, Farajzadeh MA, Afshar Mogaddam MR, Nemati M. Acid-base reaction-based dispersive solid phase extraction of favipiravir using biotin from biological samples prior to capillary electrophoresis analysis. RSC Adv 2024; 14:19612-19618. [PMID: 38903417 PMCID: PMC11188667 DOI: 10.1039/d3ra07356d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
In this study, an acid-base reaction-based dispersive solid-phase extraction method was developed for the extraction of favipiravir from deionized water, plasma and urine samples prior to its determination using a capillary electrophoresis-diode array detector. The target analyte was extracted from the samples using biotin as a green adsorbent. To reach this goal, the pH of the solution was first adjusted to 9.0 (using borate buffer), and the ionic strength of the solution was enhanced by adding sodium chloride (2.5%, w/v). Thereafter, an appropriate amount of biotin was dissolved in the solution and a homogenous phase was obtained. By adding hydrochloric acid to the solution, an acid-base reaction occurs via protonation of biotin, which decreases its solubility. During this procedure, the analyte was adsorbed onto the tiny particles of the produced adsorbent dispersed into the solution. The resulting mixture was sonicated to facilitate the adsorption of the analyte onto the adsorbent surface. After the collection of biotin particles through centrifugation, the analyte was eluted using acetonitrile and then used in the determination stage. Under the optimal extraction conditions, the calibration curve was linear from 250 to 3000 ng mL-1 with a coefficient of determination of 0.9968. Low limit of detection, and quantification, good repeatability on the same day and different days (relative standard deviation ≤ 8.2%), and acceptable extraction recovery were accessed. The applicability of the method was examined by performing it on spiked plasma and urine samples, and its performance was verified.
Collapse
Affiliation(s)
- Elnaz Safari
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 4133344798 +98 4133372250
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz Tabriz Iran
- Engineering Faculty, Near East University 99138 Nicosia Mersin 10 North Cyprus Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 4133344798 +98 4133372250
| | - Mahboob Nemati
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 4133344798 +98 4133372250
| |
Collapse
|
4
|
Wang H, Luo S, Xie M, Chen Z, Zhang Y, Xie Z, Zhang Y, Zhang Y, Yang L, Wu F, Chen X, Du G, Zhao J, Sun X. ACE2 Receptor-Targeted Inhaled Nanoemulsions Inhibit SARS-CoV-2 and Attenuate Inflammatory Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311537. [PMID: 38174591 DOI: 10.1002/adma.202311537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Three kinds of coronaviruses are highly pathogenic to humans, and two of them mainly infect humans through Angiotensin-converting enzyme 2 (ACE2)receptors. Therefore, specifically blocking ACE2 binding at the interface with the receptor-binding domain is promising to achieve both preventive and therapeutic effects of coronaviruses. Alternatively, drug-targeted delivery based on ACE2 receptors can further improve the efficacy and safety of inhalation drugs. Here, these two approaches are innovatively combined by designing a nanoemulsion (NE) drug delivery system (termed NE-AYQ) for inhalation that targets binding to ACE2 receptors. This inhalation-delivered remdesivir nanoemulsion (termed RDSV-NE-AYQ) effectively inhibits the infection of target cells by both wild-type and mutant viruses. The RDSV-NE-AYQ strongly inhibits Severe acute respiratory syndrome coronavirus 2 at two dimensions: they not only block the binding of the virus to host cells at the cell surface but also restrict virus replication intracellularly. Furthermore, in the mouse model of acute lung injury, the inhaled drug delivery system loaded with anti-inflammatory drugs (TPCA-1-NE-AYQ) can significantly alleviate the lung tissue injury of mice. This smart combination provides a new choice for dealing with possible emergencies in the future and for the rapid development of inhaled drugs for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Hairui Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Shuang Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Mingxin Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Yunming Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yongshun Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lan Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Fuhua Wu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoyan Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Guangsheng Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
5
|
Nosratzehi F, Mofatehnia P, Gharagozlou M, Malekzadeh M, Farajzadeh MA, Marzi Khosrowshahi E, Afshar Mogaddam MR. Extraction of Covid-19 drug (Favipiravir) from plasma samples by yolk-shell mesoporous silica before HPLC-MS/MS determination. J Pharm Biomed Anal 2024; 239:115874. [PMID: 38029702 DOI: 10.1016/j.jpba.2023.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
In this work, a simple and inexpensive dispersive solid phase extraction method using SiO2 @MCM-41-Co3O4 yolk shell as a sorbent was developed for the extraction of favipiravir from plasma samples. The sorbent was synthesized with a simple and novel method. Optimization of the extraction procedure was performed using one parameter at a time strategy. For selective measurement of favipiravir in real samples, multiple reaction monitoring mode in high-performance liquid chromatography-tandem mass spectrometry was used. The synthesized sorbent presented a high adsorption capacity for favipiravir due to its mesoporous structure and different interactions. After optimization of effective parameters including the amount of sorbent, pH, and adsorption and desorption times, the analytical parameters of the method were evaluated. The developed method exhibited a wide linear range from 0.50 to 1000 μg/L. The detection limit and quantification limit of the method were 0.15 and 0.50 μg/L, respectively. The relative standard deviation of the method was obtained by using intra- and inter-day tests, and in both cases, it was less than 6.0%. Finally, the method was successfully used to measure favipiravir in plasma samples with relative recoveries in the range of 87-105%.
Collapse
Affiliation(s)
- Fatemeh Nosratzehi
- Department of Chemistry, University of Birjand, Birjand, South Khorasan, Iran
| | - Parisa Mofatehnia
- Department of Chemistry, Alzahra University, Vanak Square, P.O. Box 1993893973, Tehran, Iran
| | - Mehrnaz Gharagozlou
- Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, P.O. Box 1668814811, Tehran, Iran
| | - Mahla Malekzadeh
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | | | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Taha AM, Hassan WS, Elmasry MS, Sayed RA. A validated eco-friendly HPLC-FLD for analysis of the first approved antiviral remdesivir with other potential add-on therapies for COVID-19 in human plasma and pharmaceuticals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6666-6678. [PMID: 38031474 DOI: 10.1039/d3ay01562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
It is crucial to have a reliable and sensitive method for separating common drugs used in SARS-CoV-2 pneumonia treatment protocols for ongoing treatment and upcoming investigations. This study presents an HPLC-FLD approach to analyze three co-administered medicines - remdesivir (RDV), hydroxychloroquine sulphate (HCQ), and levofloxacin hemihydrate (LVX) - in their pure forms, pharmaceutical preparations, and spiked human plasma. The HPLC-FLD analysis was conducted using a Symmetry® C18 column (100 mm × 4.6 mm ID, 3.5 μm particle size) at 40 °C, with (A) an aqueous mixture of 0.02 M phosphate buffer and 0.2% heptane-1-sulphonic acid sodium solutions (50 : 50) adjusted to pH 3, (B) acetonitrile, and (C) methanol as the mobile phase. The injection volume was 10 μL, and the flow rate was 1.5 mL min-1. The detection was done using a multi-wavelength excitation and emission fluorescence detector, with individual optimization for each drug. The drug separation time was less than 10 minutes, and the method showed sensitive and wide linearity ranges for all medicines, with r2 values of more than 0.999. The impact of the mobile phase pH and flow rate on suitability parameters (retention time and number of theoretical plates) was studied. The method was found to be environmentally friendly based on GAPI and AGREE metrics. The validity of the method was evaluated following ICH and FDA guidelines.
Collapse
Affiliation(s)
- Asmaa M Taha
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Wafaa S Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Manal S Elmasry
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Rania A Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
7
|
Kimble B, Coggins SJ, Norris JM, Thompson MF, Govendir M. Quantification of GS-441524 concentration in feline plasma using high performance liquid chromatography with fluorescence detection. Vet Q 2023; 43:1-9. [PMID: 37556736 PMCID: PMC10438854 DOI: 10.1080/01652176.2023.2246553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
The adenosine analogue GS-441524 has demonstrated efficacy in treatment of feline infectious peritonitis (FIP). With no commercially registered formulations of GS-441524 available, global focus shifted to its pro-drug remdesivir, as it became more accessible throughout the COVID-19 pandemic. This study developed and validated a simple liquid chromatography equipped with a fluorescence detector to quantify plasma concentrations of GS-441524 applicable for routine therapeutic monitoring of remdesivir or GS-441524 therapy for FIP infected cats. A Waters X-Bridge C18, 5 µm, 150 × 4.6 mm, column was used and mixtures of 20 mM ammonium acetate (pH 4.5) with acetonitrile of 5% and 70% were prepared for gradient mobile phase. With a simple protein precipitation using methanol to clean plasma sample, GS-441524 was monitored at excitation and emission wavelengths of 250 nm and 475 nm, respectively. Using an external standard, the lowest and highest limits of quantification were 19.5 ng/mL to 10,000 ng/mL, respectively. The intra- and inter day trueness of the quality controls (QCs) were within 10% of their nominal concentrations and intra- and inter day precision of the QCs (expressed as the coefficient of variation) ranged from 1.7 to 5.7%, This assay was able to quantify plasma trough levels of GS-441524 (23.7-190.1 ng/mL) after the administration of remdesivir (9.9-15.0 mg/kg BW, IV or SC) in FIP cats (n = 12). Accordingly, this study generated an alternative and cost-effective way to quantify GS-441524 in feline biological fluids at least up to 24 hr after administrations of remdesivir.
Collapse
Affiliation(s)
- Benjamin Kimble
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Sally J. Coggins
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mary F. Thompson
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
8
|
Rosli NB, Kwon HJ, Jeong JS. Simultaneous quantification method for multiple antiviral drugs in serum using isotope dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123925. [PMID: 37992562 DOI: 10.1016/j.jchromb.2023.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
We describe the simultaneous quantification of six antiviral drugs in serum based on high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The target drugs-hydroxychloroquine, chloroquine, favipiravir, umifenovir, ritonavir, and lopinavir-were extracted and purified from serum with 75 % v/v methanol as the precipitant reagent. The six analytes were clearly separated within 15 min using gradient elution and mixed-mode stationary phase. The measurement accuracy and precision were assured by adopting isotopes as internal standards. The optimized measurement procedure was strictly validated in linearity, sensitivity, accuracy, and precision. To confirm the robustness of the method in matrix, the method was additionally applied to various types of serum, namely hyperlipidemic and hyperglycemic serum. The method was then applied to assess the stability of the drugs in serum in order to set sample handling and storage guides for laboratory testing. Lastly, the method was implemented in different LC-MS systems to confirm its applicability across similar equipment commonly used in clinical testing laboratories. The overall results show that the optimized protocol is suitable for the accurate, simultaneous quantification of the six antiviral drugs in serum, and it is anticipated to satisfactorily serve as a reference protocol for the analysis of a wide range of other antiviral drugs for drug monitoring with various purposes.
Collapse
Affiliation(s)
- Nordiana Binti Rosli
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Drug and Toxicology Lab, Department of Pathology, Hospital Kuala Lumpur Jalan Pahang, Kuala Lumpur 50586, Malaysia
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
9
|
El-Sayed HM, Abdellatef HE, Hendawy HAM, El-Abassy OM, Ibrahim H. A highly sensitive and green electroanalytical method for the determination of favipiravir in pharmaceutical and biological fluids. BMC Chem 2023; 17:109. [PMID: 37653428 PMCID: PMC10472665 DOI: 10.1186/s13065-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Favipiravir is currently used for the treatment of coronavirus disease-2019 (COVID-19). OBJECTIVE A highly sensitive and eco-friendly electroanalytical method was developed to quantify favipiravir. METHOD The voltammetric method optimized a sensor composed of reduced graphene oxide / modified carbon paste electrode in the presence of an anionic surfactant, improving the favipiravir detection limit. The investigation reveals that favipiravir-oxidation is a diffusion-controlled irreversible process. The effects of various pH and scan rates on oxidation anodic peak current were investigated. RESULTS The developed method offers a wide linear dynamic range of 1.5-420 ng/mL alongside a higher sensitivity with a limit of detection in the nanogram range (0.44 ng/mL) and a limit of quantification in the low nanogram range (1.34 ng/mL). CONCLUSION The proposed method was applied for the determination of favipiravir in the dosage form, human plasma and urine samples. The developed method exhibited good selectivity in the presence of two potential electroactive biological interferants, uric acid which increases during favipiravir therapy and the recommended co-administered vitamin C. The organic solvent-free method greenness was evaluated via the Green Analytical Procedure Index, The present work offers a simple, sensitive and environment-friendly method fulfilling green chemistry concepts.
Collapse
Affiliation(s)
- Heba M El-Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hisham Ezzat Abdellatef
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | | | - Omar M El-Abassy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr, 11829, Egypt.
| | - Hany Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr, 11829, Egypt
| |
Collapse
|
10
|
ITIGIMATH N, ASHOKA H, YALLUR BC, HADAGALI MD. LC-MS/MS Method Development and Validation for Determination of Favipiravir Pure and Tablet Dosage Forms. Turk J Pharm Sci 2023; 20:226-233. [PMID: 37606007 PMCID: PMC10445228 DOI: 10.4274/tjps.galenos.2022.75470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
Objectives Analytical method development and validation for determination of favipiravir (FVPR) in pure and tablet dosage forms by liquid chromatography with tandem mass spectrometry/mass spectrometry (LC-MS/MS) technique. Materials and Methods A simple LC-MS/MS method was developed for determination of a new antiviral drug, FVPR in pharmaceutical formulations. The stationary phase employed was a Shim pack GISS, C18 (100 mm × 2.1 mm, 1.9 μm) column and mobile phase used in pump A was 10.0 mM ammonium acetate and in pump B methanol was used. The gradient program was used with fixed mobile phase flow rate at 0.4 mL min-1. Total run time was 5.0 min. The proposed method was validated according to International Conference on Harmonization (ICH) guidelines. The established method found better outcomes. Results The linearity graph was found in the range of 50-200 μg/mL and the correlation coefficient value (R2) obtained was found to be 1.0. The limit of detection (LOD) and limit of quantification (LOQ) were 4.044 μg/mL and 12.253 μg/mL, respectively. Tremendous recovery outcomes were observed and found to be 101%, 99.0%, and 99.5% for FVPR at 150% upper, 100% middle, and 50% lower concentrations, respectively. Conclusion All outcomes obtained comply with ICH guidelines. The developed method was simple, unique, accurate, robust, precise, and reproducible for determination of FVPR in tablet formulation. The method is novel and could be adopted in formulation industry.
Collapse
Affiliation(s)
- Nandeesha ITIGIMATH
- Ramaiah Institute of Technology, Department of Chemistry, Visvesvaraya Technological University, Bangalore, Belagavi, India
| | - Hadagali ASHOKA
- BMS College of Engineering, Department of Biotechnology, Bengalore, India
| | - Basappa C. YALLUR
- Ramaiah Institute of Technology, Department of Chemistry, Visvesvaraya Technological University, Bangalore, Belagavi, India
| | | |
Collapse
|
11
|
Karakaya S, Dilgin Y. The application of multi-walled carbon nanotubes modified pencil graphite electrode for voltammetric determination of favipiravir used in COVID-19 treatment. MONATSHEFTE FUR CHEMIE 2023; 154:1-11. [PMID: 37361695 PMCID: PMC10249926 DOI: 10.1007/s00706-023-03082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
This study describes the first application of an improved procedure on a pencil graphite electrode decorated with functionalized multi-walled carbon nanotubes (f-MWCNTs/PGE) for the determination of the COVID-19 antiviral drug, favipiravir (FVP). The electrochemical behavior of FVP at f-MWCNTs/PGE was examined by cyclic voltammetry and differential pulse voltammetry (DPV) methods, and it was noted that the voltammetric response significantly increased with the modification of f -MWCNTs to the surface. The linear range and limit of detection from DPV studies were determined as 1-1500 µM and 0.27 µM, respectively. In addition, the selectivity of the method was tested toward potential interferences, which can be present in pharmaceutical and biological samples, and it was found that f-MWCNTs/PGE showed high selectivity for the determination of FVP in the presence of probable interferences. The results with high accuracies and precisions from the obtained feasibility studies also revealed that the designed procedure can be used for accurate and selective voltammetric determination of FVP in real samples. Graphical abstract
Collapse
Affiliation(s)
- Serkan Karakaya
- Chemistry Department of Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yusuf Dilgin
- Chemistry Department of Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
12
|
Khalil HA, Hassanein NA, El-Yazbi AF. Recent analytical methodologies for the determination of anti-covid-19 drug therapies in various matrices: a critical review. RSC Adv 2023; 13:13224-13239. [PMID: 37124020 PMCID: PMC10143325 DOI: 10.1039/d3ra00654a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Since the discovery of the first case infected with severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) in Wuhan, China in December 2019, it has turned into a global pandemic. According to the World Health Organization (WHO) statistics, about 603.7 million confirmed coronavirus cases and 6.4 million deaths have been reported. Remdesivir (RMD) was the first U.S. Food and Drug Administration (FDA) approved antiviral drug for the treatment of coronavirus in pediatrics and adults with different disease severities, ranging from mild to severe, in both hospitalized and non-hospitalized patients. Various drug regimens are used in Covid-19 treatment, all of which rely on the use of antiviral agents including ritonavir (RTN)/nirmatrelvir (NTV) combination, molnupiravir (MLP) and favipiravir (FVP). Optimizing analytical methods for the selective and sensitive quantification of the above-mentioned drugs in pharmaceutical dosage forms and biological matrices is a must in the current pandemic. Several analytical techniques were reported for estimation of antivirals used in Covid-19 therapy. Chromatographic methods include Thin Layer Chromatography (TLC) densitometry, High Performance Thin Layer Chromatography (HPTLC), Reversed Phase-High Performance Liquid Chromatography (RP-HPLC), High Performance Liquid Chromatography Tandem Mass Spectrometry (HPLC-MS/MS) or Ultraviolet detectors (HPLC-UV), Ultra High-Performance Liquid Chromatography (UHPLC-MS/MS) or (UPLC-UV) and Micellar Liquid Chromatography (MLC). In addition to other spectroscopic methods including Paper Spray Mass Spectrometry (PS-MS), UV-Visible Spectrophotometry, and Spectrofluorimetry. Herein, we will focus on the clarification of trendy, simple, rapid, accurate, precise, sensitive, selective, and eco-friendly analytical methods used for the analysis of anti-Covid-19 drugs in dosage forms as well as biological matrices.
Collapse
Affiliation(s)
- Hadeel A Khalil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| | - Nermeen A Hassanein
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| | - Amira F El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| |
Collapse
|
13
|
Fabric phase sorptive extraction-gas chromatography-mass spectrometry for the determination of favipiravir in biological and forensic samples. ADVANCES IN SAMPLE PREPARATION 2023. [PMCID: PMC9985823 DOI: 10.1016/j.sampre.2023.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Favipiravir, a pyrazine analog, is proposed as providential antiviral agent against the COVID-19 infection during 2020 pandemic emergency. For the first time, a fabric phase sorptive extraction (FPSE) combined with gas chromatography-mass spectrometry (GC-MS) has been developed and applied for the determination of favipiravir (FAV) in biological samples (human plasma, blood and urine), pharmaceutical and forensic samples. The method comprises of extraction of FAV by FPSE followed by its derivatization with N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and GC-MS analysis. Design of experiment-based optimization was performed using Placket-Burman Design (PBD) and Central Composite Design (CCD) for the screening of significant factors of FPSE and their optimization, respectively. Among all tested membranes, sol-gel polyethylene glycol (PEG) has offered the best extraction efficiency for FAV. Under optimum conditions, the proposed method was found to be linear in the range of 0.01–10 µg mL−1 by GC-MS. The LODs and LOQs were as low as 0.001-0.0026 μg mL−1 and 0.003-0.0086 μg mL−1, respectively by GC-MS. Intra-day and inter-day precisions were less than 5 and 10 %, respectively, showing good method precision. The proposed method has been successfully applied to detect and quantify FAV in human urine, whole blood and plasma samples along with seized forensic samples. In addition, the proposed method has been evaluated for its green character by ComplexGAPI index.
Collapse
|
14
|
Mohamed RMK, Mohamed SH, Asran AM, Alsohaimi IH, Hassan HMA, Ibrahim H, El-Wekil MM. Synergistic effect of gold nanoparticles anchored on conductive carbon black as an efficient electrochemical sensor for sensitive detection of anti-COVID-19 drug Favipiravir in absence and presence of co-administered drug Paracetamol. Microchem J 2023; 190:108696. [PMID: 37034437 PMCID: PMC10065810 DOI: 10.1016/j.microc.2023.108696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Favipiravir (FVP) is introduced as a promising newly developed antiviral drug against the coronavirus disease 2019 (COVID-19). Therefore, the accurate determination of FVP is of great significance for quality assessment and clinical diagnosis. Herein, a novel electrochemical sensing platform for FVP based on gold nanoparticles anchored conductive carbon black (Au@CCB) modified graphite nanopowder flakes paste electrode (GNFPE) was constructed. Morphological and nanostructure properties of Au@CCB have been investigated by TEM, HRTEM, and EDX methods. The morphology and electrochemical properties of Au@CCB/GNFPE were characterized by SEM, cyclic voltammetry (CV), and EIS. The Au@CCB nanostructured modified GNFPE exhibited strong electro-catalytic ability towards the oxidation of FVP. The performance of the fabricated Au@CCB/GNFPE was examined by monitoring FVP concentrations in the absence and presence of co-administered drug paracetamol (PCT) by AdS-SWV. It was demonstrated that the proposed sensor exhibited superior sensitivity, stability, and anti-interference capability for the detection of FVP. The simultaneous determination of a binary mixture containing FVP and the co-administered drug PCT using Au@CCB/GNFPE sensor is reported for the first time. Under optimized conditions, the developed sensor exhibited sensitive voltammetric responses to FVP and PCT with low detection limits of 7.5 nM and 4.3 nM, respectively. The sensing electrode was successfully used to determine FVP and PCT simultaneously in spiked human plasma and pharmaceutical preparations, and the findings were satisfactory. Finally, the fabricated sensor exhibited high sensitivity for simultaneous detection of FVP and PCT in the presence of ascorbic acid in a real sample.
Collapse
Affiliation(s)
- Rasha M K Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Sabrein H Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Aml M Asran
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
15
|
Mahdavi R, Talebpour Z. Analytical approaches for determination of COVID-19 candidate drugs in human biological matrices. Trends Analyt Chem 2023; 160:116964. [PMID: 36816451 PMCID: PMC9922681 DOI: 10.1016/j.trac.2023.116964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, the use of antiviral and other available drugs has been considered to combat or reduce the clinical symptoms of patients. In this regard, it would be necessary to choose sensitive and selective analytical techniques for pharmacokinetic and pharmacodynamic studies, monitoring of drug concentration in biological fluids, and determination of the most appropriate dose to achieve the desired effect on the disease. In the present study, the analytical techniques based on spectroscopy and chromatography with different detectors for diagnosis and determination of candidate drugs in the treatment of COVID-19 in human biological fluids are reviewed during the period 2015-2022. Moreover, various sample preparation and extraction techniques, are being used for this purpose, such as protein precipitation (PP), solid-phase extraction (SPE), liquid-liquid extraction (LLE), and QuEChERS (quick, easy, cheap, effective, rugged, and safe) are investigated.
Collapse
Affiliation(s)
- Rabee Mahdavi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran,Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran,Corresponding author. Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
16
|
Itigimatha N, Chadchan KS, Yallur BC, Hadagali MD. New Analytical Methods for the Determination of New Anti-Viral Drug Favipiravir: A Potential Therapeutic Drug Against Covid-19 Virus, in Bulk and Dosage Forms. Pharm Chem J 2023; 56:1419-1425. [PMID: 36683827 PMCID: PMC9838498 DOI: 10.1007/s11094-023-02807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 01/13/2023]
Abstract
Simple, accurate and robust analytical methods have been developed and validated for the determination of favipiravir (FVPR) by RP-HPLC and UV spectroscopy techniques as per the ICH guidelines. In the RP-HPLC method for FVPR determination, the mobile phase was ammonium acetate buffer pH 6.5 in pump Aand methanol in pump B. The C18 (Sunfire) 5 μm, 4.6 × 250 mm column was used as a stationary phase, and the detection wavelength was at 323 nm. Under these conditions, FVPR was eluted as a sharp peak at 2.65 min and the overall time taken for each injection was 10 min. In case of the UV spectroscopy method, standard FVPR solutions were prepared with pure ethanol and scanned from 250 to 400 nm and a flourishing spectrum was obtained at 323 nm. Hence, the wavelength of 323 nm was fixed for the whole process of validation in both techniques. The limit of detection (LOD) and limit of quantification (LOQ) in the RP-HPLC method were 1.0 and 3.5 μg/mL, respectively, and the linearity was established in the 10 to 50 μg/mL range. In the UV spectroscopy method, the LOD and LOQ values were found to be 3.5 and 12 μg/mL, respectively, and the linearity was established within 20 to 60 μg/mL range. The regression coefficient was found to exceed 0.999 in both methods. The proposed RP-HPLC and UV spectroscopy techniques are simple, accurate, rugged and robust.
Collapse
Affiliation(s)
- Nandeesha Itigimatha
- Department of Chemistry, MS Ramaiah Institute of Technology, Bangalore, 560054 India
- Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka 590018 India
| | - Kailash S. Chadchan
- Department of Chemistry, BLDEA’s V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur, Karnataka 586103 India
| | - Basappa C. Yallur
- Department of Chemistry, MS Ramaiah Institute of Technology, Bangalore, 560054 India
- Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka 590018 India
| | - Manjunatha D. Hadagali
- Department of Studies in Chemistry, Davangere University, Shivagangothri, Davangere, Karnataka 577002 India
| |
Collapse
|
17
|
Jain B, Jain R, Jaiswal PK, Zughaibi T, Sharma T, Kabir A, Singh R, Sharma S. A Non-Instrumental Green Analytical Method Based on Surfactant-Assisted Dispersive Liquid-Liquid Microextraction-Thin-Layer Chromatography-Smartphone-Based Digital Image Colorimetry(SA-DLLME-TLC-SDIC) for Determining Favipiravir in Biological Samples. Molecules 2023; 28:529. [PMID: 36677588 PMCID: PMC9860899 DOI: 10.3390/molecules28020529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Favipiravir (FAV) has become a promising antiviral agent for the treatment of COVID-19. Herein, a green, fast, high-sample-throughput, non-instrumental, and affordable analytical method is proposed based on surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) combined with thin-layer chromatography-digital image colourimetry (TLC-DIC) for determining favipiravir in biological and pharmaceutical samples. Triton X-100 and dichloromethane (DCM) were used as the disperser and extraction solvents, respectively. The extract obtained after DLLME procedure was spotted on a TLC plate and allowed to develop with a mobile phase of chloroform:methanol (8:2, v/v). The developed plate was photographed using a smartphone under UV irradiation at 254 nm. The quantification of FAV was performed by analysing the digital images' spots with open-source ImageJ software. Multivariate optimisation using Plackett-Burman design (PBD) and central composite design (CCD) was performed for the screening and optimisation of significant factors. Under the optimised conditions, the method was found to be linear, ranging from 5 to 100 µg/spot, with a correlation coefficient (R2) ranging from 0.991 to 0.994. The limit of detection (LOD) and limit of quantification (LOQ) were in the ranges of 1.2-1.5 µg/spot and 3.96-4.29 µg/spot, respectively. The developed approach was successfully applied for the determination of FAV in biological (i.e., human urine and plasma) and pharmaceutical samples. The results obtained using the proposed methodology were compared to those obtained using HPLC-UV analysis and found to be in close agreement with one another. Additionally, the green character of the developed method with previously reported protocols was evaluated using the ComplexGAPI, AGREE, and Eco-Scale greenness assessment tools. The proposed method is green in nature and does not require any sophisticated high-end analytical instruments, and it can therefore be routinely applied for the analysis of FAV in various resource-limited laboratories during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Bharti Jain
- Central Forensic Science Laboratory, Dakshin Marg, Sector—36A, Chandigarh 160036, India
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Rajeev Jain
- Central Forensic Science Laboratory, Dakshin Marg, Sector—36A, Chandigarh 160036, India
| | - Prashant Kumar Jaiswal
- School of Earth Sciences, Department of Environmental Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, India
| | - Torki Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tanvi Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ritu Singh
- School of Earth Sciences, Department of Environmental Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
18
|
Sambyalova AY, Bairova TA, Manaenkova TL, Belskikh AV, Plotnikova YK, Rychkov LV. Virological failure of antiretroviral therapy and associated social and clinical factors in children and adolescents living with HIV. JOURNAL INFECTOLOGY 2022. [DOI: 10.22625/2072-6732-2022-14-5-51-59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
According to the World Health Organization, sustained virological suppression of 90 % should be achieved among children and adolescents living with HIV / AIDS, which makes it important to assess the prevalence of virological failure of antiretroviral therapy. The aim of this study was to determine the prevalence of virological failure and the clinical factors associated with it, as well as therapeutic drug monitoring in groups divided by the viral load level among children and adolescents with HIV. Materials and Methods: A retrospective analysis of the medical records of 184 children and adolescents receiving antiretroviral therapy and registered at the Irkutsk Regional Center for the Prevention and Control of AIDS and Infectious Diseases, Irkutsk, was carried out. The study included 172 children aged 1-18 years with perinatal HIV infection. Patients were divided into groups depending on the level of viral load: group 1 – 21 patients with viral load > 1000 copies/ml of plasma, group 2 – 42 patients with viral load 50– 1000 copies/ml of plasma, group 3 – 109 patients with undetectable viral load (< 50 copies/ml). All patients underwent standard tests in accordance with clinical guidelines for the treatment of HIV infection in children, as well as therapeutic drug monitoring. Results. Against the background of ongoing antiretroviral therapy, a significant number of patients 21 / 172 (12,2 %) experienced virological failure. The proportion of children and adolescents with incomplete suppression of HIV replication is 42 / 172 (24,4 %). Statistically significant differences were obtained by changing the ART regimen (p = 0,031). In the first group, the proportion of patients who changed the therapy regimen is 7 / 21 (33,3 %), which is two times less than in the group with a zero viral load of 70 / 109 (64,2 %). There are differences in the proportion of children and adolescents with zero concentrations of ritonavir and lopinavir (p = 0,020 and p = 0,012) in the three compared groups. The distribution of patients with zero concentrations was as follows: for ritonavir in the first group 3 / 17 (17,6 %), in the second – 8/37 (21,6 %), in the third group – 4/80 (5 %); for lopinavir – 4/17 (23,5 %), 6/36 (16,7 %), 3/80 (3,8 %), respectively. Conclusion. This study demonstrates that the prevalence of virological failure among children and adolescents receiving ART remains high. To achieve sustained virological suppression in children and adolescents taking a protease inhibitor regimen, adherence to therapy must be increased. As one of the methods for assessing adherence, therapeutic drug monitoring can be used.
Collapse
Affiliation(s)
| | - T. A. Bairova
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - T. L. Manaenkova
- Scientific Сentre for Family Health and Human Reproduction Problems; Irkutsk Regional AIDS Centre
| | - A. V. Belskikh
- Scientific Сentre for Family Health and Human Reproduction Problems
| | | | - L. V. Rychkov
- Scientific Сentre for Family Health and Human Reproduction Problems
| |
Collapse
|
19
|
El Sharkasy ME, Tolba MM, Belal F, Walash MI, Aboshabana R. Simultaneous spectrofluorimetic determination of remdesivir and simeprevir in human plasma. Sci Rep 2022; 12:21980. [PMID: 36539455 PMCID: PMC9763795 DOI: 10.1038/s41598-022-26559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
As new infectious mutations of SARS-CoV-2 emerged throughout the world, innovative therapies to counter the virus-altered drug sensitivities were urgently needed. Several antiviral options have been in clinical trials or in compassionate use for the treatment of SARS-CoV-2 infections in an attempt to minimize both clinical severity and viral shedding. Recent research indicated that simeprevir acts synergistically with remdesivir, allowing for a multiple-fold decrease in its effective dose when used at physiologically acceptable concentrations. The goal of this work is to develop a sensitive synchronous spectrofluorimetric approach to simultaneously quantify the two drugs in biological fluids. Using this method, remdesivir and simeprevir could be measured spectrofluorimetrically at 283 and 341 nm, respectively, without interference from each other using Δλ of 90 nm. The effect of various experimental parameters on the fluorescence intensity of the two drugs was extensively explored and optimized. For each of remdesivir and simeprevir, the method exhibited a linearity range of 0.10-1.10 μg/mL, with lower detection limits of 0.01 and 0.02 μg/mL and quantification limits of 0.03 and 0.05 μg/mL, respectively. The high sensitivity of the developed method permitted the simultaneous determination of both drugs in spiked plasma samples with % recoveries ranging from 95.0 to 103.25 with acceptable standard deviation values of 1.92 and 3.04 for remdesivir and simeprevir, respectively. The validation of the approach was approved by the International Council of Harmonization (ICH) guidelines.
Collapse
Affiliation(s)
- Mona E El Sharkasy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Manar M Tolba
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed I Walash
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Aboshabana
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
20
|
Simultaneous quantification of nirmatrelvir and ritonavir by LC-MS/MS in patients treated for COVID-19. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123510. [PMID: 36274268 PMCID: PMC9576249 DOI: 10.1016/j.jchromb.2022.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Nirmatrelvir is an antiviral agent active against SARS-CoV-2, the virus causing the pandemic disease COVID-19. It is administrated in combination with the protease inhibitor ritonavir, which acts in case of COVID-19 mainly as enzyme blocking agent preventing the premature metabolic elimination of nirmatrelvir. The combination of the two drugs in separate tablets is marketed under the brand name Paxlovid® and shows good effectivity in preventing the progression of COVID-19 to severe disease state. In this work, we described a LC-MS/MS method for the simultaneous quantification of nirmatrelvir and ritonavir in human plasma of patients treated for COVID-19 with Paxlovid®. After addition of D6-ritonavir as internal standard, plasma proteins were precipitated by the addition of methanol. The analytes were separated by gradient elution on a C18-column and were detected by tandem mass spectrometry. Calibration functions were linear in the ranges of 10 – 10000 ng/mL for nirmatrelvir and 2 – 2000 ng/mL for ritonavir. Inter-day and intra-day precision and accuracy was better than 15 % in the quality control samples and better than 20 % at the LLOQ. The method was successfully applied on samples of hospitalized patients treated for COVID-19 and proved to be capable in supporting therapeutic drug monitoring (TDM).
Collapse
|
21
|
Jansen-van Vuuren RD, Jedlovčnik L, Košmrlj J, Massey TE, Derdau V. Deuterated Drugs and Biomarkers in the COVID-19 Pandemic. ACS OMEGA 2022; 7:41840-41858. [PMID: 36440130 PMCID: PMC9685803 DOI: 10.1021/acsomega.2c04160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/18/2022] [Indexed: 06/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initially identified in Wuhan (China) in December 2019, COVID-19 rapidly spread globally, resulting in the COVID-19 pandemic. Carriers of the SARS-CoV-2 can experience symptoms ranging from mild to severe (or no symptoms whatsoever). Although vaccination provides extra immunity toward SARS-CoV-2, there has been an urgent need to develop treatments for COVID-19 to alleviate symptoms for carriers of the disease. In seeking a potential treatment, deuterated compounds have played a critical role either as therapeutic agents or as internal MS standards for studying the pharmacological properties of new drugs by quantifying the parent compounds and metabolites. We have identified >70 examples of deuterium-labeled compounds associated with treatment of COVID-19. Of these, we found 9 repurposed drugs and >20 novel drugs studied for potential therapeutic roles along with a total of 38 compounds (drugs, biomarkers, and lipids) explored as internal mass spectrometry standards. This review details the synthetic pathways and modes of action of these compounds (if known), and a brief analysis of each study.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Luka Jedlovčnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thomas E. Massey
- Department
of Biomedical and Molecular Sciences, School of Medicine, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Volker Derdau
- Research
& Development, Integrated Drug Discovery, Isotope Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst G876, Frankfurt/Main 65926, Germany
| |
Collapse
|
22
|
Abo-Gharam AH, El-Kafrawy DS. Eco-friendly stability-indicating HPTLC micro-determination of the first FDA approved SARS-CoV-2 antiviral prodrug Remdesivir: Study of degradation kinetics and structural elucidation of the degradants using HPTLC-MS. SUSTAINABLE CHEMISTRY AND PHARMACY 2022; 29:100744. [PMID: 35720509 PMCID: PMC9192941 DOI: 10.1016/j.scp.2022.100744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 05/17/2023]
Abstract
The worldwide spread coronavirus (covid-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a global health crisis. The world was forced to face a great challenge to control and overcome this health disaster through various containment measures including efficient vaccination side by side with effective medication. Remdesivir (RMD) is the first FDA approved antiviral agent for treatment of covid-19 pandemic and hence regarded as the first-in-class medication of this highly contagious respiratory disease. The current study represents the first stability indicating HPTLC method for the estimation of RMD in bulk form and pharmaceutical formulation. The method employed TLC silica gel aluminum plates 60 F254 as stationary phase and green mobile phase composed of ethyl acetate and ethanol (96: 4, v/v) with densitometric detection at 245 nm. Comprehensive validation of the adopted method was accomplished according to the ICH guidelines regarding linearity, ranges, detection and quantification limits, precision, accuracy and robustness. The developed method offered a neat separation of the drug in presence of pharmaceutical excipients as well as in presence of acidic, alkaline, neutral hydrolytic, oxidative and photolytic degradants. Additionally, structural elucidation of alkaline and hydrolytic oxidation degradation products was carried out using HPTLC-MS. Furthermore, for the first time the acidic and alkaline degradation kinetics of RMD were studied and its degradation rate constants and half-lives were calculated. Moreover, greenness appraisal of the developed method as well as comparison with previously published stability indicating HPLC methods were performed using analytical Eco-scale, GAPI and AGREE metrics.
Collapse
Affiliation(s)
- Amira H Abo-Gharam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Alexandria, Elmessalah, 21521, Alexandria, Egypt
| | - Dina S El-Kafrawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Alexandria, Elmessalah, 21521, Alexandria, Egypt
| |
Collapse
|
23
|
Tarek Mahmoud S, Moffid MA, Sayed RM, Mostafa EA. Core shell stationary phase for a novel separation of some COVID-19 used drugs by UPLC-MS/MS Method: Study of grapefruit consumption impact on their pharmacokinetics in rats. Microchem J 2022; 181:107769. [PMID: 35855210 PMCID: PMC9284531 DOI: 10.1016/j.microc.2022.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022]
Abstract
A sensitive and selective UPLC-MS/MS method was developed for the synchronized determination of four drugs used in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), namely, azithromycin, apixaban, dexamethasone, and favipiravir in rat plasma. using a Poroshell 120 EC-C18 column (50 mm × 4.6 mm, 2.7 m) with a high-resolution ESI tandem mass spectrometer detection with multiple reaction monitoring. We used an Agilent Poroshell column, which is characterized by a stationary phase based on non-porous core particles. With a remarkable improvement in the number of theoretical plates and low column backpressure. In addition, the developed method was employed in studying the potential food-drug interaction of grapefruit juice (GFJ) with the selected drugs which affects their pharmacokinetics in rats. The LC-MS/MS operated in positive and negative ionization mode using two internal standards: moxifloxacin and chlorthalidone, respectively. Liquid- liquid extraction of the cited drugs from rat plasma was accomplished using diethyl ether: dichloromethane (70:30, v/v). The analytes were separated using methanol: 0.1 % formic acid in water (95: 5, v/v) as a mobile phase in isocratic mode of elution pumped at a flow rate of 0.3 mL/min. A detailed validation of the bio-analytical method was performed in accordance with US-FDA and EMA guidelines. Concerning the in vivo pharmacokinetic study, the statistical significance between the results of the test groups receiving GFJ along with the cited drugs and the control group was assessed demonstrating that GFJ increased the plasma concentration of azithromycin, apixaban, and dexamethasone. Accordingly, this food-drug interaction requires cautious ingestion of GFJ in patients using (SARS-CoV-2) medications as it can produce negative effects in the safety of the drug therapy. A potential drug-drug interaction is also suggested between those medications requiring a suitable dose adjustment.
Collapse
Affiliation(s)
- Sally Tarek Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Marwa A Moffid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Rawda M Sayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Eman A Mostafa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| |
Collapse
|
24
|
Harismah K, Shahrtash S, Arabi A, Khadivi R, Mirzaei M, Akhavan-Sigari R. Favipiravir attachment to a conical nanocarbon: DFT assessments of the drug delivery approach. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Elonsy SM, Kamal MF, Hamdy MMA, Abdel Moneim MM. Comparative Greenness Metric Estimates for Content Uniformity Testing of Anti-Cov-2, GS-5734 in Commercial Vials: Validated Micellar Electrokinetic Chromatographic Assay. J AOAC Int 2022; 105:739-747. [PMID: 35015848 PMCID: PMC9383131 DOI: 10.1093/jaoacint/qsac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The antiviral drug GS-5734 remdesivir is a new phosphoramidate prodrug developed initially as a treatment for Ebola virus which then proved to have antiviral properties against other viruses. After clinical trials, it was the first antiviral to be approved by the U.S. Food and Drug Administration in 2020 to treat severe coronavirus (COVID-19) cases. The widespread current pandemic gave an urge to its fast production and marketing. Thus, new analytical methods must be available for its analysis in a fast and easy manner with low cost to be applicable in all laboratories. OBJECTIVE In the current study, a green and economic micellar electrokinetic chromatographic (MEKC) method is proposed for remdesivir analysis. METHODS A fused-silica capillary (58.5 cm × 50 μm id, 50 cm effective length) with 20 mM borate buffer (pH 9) and 25 mM sodium dodecyl sulfate was used under a positive potential of 30 kV at 25°C with detection at 245 nm. RESULTS Remdesivir analysis was achieved in approximately 5 min. The method proved to be linear in range of 1-50 μg/mL with correlation coefficient, r > 0.999. CONCLUSION The MEKC method proposed was applied to the analysis of remdesivir in its commercial vials. The method was validated per International Conference on Harmonization guidelines. HIGHLIGHTS Green chemistry has been the focus of the analytical community in the past few years. This method is considered green due to its low energy and solvent consumption without sacrificing the method's sensitivity or selectivity. The method's green profile has been assessed by different greenness assessment scales to ensure the method is eco-friendly and can be used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Sohila M Elonsy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Beheira, Egypt
| | - Miranda F Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Beheira, Egypt
| | - Mohamed M A Hamdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona M Abdel Moneim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
26
|
Abd Allah FI, Abdelhmaid A, Himida M, Alkashlan A, El-Attar AAMM. Fully Validated UPLC-MS/MS Method for Quantifying Favipiravir in Human Plasma Boosted Lean Six Sigma: An Application for a Bioequivalence Study. Biomed Chromatogr 2022; 36:e5381. [PMID: 35393721 DOI: 10.1002/bmc.5381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022]
Abstract
This research developed and validated a highly sensitive and selective UPLC-MS/MS approach using a triple quadrupole mass spectrometer for quantifying favipiravir (FAV). Moreover, we introduced a study evaluating bioequivalence using two drugs, favibrivix and avigan- containing favipiravir. Lean Six Sigma verified the capacity and performance of the process. Protein precipitation extraction was utilized to extract FAV from the collected human matrices. We used an ACQUITY UPLCr BEH HILIC column and valproic acid as an internal standard (IS). Furthermore, we conducted the procedure using an isocratic elution comprising acetonitrile and 0.005% ammonia in water (75:25, v/v), a flow rate of 0.25ml/min, a temperature-controlled at 10 0 C, and an injection volume of 1.0μl. Our UPLC-MS/MS process has a broad range (50-10,000) ng/ml with a determination coefficient (r2 ) of 0.9980. We validated the method in line with the FDA. The findings revealed that the test, favibrivix 200mg/tablet, and the reference, avigan® 200mg/tablet, were statistically bioequivalent regarding healthy Egyptian participants.
Collapse
Affiliation(s)
- Fathy Ibrahim Abd Allah
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,International Center for Bioavailability, Pharmaceutical, and Clinical Research
| | - Ahmed Abdelhmaid
- International Center for Bioavailability, Pharmaceutical, and Clinical Research
| | - Mahmed Himida
- International Center for Bioavailability, Pharmaceutical, and Clinical Research
| | - Akram Alkashlan
- International Center for Bioavailability, Pharmaceutical, and Clinical Research
| | | |
Collapse
|
27
|
Vemuri DK, Gundla R, Konduru N, Mallavarapu R, Katari NK. Favipiravir (SARS-CoV-2) degradation impurities: Identification and route of degradation mechanism in the finished solid dosage form using LC/LC-MS method. Biomed Chromatogr 2022; 36:e5363. [PMID: 35292997 PMCID: PMC9073977 DOI: 10.1002/bmc.5363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
Favipiravir finished dosage was approved for emergency use in many countries to treat SARS-CoV-2 patients. A specific, accurate, linear, robust, simple and stability-indicating HPLC method was developed and validated for the determination of degradation impurities present in the Favipiravir film coated tablets. All impurities were separation achieved from the stationary phase (Inert sustain AQ-C18, 250 x 4.6 mm, 5 μm particle) and mobile phase. The mobile phase - A contains KH2 PO4 buffer (pH 2.5±0.05) and acetonitrile in the ratio of 98:2 v/v and mobile phase - B contains water and acetonitrile in the ratio of 50:50 v/v respectively. The chromatographic conditions were optimized such as flow rate 0.7 ml/min, UV detection at 210 nm, injection volume 20 μl and the column temperature 33°C. The proposed method was validated as per the current ICH Q2 (R1) guidelines. The recovery study and linearity ranges were established from LOQ to 150% optimal concentrations. The method validation results were found between 98.6 to 106.2% for recovery and r2 = 0.9995 to 0.9999 for linearity of all identified impurities. The method precision results were achieved below 5% of RSD. Performed the forced degradation studies in chemical and physical stress conditions. The compound was sensitive to chemical stress conditions. During the study, the analyte was degraded, converted into unknown degradation impurities, and found its molecular mass by the LC-MS technique and established degradation pathways supported by reaction of mechanism. The developed method was found to be suitable for routine analysis of R&D and QC.
Collapse
Affiliation(s)
- Divya Kumar Vemuri
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Rudraram, Sangareddy, Telangana, INDIA
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Rudraram, Sangareddy, Telangana, INDIA
| | - Naresh Konduru
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Rudraram, Sangareddy, Telangana, INDIA.,Analytical Research and Development, YunNan Longjin Careyou Pharmaceutical Co., Ltd., Kunming city, Yunnan province, CHINA
| | - Ravindra Mallavarapu
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Rudraram, Sangareddy, Telangana, INDIA
| | - Naresh Kumar Katari
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Rudraram, Sangareddy, Telangana, INDIA.,School of Chemistry and Physics, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
28
|
El Azab NF. A validated UHPLC-MS/MS method for simultaneous quantification of some repurposed COVID-19 drugs in rat plasma: Application to a pharmacokinetic study. Microchem J 2022; 178:107321. [PMID: 35261396 PMCID: PMC8891122 DOI: 10.1016/j.microc.2022.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Since the emergence of Corona virus disease (COVID-19) in 2019, a number of medications have been developed and tried to combat the pandemic. In the present study, we develop a LC-MS/MS approach to detect and quantify certain COVID-19 candidate drugs in rat plasma, including Hydroxychloroquine, Favipiravir, Oseltamivir, and Remdesivir. The analytes were separated using Ultra High-Pressure Liquid Chromatography (UHPLC) over a 13-minute run on a C18 column. The extraction solvent for the (QuEChERS) quick, easy, cheap, effective, rugged and safe method was methanol, while the clean-up phase was primary secondary amine (PSA). Satisfactory recoveries were achieved for all compounds ranging from 82.39 to 105.87 %, with standard deviations smaller than 15.7. In terms of precision, accuracy, linearity, matrix effect, and stability, the method was validated according to US FDA criteria. The Limit of Detection (LOD) was determined to be between 0.11 and 10 ppb. The approach was further developed for a modest pharmacokinetic research in laboratory rats, and thus can be suitable for therapeutic drug monitoring in clinical cases under the same treatment.
Collapse
Affiliation(s)
- Noha F El Azab
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
29
|
Abdallah IA, Hammad SF, Bedair A, Abdelaziz MA, Danielson ND, Elshafeey AH, Mansour FR. A Gadolinium-Based Magnetic Ionic Liquid for Supramolecular Dispersive Liquid-Liquid Microextraction Followed by HPLC/UV for Determination of Favipiravir in Human Plasma. Biomed Chromatogr 2022; 36:e5365. [PMID: 35274347 DOI: 10.1002/bmc.5365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
Favipiravir is a potential antiviral medication that has been recently licensed for COVID-19 treatment. In this work, a gadolinium based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid-liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50mg of the Gd-MIL and 150μL of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to FDA bioanalytical method validation guidelines. The coefficient of determination was found to be 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/mL. The percent recovery (accuracy) varied from 99.83 to 104.2 %, with % RSD values (precision) ranging from 4.07 to 11.84 %. Total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was found simple, selective and sensitive for determination of favipiravir in real human plasma.
Collapse
Affiliation(s)
- Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mohamed A Abdelaziz
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| | - Ahmed H Elshafeey
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.,Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
30
|
Hamed AA, Fandy TE, Tkaczuk KL, Verspoor K, Lee BS. COVID-19 Drug Repurposing: A Network-Based Framework for Exploring Biomedical Literature and Clinical Trials for Possible Treatments. Pharmaceutics 2022; 14:567. [PMID: 35335943 PMCID: PMC8955179 DOI: 10.3390/pharmaceutics14030567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With the Coronavirus becoming a new reality of our world, global efforts continue to seek answers to many questions regarding the spread, variants, vaccinations, and medications. Particularly, with the emergence of several strains (e.g., Delta, Omicron), vaccines will need further development to offer complete protection against the new variants. It is critical to identify antiviral treatments while the development of vaccines continues. In this regard, the repurposing of already FDA-approved drugs remains a major effort. In this paper, we investigate the hypothesis that a combination of FDA-approved drugs may be considered as a candidate for COVID-19 treatment if (1) there exists an evidence in the COVID-19 biomedical literature that suggests such a combination, and (2) there is match in the clinical trials space that validates this drug combination. METHODS We present a computational framework that is designed for detecting drug combinations, using the following components (a) a Text-mining module: to extract drug names from the abstract section of the biomedical publications and the intervention/treatment sections of clinical trial records. (b) a network model constructed from the drug names and their associations, (c) a clique similarity algorithm to identify candidate drug treatments. RESULT AND CONCLUSIONS Our framework has identified treatments in the form of two, three, or four drug combinations (e.g., hydroxychloroquine, doxycycline, and azithromycin). The identifications of the various treatment candidates provided sufficient evidence that supports the trustworthiness of our hypothesis.
Collapse
Affiliation(s)
- Ahmed Abdeen Hamed
- School of Cybersecurity, Data Science and Computing, Norwich University, Northfield, VT 05663, USA
- Sano Centre for Computational Medicine, 30-072 Kraków, Poland;
| | - Tamer E. Fandy
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, USA;
| | | | - Karin Verspoor
- School of Computing Technologies, RMIT University, Melbourne 3001, Australia;
- School of Computing and Information Systems, The University of Melbourne, Melbourne 3010, Australia
| | - Byung Suk Lee
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
31
|
Wang S, Wang C, Xin Y, Li Q, Liu W. Core-shell nanocomposite of flower-like molybdenum disulfide nanospheres and molecularly imprinted polymers for electrochemical detection of anti COVID-19 drug favipiravir in biological samples. Mikrochim Acta 2022; 189:125. [PMID: 35229221 PMCID: PMC8885316 DOI: 10.1007/s00604-022-05213-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
A novel electrochemical sensor is reported for the detection of the antiviral drug favipiravir based on the core-shell nanocomposite of flower-like molybdenum disulfide (MoS2) nanospheres and molecularly imprinted polymers (MIPs). The MoS2@MIP core-shell nanocomposite was prepared via the electrodeposition of a MIP layer on the MoS2 modified electrode, using o-phenylenediamine as the monomer and favipiravir as the template. The selective binding of target favipiravir at the MoS2@MIP core-shell nanocomposite produced a redox signal in a concentration dependent manner, which was used for the quantitative analysis. The preparation process of the MoS2@MIP core-shell nanocomposite was optimized. Under the optimal conditions, the sensor exhibited a wide linear response range of 0.01 ~ 100 nM (1.57*10-6 ~ 1.57*10-2 μg mL-1) and a low detection limit of 0.002 nM (3.14*10-7 μg mL-1). Application of the sensor was demonstrated by detecting favipiravir in a minimum amount of 10 μL biological samples (urine and plasma). Satisfied results in the recovery tests indicated a high potential of favipiravir monitoring in infectious COVID-19 samples.
Collapse
Affiliation(s)
- Shuang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuxiao Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qiuyun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Weilu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
32
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|
33
|
Yin J, Li C, Ye C, Ruan Z, Liang Y, Li Y, Wu J, Luo Z. Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Comput Struct Biotechnol J 2022; 20:824-837. [PMID: 35126885 PMCID: PMC8802458 DOI: 10.1016/j.csbj.2022.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has challenged public health around the world. Currently, there is an urgent need to explore antiviral therapeutic targets and effective clinical drugs. In this study, we systematically summarized two main therapeutic strategies against COVID-19, namely drugs targeting the SARS-CoV-2 life cycle and SARS-CoV-2-induced inflammation in host cells. The development of above two strategies is implemented by repurposing drugs and exploring potential targets. A comprehensive summary of promising drugs, especially cytokine inhibitors, and traditional Chinese medicine (TCM), provides recommendations for clinicians as evidence-based medicine in the actual clinical COVID-19 treatment. Considering the emerging SARS-CoV-2 variants greatly impact the effectiveness of drugs and vaccines, we reviewed the appearance and details of SARS-CoV-2 variants for further perspectives in drug design, which brings updating clues to develop therapeutical agents against the variants. Based on this, the development of broadly antiviral drugs, combined with immunomodulatory, or holistic therapy in the host, is prior to being considered for therapeutic interventions on mutant strains of SARS-CoV-2. Therefore, it is highly acclaimed the requirements of the concerted efforts from multi-disciplinary basic studies and clinical trials, which improves the accurate treatment of COVID-19 and optimizes the contingency measures to emerging SARS-CoV-2 variants.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- ARDS, acute respiratory distress syndrome
- CEP, Cepharanthine
- COVID-19 pandemic
- COVID-19, coronavirus disease 2019
- CRS, cytokine release syndrome
- CTD, C-terminal domain
- Drug target
- EMA, European Medicines Agency
- ERGIC, endoplasmic reticulum-Golgi intermediate compartment
- FDA, U.S. Food and Drug Administration
- JAK, Janus kinase
- MODS, multiple organ dysfunction syndrome
- NMPA, National Medical Products Administration
- NTD, N-terminal domain
- Nbs, nanobodies
- RBD, receptor-binding domain
- RdRp, RNA dependent RNA polymerase
- SARS-CoV-2
- SARS-CoV-2 variants
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- STAT, Signal Transducer and Activator of Transcription
- TCM, traditional Chinese medicine
- TCZ, Tocilizumab
- Therapeutic strategies
- VOC, variants of concern
- VOI, variants of interest
- VUM, variants under monitoring
- mAb, monoclonal antibody
- α1AT, alpha-1 antitrypsin
Collapse
Affiliation(s)
- Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Chengcheng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Chunhong Ye
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
- Foshan Institute of Medical Microbiology, Foshan 528315, PR China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
- Foshan Institute of Medical Microbiology, Foshan 528315, PR China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
- Foshan Institute of Medical Microbiology, Foshan 528315, PR China
| |
Collapse
|
34
|
Abdallah IA, Hammad SF, Bedair A, Mansour FR. Menthol-assisted homogenous liquid-liquid microextraction for HPLC/UV determination of favipiravir as an antiviral for COVID-19 in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1189:123087. [PMID: 34974319 PMCID: PMC8715635 DOI: 10.1016/j.jchromb.2021.123087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
Favipiravir is a promising antiviral agent that has been recently approved for treatment of COVID-19 infection. In this study, a menthol-assisted homogenous liquid–liquid microextraction method has been developed for favipiravir determination in human plasma using HPLC/UV. The different factors that could affect the extraction efficiency were studied, including extractant type, extractant volume, menthol amount and vortex time. The optimum extraction efficiency was achieved using 300 µL of tetrahydrofuran, 30 mg of menthol and vortexing for 1 min before centrifuging the sample for 5 min at 3467g. Addition of menthol does not only induce phase separation, but also helps to form reverse micelles to facilitate extraction. The highly polar favipiravir molecules would be incorporated into the hydrophilic core of the formed reverse micelle to be extracted by the non-polar organic extractant. The method was validated according to the FDA bioanalytical method guidelines. The developed method was found linear in the concentration range of 0.1 to 100 µg/mL with a coefficient of determination of 0.9992. The method accuracy and precision were studied by calculating the recovery (%) and the relative standard deviation (%), respectively. The recovery (%) was in the range of 97.1–103.9%, while the RSD (%) values ranged between 2.03 and 8.15 %. The developed method was successfully applied in a bioequivalence study of Flupirava® 200 mg versus Avigan® 200 mg, after a single oral dose of favipiravir administered to healthy adult volunteers. The proposed method was simple, cheap, more eco-friendly and sufficiently sensitive for biomedical application.
Collapse
Affiliation(s)
- Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt.
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt; Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| |
Collapse
|
35
|
Determination of favipiravir in human plasma using homogeneous liquid-liquid microextraction followed by HPLC/UV. Bioanalysis 2022; 14:205-216. [PMID: 35001648 DOI: 10.4155/bio-2021-0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Favipiravir is an antiviral drug that was recently approved for the management of COVID-19 infection. Aim: This work aimed to develop a new method, using sugaring-out induced homogeneous liquid-liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Materials & methods: The optimum extraction conditions were attained using 500 μl of tetrahydrofuran as an extractant and 1400 mg of fructose as a phase-separating agent. Results: The developed method was validated according to the US FDA bioanalytical guidelines and was found linear in the range of 25-80,000 ng/ml with a correlation coefficient of 0.999. Conclusion: These results showed that the developed method was simple, easy, valid and adequately sensitive for determination of favipiravir in plasma for bioequivalence studies.
Collapse
|
36
|
Cui L, Wang Z, Qiu S, Zhang M, Liu Y, Xu F, Song X, Gao S, Chen W. LC-MS/MS Method for Determination of Hydroxychloroquine and Metabolites: Application in a Pharmacokinetic Study. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:6058445. [PMID: 35003822 PMCID: PMC8733715 DOI: 10.1155/2022/6058445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 05/28/2023]
Abstract
Hydroxychloroquine (HCQ) was originally used as an antimalarial and immunomodulation drug. We developed and validated a simple and sensitive ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous quantitation of HCQ and its three metabolites in rat blood, and reported their pharmacokinetic parameters. The chromatographic separation and detection of analytes were achieved within 4 min on ZORBAX SB-C8 (3.5 μm, 2.1 × 150 mm) column with gradient elution, and the flow rate was 0.25 mL/min. Simple protein precipitation was successfully applied for sample pretreatment. The HCQ displays a good linearity in the range of 2.0-5000.0 ng/mL, and the three metabolites also show good linearity ranging from 1.0 to 2500.0 ng/mL, with all correlation coefficients (R 2) better than 0.98. In conclusion, this rapid, sensitive method was successfully developed, validated, and then applied to a pharmacokinetic study of HCQ in rat model in high dose. The results of the pharmacokinetic study presented an average half-life time 21.14 ± 10.31 h (mean ± SD) of HCQ, which is much shorter in human compared to that in mice. For the three metabolites, longer half-life times (approximately 100 h) were shown in rat.
Collapse
Affiliation(s)
- Lili Cui
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengwei Zhang
- Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Yanping Liu
- Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Fengjing Xu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xinhua Song
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
37
|
Environmental Impact of the Reported Chromatographic Methods for the Determination of the First FDA-Approved Therapy for COVID-19 Patients, Remdesivir: A Comparative Study. Microchem J 2022; 176:107242. [PMID: 35125520 PMCID: PMC8801062 DOI: 10.1016/j.microc.2022.107242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Remdesivir (REM) is considered the first therapeutic option approved by US Food and Drug Administration (FDA) for clinical care in case of hospitalized patients suffering in COVID-19 epidemic. In the presented multilateral comparative search, four eco friendlessness approaches —National Environmental Methods Index (NEMI), Eco-Scale Assessment (ESA), Green Analytical Procedure Index (GAPI), and Analytical Greenness metric (AGREE) are tested to assess 16 analytical chromatographic procedures reported for the analysis of the commonly used antiviral drug; Remdesivir (REM). The values of testing more than one approach when estimating the eco-friendly characters for analytical methods are illustrated in this study. On the light of the outcomes, ESA and AGREE approaches are recommended as they are easily applied and digitally presented. Furthermore, GAPI is also a reliable tool in terms of comprehensiveness for the whole analytical procedures, from sampling till the final assessment. NEMI is the easiest and fastest greenness evaluation tool; however, the information it provides is particularly of limited scope and sometimes inaccurate. To ensure greenness of chromatographic analytical methods, there must be clear planning beforehand, to reduce chemical hazards sent to environment. Additionally, it is highly recommended in method validation protocols to consider the greenness of a given analytical procedure before releasing to routine use. The LC-MS/MS analysis for the active metabolite of REM (Nuc) reported by Avataneo et al. and Du et al. proved to be the best bio-analytical methods regarding the environmental aspects depending on the GAPI and AGREE tools. However, the HPLC method for REM analysis in intravenous solution reported by Jitta et al. proved to be the greenest analytical method for determination of REM in the pharmaceutical dosage forms according to the ESA, GAPI, and AGREE tools.
Collapse
|
38
|
Amir M, Narula P, Bano F. Analytical Techniques for the Analysis of Lopinavir and Ritonavir in Pharmaceutical Dosage Form and Biological Matrices: A Review. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666211217145200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Lopinavir and Ritonavir are the protease inhibitor type of anti-retroviral drugs. Both are used for the treatment of HIV/AIDS. This paper reviews many analytical methods for the analysis of LPV and RTV in pharmaceutical formulations (tablet, capsule, syrup, and bulk) and biological fluids (human plasma, serum, cerebrospinal fluid, rat plasma, and human hair).
Objective:
The study aims to summarize various ana¬lytical techniques, such as Chromatography, Spectrophotometry; and also hyphenated techniques, such as LC-MS/MS, UPLC-MS for analysis of Lopinavir and Ritonavir.
Method:
The review deals with com¬prehensive details about the type of various analytical techniques, such as spectroscopy (UV), chromatography (RP-HPLC, HPTLC, UPLC), and hyphenated techniques, i.e., LC-MS/MS, UPLC-MS for the analysis of lopinavir and ritonavir. These techniques are either explored for the quantification, de¬tection of metabolite or for stability studies of the LPV & RTV.
Conclusion:
The present studies revealed that the HPLC technique along with the spectro-scopic, have been most widely used for the analysis. Out of the developed methods, hyphenated UPLC-MS and LC-MS are very sensitive and helps in the easy estimation of drugs compared to that of the other techniques. This review may provide comprehensive details to the researchers working in the area of analytical research of LPV & RTV.
Collapse
Affiliation(s)
- Mohammad Amir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Puneet Narula
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Farzana Bano
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
39
|
Green Stability Indicating Organic Solvent-Free HPLC Determination of Remdesivir in Substances and Pharmaceutical Dosage Forms. SEPARATIONS 2021. [DOI: 10.3390/separations8120243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A green liquid chromatographic method is considered in this work to minimize the environmental impact of waste solvents. One important principle is to replace or eliminate the use of hazardous organic solvents. Organic impurities in any active pharmaceutical ingredient could arise either during the process of its synthesis, or as degradation products developed throughout the shelf-life. Remdesivir (RDS) is an antiviral drug, approved by the US Food and Drug Adminstration (-FDA), to treat SARS-Cov-2 virus during its pandemic crisis. We studied the stability of remdesivir against several degradation pathways using the organic solvent-free liquid chromatographic technique. Separation was performed on RP-C18 stationary phase using mixed-micellar mobile phase composed of a mixture of 0.025 M Brij-35, 0.1 M sodium lauryl sulfate (SLS), and 0.02 M disodium hydrogen phosphate, adjusted to pH 6.0. The mobile phase flow rate was 1 mL min−1, and detection was carried out at a wavelength of 244 nm. We profiled the impurities that originated in mild to drastic degradation conditions. The method was then validated according to International Conference of Harmonization (ICH) guidelines within a linearity range of 5–100 μg mL−1 and applied successfully for the determination of the drug in its marketed dosage form. A brief comparison was established with reported chromatographic methods, including a greenness assessment on two new metrics (GAPI and AGREE). This study is the first to be reported as eco-friendly, solvent-free, and stability indicating LC methodology for RDS determination and impurity profiling.
Collapse
|
40
|
Mehmandoust M, Khoshnavaz Y, Tuzen M, Erk N. Voltammetric sensor based on bimetallic nanocomposite for determination of favipiravir as an antiviral drug. Mikrochim Acta 2021; 188:434. [PMID: 34837114 PMCID: PMC8626286 DOI: 10.1007/s00604-021-05107-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
A novel and sensitive voltammetric nanosensor was developed for the first time for trace level monitoring of favipiravir based on gold/silver core–shell nanoparticles (Au@Ag CSNPs) with conductive polymer poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) and functionalized multi carbon nanotubes (F-MWCNTs) on a glassy carbon electrode (GCE). The formation of Au@Ag CSNPs/PEDOT:PSS/F-MWCNT composite was confirmed by various analytical techniques, including X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (SEM). Under the optimized conditions and at a typical working potential of + 1.23 V (vs. Ag/AgCl), the Au@Ag CSNPs/PEDOT:PSS/F-MWCNT/GCE revealed linear quantitative ranges from 0.005 to 0.009 and 0.009 to 1.95 µM with a limit of detection 0.46 nM (S/N = 3) with acceptable relative standard deviations (1.1-4.9 %) for pharmaceutical formulations, urine, and human plasma samples without applying any sample pretreatment (1.12–4.93%). The interference effect of antiviral drugs, biological compounds, and amino acids was negligible, and the sensing system demonstrated outstanding reproducibility, repeatability, stability, and reusability. The findings revealed that this assay strategy has promising applications in diagnosing FAV in clinical samples, which could be attributed to the large surface area on active sites and high conductivity of bimetallic nanocomposite.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, 54187, Sakarya, Turkey.
| | - Yasamin Khoshnavaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey
| | - Mustafa Tuzen
- Department of Chemistry, Faculty of Science & Arts, Tokat Gaziosmanpaşa University, Tr-60250, Tokat, Turkey
- Research Institute, Center for Environment and Water, King Fahd University of Petroleum and Materials, Dhahran, 31261, Saudi Arabia
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, 54187, Sakarya, Turkey.
| |
Collapse
|
41
|
Bodur S, Erarpat S, Günkara ÖT, Bakırdere S. One step derivatization and dispersive liquid-liquid microextraction of hydroxychloroquine sulfate for its sensitive and accurate determination using GC-MS. J Pharmacol Toxicol Methods 2021; 113:107130. [PMID: 34688871 DOI: 10.1016/j.vascn.2021.107130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/22/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
In the present study, a novel analytical method for the determination of hydroxychloroquine sulfate in human serum and urine samples was established. One step derivatization and dispersive liquid-liquid microextraction (DLLME) was developed for quantitative determination of hydroxychloroquine sulfate in aqueous samples. Hydroxychloroquine sulfate was first hydrolyzed and converted to its benzoate derivative by adding benzoyl chloride in chloroform which also served as extraction solvent. Significant parameters such as type/volume of extraction and dispersive solvents, concentration/volume of sodium hydroxide, type/period of mixing and concentration of derivatizing agent were carefully optimized by one variable at a time approach. Under the optimum DLLME conditions, limit of detection (LOD), quantitation (LOQ) and dynamic range were calculated as 35.2, 117.2 and 96-1980 μg/kg (ppb), respectively. Recovery studies were conducted by spiked human serum and urine samples and the results were ranged between 93 and 107% with low standard deviations. Developed method can be easily used in hydroxychloroquine sulfate based SARS-CoV-2 and malaria treatment studies.
Collapse
Affiliation(s)
- Süleyman Bodur
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezin Erarpat
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Ömer Tahir Günkara
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06690 Ankara, Turkey.
| |
Collapse
|
42
|
Irie K, Nakagawa A, Fujita H, Tamura R, Eto M, Ikesue H, Muroi N, Fukushima S, Tomii K, Hashida T. Population pharmacokinetics of favipiravir in patients with COVID-19. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:1161-1170. [PMID: 34292670 PMCID: PMC8420316 DOI: 10.1002/psp4.12685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
The antiretroviral drug favipiravir (FPV) inhibits RNA‐dependent RNA polymerase. It has been developed for the treatment of the novel coronavirus (severe acute respiratory syndrome coronavirus 2) infection disease, coronavirus disease 2019 (COVID‐19). However, its pharmacokinetics in patients with COVID‐19 is poorly understood. In this study, we measured FPV serum concentration by liquid chromatography–tandem mass spectrometry and conducted population pharmacokinetic analysis. A total of 39 patients were enrolled in the study: 33 were administered FPV 1600 mg twice daily (b.i.d.) on the first day followed by 600 mg b.i.d., and 6 were administered FPV 1800 mg b.i.d. on the first day followed by 800 mg or 600 mg b.i.d. The median age was 68 years (range, 27–89 years), 31 (79.5%) patients were men, median body surface area (BSA) was 1.72 m2 (range, 1.11–2.2 m2), and 10 (25.6%) patients required invasive mechanical ventilation (IMV) at the start of FPV. A total of 204 serum concentrations were available for pharmacokinetic analysis. A one‐compartment model with first‐order elimination was used to describe the pharmacokinetics. The estimated mean clearance/bioavailability (CL/F) and distribution volume/bioavailability (V/F) were 5.11 L/h and 41.6 L, respectively. Covariate analysis revealed that CL/F was significantly related to dosage, IMV use, and BSA. A simulation study showed that the 1600 mg/600 mg b.i.d. regimen was insufficient for the treatment of COVID‐19 targeting the 50% effective concentration (9.7 µg/mL), especially in patients with larger BSA and/or IMV. A higher FPV dosage is required for COVID‐19, but dose‐dependent nonlinear pharmacokinetics may cause an unexpected significant pharmacokinetic change and drug toxicity. Further studies are warranted to explore the optimal FPV regimen.
Collapse
Affiliation(s)
- Kei Irie
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan.,Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| | - Atsushi Nakagawa
- Department of Respiratory Medicine, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hirotoshi Fujita
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Ryo Tamura
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masaaki Eto
- Department of Clinical Laboratory, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroaki Ikesue
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Nobuyuki Muroi
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shoji Fukushima
- Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tohru Hashida
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
43
|
Hamdy MMA, Abdel Moneim MM, Kamal MF. Accelerated stability study of the ester prodrug remdesivir: Recently FDA-approved Covid-19 antiviral using reversed-phase-HPLC with fluorimetric and diode array detection. Biomed Chromatogr 2021; 35:e5212. [PMID: 34227154 DOI: 10.1002/bmc.5212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Remdesivir (RDV) is the first antiviral drug, approved by the Food and Drug Administration, to treat severe acute respiratory syndrome coronavirus 2. RDV is a relatively new chemical entity, 'ester prodrug', with no reported stability profile. Due to the urgency of its use and thus fast production, it is important to develop a stability-indicating method for its assay. Chromatographic separation was carried out on a C18 column (250 × 4.6 mm, 5 µm) with dual detection: diode array at 240 nm and fluorescence at λex/em 245/390 nm. Isocratic elution of acetonitrile and distilled water (acidified with phosphoric acid, pH 4) in the ratio of 55:45 (v/v), respectively, was used. The linearity range using HPLC-diode array detection was 0.1-15 μg/mL, whereas that using fluorimetric detection was 0.05-15 μg/mL. As per the International Conference on Harmonization guidelines, RDV has been degraded by accelerated alkaline, acidic, neutral hydrolysis, oxidative, heat, and photolytic stress conditions. Possible degradation hypothesis of the parent molecule has been suggested and illustrated. The proposed methods have achieved selective determination of the intact drug with no peaks overlapping in all assumptions. Extensive degradation confirms threatened drug stability at thermal and basic hydrolytic stressing. The developed methods were fully validated and proved suitable for quality control routine analysis of RDV in raw material and pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Mohamed M A Hamdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona M Abdel Moneim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Miranda F Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Beheira, Egypt
| |
Collapse
|
44
|
Eryavuz Onmaz D, Abusoglu S, Onmaz M, Yerlikaya FH, Unlu A. Development and validation of a sensitive, fast and simple LC-MS / MS method for the quantitation of favipiravir in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122768. [PMID: 34052564 PMCID: PMC8133798 DOI: 10.1016/j.jchromb.2021.122768] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Favipiravir is a broad-spectrum inhibitor of viral RNA polymerase. It is currently used as a possible treatment for coronavirus disease 2019 (COVID-19). Pre-clinical or clinical trials of favipiravir require robust, sensitive, and accurate bioanalytical methods for quantitation of favipiravir levels. Recently, several studies have been reported about developing a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring favipiravir levels. However, these methods were validated predominantly for plasma samples, electrospray ionization was operated only in negative or positive mode, and clinical application of these methods has not been applied for patients with COVID-19. This study aimed was to develop a validated LC-MS/MS method for the measurement of favipiravir levels in positive and negative electrospray ionization mode and to perform a pilot study in patients with COVID-19 receiving favipiravir to demonstrate the applicability of this method in biological samples. Simple protein precipitation was used for the extraction of favipiravir from the desired matrix. Favipiravir levels were quantitated using MS / MS with an electrospray ionization source in positive and negative multiple reaction monitoring (MRM) mode. The chromatographic detection was performed on a reverse-phase Phenomenex C18 column (50 mm × 4.6 mm, 5 µm, 100 Å) with gradient elution using 0.1% formic acid in water and 0.1% formic acid in methanol as mobile phase. The method was linear over the concentration ranges of 0.048-50 µg/mL (in negative ionization mode) and 0.062-50 µg/mL (in positive ionization mode) with a correlation coefficient (r2) better than 0.998. The total run time was 3.5 min. The intra-assay and inter-assay %CV values were less than 7.2% and 8.0%, respectively. A simple, rapid and robust LC-MS / MS method was developed for the measurement of favipiravir and validation studies were performed. The validated method was successfully applied for drug level measurement in COVID-19 patients receiving favipiravir.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Selcuk University Faculty of Medicine, Department of Biochemistry, Konya, Turkey.
| | - Sedat Abusoglu
- Selcuk University Faculty of Medicine, Department of Biochemistry, Konya, Turkey
| | - Mustafa Onmaz
- Necmettin Erbakan University Faculty of Medicine, Department of Family Medicine, Konya, Turkey
| | | | - Ali Unlu
- Selcuk University Faculty of Medicine, Department of Biochemistry, Konya, Turkey
| |
Collapse
|
45
|
Elmansi H, Ibrahim AE, Mikhail IE, Belal F. Green and sensitive spectrofluorimetric determination of Remdesivir, an FDA approved SARS-CoV-2 candidate antiviral; application in pharmaceutical dosage forms and spiked human plasma. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2596-2602. [PMID: 34019051 DOI: 10.1039/d1ay00469g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescence spectroscopy has gained much attention over the last few years. Its advantages cover both analytical performance as well as ecological greenness. The quality control of pharmaceuticals requires sensitive, fast and economic methodologies to provide a high throughput at desirable costs. The low energy and decreased solvent consumption make this technique green as well as economic, and hence it is much preferred by pharmaceutical industries. Remdesivir is a recent antiviral, previously used for the treatment of Ebola virus infections, which was approved by the US-FDA in 2020 for treatment of infections caused by SARS-CoV-2 virus. Formulation and wide-scale production of this drug started recently and hence methodologies related to its quality control are highly required. A smart spectrofluorimetric method was validated as per the US-FDA guidelines for the facile estimation of Remdesivir. The assay of Remdesivir was based on its native fluorescence measurements at pH 4 and wavelengths of 244/405 nm. Calibration was achieved over the range of 1.0-65.0 ng mL-1. Different variables affecting the proposed methodology were studied to achieve maximum sensitivity, at limits of detection and quantification of 0.287 and 0.871 ng mL-1, respectively. The developed method is regarded as the first spectrofluorimetric one for the estimation of Remdesivir. The developed method was also utilized for the determination of the drug in its formulated IV infusion and in spiked human plasma. Statistical analysis verified that this method is accurate and reproducible. Moreover, the ecological impact of the developed procedures was evaluated on two recently reported assessment metrics, the Green Analytical Procedure Index (GAPI) and AGREE-analytical greenness metric, to emphasize the greenness of the procedure.
Collapse
Affiliation(s)
- Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Egypt
| | | | | | | |
Collapse
|
46
|
Determination of Antiviral Drugs and Their Metabolites Using Micro-Solid Phase Extraction and UHPLC-MS/MS in Reversed-Phase and Hydrophilic Interaction Chromatography Modes. Molecules 2021; 26:molecules26082123. [PMID: 33917128 PMCID: PMC8067820 DOI: 10.3390/molecules26082123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
Two new ultra-high performance liquid chromatography (UHPLC) methods for analyzing 21 selected antivirals and their metabolites were optimized, including sample preparation step, LC separation conditions, and tandem mass spectrometry detection. Micro-solid phase extraction in pipette tips was used to extract antivirals from the biological material of Hanks balanced salt medium of pH 7.4 and 6.5. These media were used in experiments to evaluate the membrane transport of antiviral drugs. Challenging diversity of physicochemical properties was overcome using combined sorbent composed of C18 and ion exchange moiety, which finally allowed to cover the whole range of tested antivirals. For separation, reversed-phase (RP) chromatography and hydrophilic interaction liquid chromatography (HILIC), were optimized using extensive screening of stationary and mobile phase combinations. Optimized RP-UHPLC separation was carried out using BEH Shield RP18 stationary phase and gradient elution with 25 mmol/L formic acid in acetonitrile and in water. HILIC separation was accomplished with a Cortecs HILIC column and gradient elution with 25 mmol/L ammonium formate pH 3 and acetonitrile. Tandem mass spectrometry (MS/MS) conditions were optimized in both chromatographic modes, but obtained results revealed only a little difference in parameters of capillary voltage and cone voltage. While RP-UHPLC-MS/MS exhibited superior separation selectivity, HILIC-UHPLC-MS/MS has shown substantially higher sensitivity of two orders of magnitude for many compounds. Method validation results indicated that HILIC mode was more suitable for multianalyte methods. Despite better separation selectivity achieved in RP-UHPLC-MS/MS, the matrix effects were noticed while using both chromatographic modes leading to signal enhancement in RP and signal suppression in HILIC.
Collapse
|