1
|
Mei Q, Ma B, Fang Y, Gong Y, Li J, Zhang M. Europium Nanoparticle-Based Lateral Flow Strip Biosensors for the Detection of Quinoxaline Antibiotics and Their Main Metabolites in Fish Feeds and Tissues. BIOSENSORS 2024; 14:292. [PMID: 38920596 PMCID: PMC11202277 DOI: 10.3390/bios14060292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Olaquindox (OLA) and quinocetone (QCT) have been prohibited in aquatic products due to their significant toxicity and side effects. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) were developed for the simultaneous quantitative detection of OLA, QCT, and 3-methyl-quinoxaline-2-carboxylic acid (MQCA) in fish feed and tissue. The EuNP-LFSBs enabled sensitive detection for OLA, QCT, and MQCA with a limit of detection of 0.067, 0.017, and 0.099 ng/mL (R2 ≥ 0.9776) within 10 min. The average recovery of the EuNP-LFSBs was 95.13%, and relative standard deviations were below 9.38%. The method was verified by high-performance liquid chromatography (HPLC), and the test results were consistent. Therefore, the proposed LFSBs serve as a powerful tool to monitor quinoxalines in fish feeds and their residues in fish tissues.
Collapse
Affiliation(s)
- Qing Mei
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (Q.M.); (B.M.); (Y.G.)
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (Q.M.); (B.M.); (Y.G.)
| | - Yun Fang
- Qianjiang Customs of the People’s Republic of China, Hangzhou 310012, China;
| | - Yunfei Gong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (Q.M.); (B.M.); (Y.G.)
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China;
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (Q.M.); (B.M.); (Y.G.)
| |
Collapse
|
2
|
Li X, Wang Q, Li X, Wang C, Lu J, Zhang E, Liang C, Wang W, Fu Y, Li C, Zhang L, Li T. Carbon nanospheres dual spectral-overlapped fluorescence quenching lateral flow immunoassay for rapid diagnosis of toxoplasmosis in humans. J Pharm Biomed Anal 2024; 241:115986. [PMID: 38310830 DOI: 10.1016/j.jpba.2024.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
Toxoplasmosis is a common zoonotic disease caused by a protozoan parasite Toxoplasma gondii (Tox), approximately infecting one-third of human populations worldwide. This study developed the carbon nanospheres (CNPs) based dual spectral-overlapped fluorescence quenching lateral flow immunoassay (CNPs-FQLFIA) for detection of Tox antibodies (ToxAbs). The CNPs have been effectively coupled with Tox antigen (ToxAg), which can completely overlap the excitation and emission spectra of europium nanospheres (EuNPs) and CdSe/ZnS quantum dots (QDs) in testing strips of CNPs-QDs-FQLFIA or CNPs-EuNPs-FQLFIA. The sensitivity of CNPs-EuNPs-FQLFIA or CNPs-QDs-FQLFIA was 4 or 8 IU/mL under natural light readout, or both 4 IU/mL ToxAbs under ultraviolet (UV) light readout by the naked eyes, respectively. The limit of detection (LOD) of two types of CNPs-FQLFIA was both 1 IU/mL ToxAbs under UV light by a dry fluorescence analyzer, but no cross-reaction was found with other antibodies. The intra-assay coefficient variation (CV) of both CNPs-EuNPs-FQLFIA and CNPs-QDs-FQLFIA was less than 8%, while the inter-assay CV was less than 14%, respectively. The correlation coefficient (R2) of CNPs-EuNPs-FQLFIA or CNPs-QDs-FQLFIA to measure the different concentrations of ToxAbs spiked serum samples was 0.99712 and 0.99896, respectively. The CNPs-FQLFIA presented a characteristics of 94.3% sensitivity, 100% specificity and 98% accuracy for detection of ToxAbs in clinical serum samples. In conclusion, CNPs-FQLFIA with EuNPs or QDs fluorescence reporter was an easy, rapid, sensitive, precise and quantitative assay for detecting Tox antibodies in human blood samples.
Collapse
Affiliation(s)
- Xiaozhou Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qi Wang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xintong Li
- Guangzhou Blood Center, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou 510000, China
| | - Jinhui Lu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Enhui Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaolan Liang
- Department of Blood Transfusion, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangzhou Blood Center, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Dong Y, Xu T, Yuan L, Wang Y, Yu S, Wang Z, Chen S, Chen C, He W, Stewart T, Zhang W, Yang X. Cerebrospinal fluid efflux through dynamic paracellular pores on venules as a missing piece of the brain drainage system. EXPLORATION (BEIJING, CHINA) 2024; 4:20230029. [PMID: 38855622 PMCID: PMC11022608 DOI: 10.1002/exp.20230029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/31/2023] [Indexed: 06/11/2024]
Abstract
The glymphatic system plays a key role in the clearance of waste from the parenchyma, and its dysfunction has been associated with the pathogenesis of Alzheimer's disease (AD). However, questions remain regarding its complete mechanisms. Here, we report that efflux of cerebrospinal fluid (CSF)/interstitial fluid (ISF) solutes occurs through a triphasic process that cannot be explained by the current model, but rather hints at the possibility of other, previously undiscovered routes from paravenous spaces to the blood. Using real-time, in vivo observation of efflux, a novel drainage pathway was discovered, in which CSF molecules enter the bloodstream directly through dynamically assembled, trumpet-shaped pores (basolateral ϕ<8 μm; apical ϕ < 2 μm) on the walls of brain venules. As Zn2+ could facilitate the brain clearance of macromolecular ISF solutes, Zn2+-induced reconstruction of the tight junctions (TJs) in vascular endothelial cells may participate in pore formation. Thus, an updated model for glymphatic clearance of brain metabolites and potential regulation is postulated. In addition, deficient clearance of Aβ through these asymmetric venule pores was observed in AD model mice, supporting the notion that impaired brain drainage function contributes to Aβ accumulation and pathogenic dilation of the perivascular space in AD.
Collapse
Affiliation(s)
- Yaqiong Dong
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of MedicineQingdao UniversityQingdaoChina
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Ting Xu
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Lan Yuan
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Yahan Wang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Siwang Yu
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Zhi Wang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Shizhu Chen
- The National Institutes of Pharmaceutical R&D Co., Ltd.China Resources Pharmaceutical Group LimitedBeijingChina
| | - Chunhua Chen
- Department of Anatomy and HistologyPeking University Health Science CenterBeijingChina
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
| | - Tessandra Stewart
- Department of PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Weiguang Zhang
- Department of Anatomy and HistologyPeking University Health Science CenterBeijingChina
| | - Xiaoda Yang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
- SATCM Key Laboratory of Compound Drug DetoxificationPeking University Health Science CenterBeijingChina
| |
Collapse
|
4
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
5
|
Sondhi P, Adeniji T, Lingden D, Stine KJ. Advances in endotoxin analysis. Adv Clin Chem 2024; 118:1-34. [PMID: 38280803 DOI: 10.1016/bs.acc.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The outer membrane of gram-negative bacteria is primarily composed of lipopolysaccharide (LPS). In addition to protection, LPS defines the distinct serogroups used to identify bacteria specifically. Furthermore, LPS also act as highly potent stimulators of innate immune cells, a phenomenon essential to understanding pathogen invasion in the body. The complex multi-step process of LPS binding to cells involves several binding partners, including LPS binding protein (LBP), CD14 in both membrane-bound and soluble forms, membrane protein MD-2, and toll-like receptor 4 (TLR4). Once these pathways are activated, pro-inflammatory cytokines are eventually expressed. These binding events are also affected by the presence of monomeric or aggregated LPS. Traditional techniques to detect LPS include the rabbit pyrogen test, the monocyte activation test and Limulus-based tests. Modern approaches are based on protein, antibodies or aptamer binding. Recently, novel techniques including electrochemical methods, HPLC, quartz crystal microbalance (QCM), and molecular imprinting have been developed. These approaches often use nanomaterials such as gold nanoparticles, quantum dots, nanotubes, and magnetic nanoparticles. This chapter reviews current developments in endotoxin detection with a focus on modern novel techniques that use various sensing components, ranging from natural biomolecules to synthetic materials. Highly integrated and miniaturized commercial endotoxin detection devices offer a variety of options as the scientific and technologic revolution proceeds.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Taiwo Adeniji
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Dhanbir Lingden
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States.
| |
Collapse
|
6
|
Li Y, He J, Zhang Y, Liang D, Zhang J, Ji R, Wu Y, Su Z, Ke C, Xu N, Tang Y, Xu J. The instantly blocking-based fluorescent immunochromatographic assay for the detection of SARS-CoV-2 neutralizing antibody. Front Cell Infect Microbiol 2023; 13:1203625. [PMID: 37736103 PMCID: PMC10509472 DOI: 10.3389/fcimb.2023.1203625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction At present, there is an urgent need for the rapid and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies (NAbs) to evaluate the ability of the human body to resist coronavirus disease 2019 (COVID-19) after infection or vaccination. The current gold standard for neutralizing antibody detection is the conventional virus neutralization test (cVNT), which requires live pathogens and biosafety level-3 (BSL-3) laboratories, making it difficult for this method to meet the requirements of large-scale routine detection. Therefore, this study established a time-resolved fluorescence-blocking lateral flow immunochromatographic assay (TRF-BLFIA) that enables accurate, rapid quantification of NAbs in subjects. Methods This assay utilizes the characteristic that SARS-CoV-2 neutralizing antibody can specifically block the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2) to rapidly detect the content of neutralizing antibody in COVID-19-infected patients and vaccine recipients. Results When 356 samples of vaccine recipients were measured, the coincidence rate between this method and cVNT was 88.76%, which was higher than the coincidence rate of 76.97% between cVNT and a conventional chemiluminescence immunoassay detecting overall binding anti-Spike-IgG. More importantly, this assay does not need to be carried out in BSL-2 or 3 laboratories. Discussion Therefore, this product can detect NAbs in COVID-19 patients and provide a reference for the prognosis and outcome of patients. Simultaneously, it can also be applied to large-scale detection to better meet the needs of neutralizing antibody detection after vaccination, making it an effective tool to evaluate the immunoprotective effect of COVID-19 vaccines.
Collapse
Affiliation(s)
- Yizhe Li
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Jinyong He
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Ying Zhang
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, Guangdong, China
| | - Dan Liang
- Guangdong Provincial Institute of Public Health, Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jiaqi Zhang
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Ruili Ji
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yue Wu
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Zejie Su
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Changwen Ke
- Guangdong Provincial Institute of Public Health, Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Ning Xu
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yong Tang
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, Guangdong, China
| | - Jianhua Xu
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, Guangdong, China
| |
Collapse
|
7
|
Lu J, Li C, Zhang E, Hou S, Xiao K, Li X, Zhang L, Wang Z, Chen C, Li C, Li T. Novel Vertical Flow Immunoassay with Au@PtNPs for Rapid, Ultrasensitive, and On-Site Diagnosis of Human Brucellosis. ACS OMEGA 2023; 8:29534-29542. [PMID: 37599942 PMCID: PMC10433357 DOI: 10.1021/acsomega.3c03381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Brucellosis is an infectious zoonosis caused by Brucella with clinical symptoms of wavy fever, fatigue, and even invasion of tissues and organs in the whole body, posing a serious threat to public health around the world. Herein, a novel vertical flow immunoassay based on Au@Pt nanoparticles (Au@PtNPs-VFIA) was established for detection of Brucella IgG antibody in clinical serum samples. The testing card of Au@PtNPs-VFIA was manufactured by printing the purified Brucella LPS and goat antimouse IgG on the nitrocellulose membrane as the test-spot or control-spot, respectively. Au@PtNPs labeled with protein G (Au@PtNPs-prG) were concurrently employed as detection probes presenting visible spots and catalysts mimicking catalytic enzymes to catalyze the DAB substrate (H2O2 plus O-phenylenediamine) for deepening color development. The testing procedure of Au@PtNPs-VFIA takes 2-3 min, and the limit of detection (LOD) for Brucella antibody is 0.1 IU/mL, which is faster and more sensitive than that of Au@PtNP-based lateral flow immunoassay (Au@PtNPs-LFIA: 15 min and 1.56 IU/mL, respectively). By comparing with vertical flow immunoassay based on classic Au nanoparticles (AuNPs-VFIA), the Au@PtNPs-VFIA is 32 times or 16 times more sensitive with or without further development of DAB substrate catalysis. Au@PtNPs-VFIA did not react with the serum samples of Gram-negative bacterium infections but only weakly cross-reacted with diagnostic serum of Y. enterocolitica O9 infection. In detection of clinical samples, Au@PtNPs-VFIA was validated for possessing 98.33% sensitivity, 100% specificity, and 99.17% accuracy, which were comparable with or even better than those obtained by the Rose-Bengal plate agglutination test, serological agglutination test, AuNPs-VFIA, and Au@PtNPs-LFIA. Therefore, this newly developed Au@PtNPs-VFIA has potential for rapid, ultrasensitive, and on-site diagnosis of human Brucellosis in clinics.
Collapse
Affiliation(s)
- Jinhui Lu
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chengcheng Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Enhui Zhang
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shuiping Hou
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Microbiological
Laboratory, Guangzhou Center for Disease
Control and Prevention, Guangzhou 510440, China
| | - Ke Xiao
- Department
of laboratory Medicine, Guangdong Second
Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Xiaozhou Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ling Zhang
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zhen Wang
- Animal
Science and Technology College, Shihezi
University, Shihezi 832002, Xinjiang, China
| | - Chuangfu Chen
- Animal
Science and Technology College, Shihezi
University, Shihezi 832002, Xinjiang, China
| | - Chengyao Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Tingting Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Jin B, Ma B, Mei Q, Xu S, Deng X, Hong Y, Li J, Xu H, Zhang M. Europium Nanoparticle-Based Lateral Flow Strip Biosensors Combined with Recombinase Polymerase Amplification for Simultaneous Detection of Five Zoonotic Foodborne Pathogens. BIOSENSORS 2023; 13:652. [PMID: 37367017 DOI: 10.3390/bios13060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The five recognized zoonotic foodborne pathogens, namely, Listeria monocytogenes, Staphylococcus aureus, Streptococcus suis, Salmonella enterica and Escherichia coli O157:H7, pose a major threat to global health and social-economic development. These pathogenic bacteria can cause human and animal diseases through foodborne transmission and environmental contamination. Rapid and sensitive detection for pathogens is particularly important for the effective prevention of zoonotic infections. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) combined with recombinase polymerase amplification (RPA) were developed for the simultaneous quantitative detection of five foodborne pathogenic bacteria. Multiple T lines were designed in a single test strip for increasing the detection throughput. After optimizing the key parameters, the single-tube amplified reaction was completed within 15 min at 37 °C. The fluorescent strip reader recorded the intensity signals from the lateral flow strip and converted the data into a T/C value for quantification measurement. The sensitivity of the quintuple RPA-EuNP-LFSBs reached a level of 101 CFU/mL. It also exhibited good specificity and there was no cross-reaction with 20 non-target pathogens. In artificial contamination experiments, the recovery rate of the quintuple RPA-EuNP-LFSBs was 90.6-101.6%, and the results were consistent with those of the culture method. In summary, the ultrasensitive bacterial LFSBs described in this study have the potential for widespread application in resource-poor areas. The study also provides insights in respect to multiple detection in the field.
Collapse
Affiliation(s)
- Bei Jin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Qing Mei
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Shujuan Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Yi Hong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China
| | - Hanyue Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
9
|
Nan X, Yang L, Cui Y. Lateral Flow Immunoassay for Proteins. Clin Chim Acta 2023; 544:117337. [PMID: 37044163 DOI: 10.1016/j.cca.2023.117337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Protein biomarkers are useful for disease diagnosis. Identification thereof using in vitro diagnostics such as lateral flow immunoassays (LFIAs) has attracted considerable attention due to their low cost and ease of use especially in the point of care setting. Current challenges, however, do remain with respect to material selection for each component in the device and the synergistic integration of these components to display detectable signals. This review explores the principle of LFIA for protein biomarkers, device components including biomaterials and labeling methods. Medical applications and commercial status are examined as well. This review highlights critical methodologies in the development of new LFIAs and their role in advancing healthcare worldwide.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
10
|
Bai X, Hu C, Wang J, Li Y, Xin W, Kang L, Jin Z, Wan W, Li Y, Yang H, Wang J, Gao S. A lanthanide-based high-sensitivity fluorescence method for the on-site rapid detection of thermostable direct hemolysin of Vibrio parahaemolyticus. J Food Prot 2023; 86:100005. [PMID: 36916582 DOI: 10.1016/j.jfp.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 12/23/2022]
Abstract
Vibrio parahaemolyticus is a common foodborne pathogen in seafood, which often causes seafood borne bacterial gastroenteritis or food poisoning. Thermostable direct hemolysin (TDH) is considered to be one of the main virulence factors involved in this pathogen. The most clinical V. parahaemolyticus isolates produce TDH. Therefore, high sensitivity and specificity detection of TDH are of great significance for food safety and early diagnosis of diseases caused by V. parahaemolyticus. In this study, we developed a rapid, sensitive immunochromatographic test paper assay for the quantitative detection of TDH in seafood samples using time-resolved fluorescence techniques. First, we completed the preparation of fluorescent detection antibodies by coupling lanthanide fluorescent nanospheres with homemade high-affinity polyclonal antibodies based on the principle of the double-antibody sandwich. The lanthanide fluorescent nanospheres used in this study are characterized by a large stokes shift and a long fluorescence lifetime, which effectively reduces background noise and improves detection sensitivity. In addition, the method can be completed within 15 min for the detection of TDH, has a detection limit below 50 ng/mL and good linearity in the range of 50-5000 ng/mL. Moreover, it has good specificity and no cross-reactivity with Vibrio vulnificus hemolysin (VVH), Clostridium perfringens α toxin (CPA) or C. perfringens ε toxin (ETX). Finally, the sensitivity of this method was unchanged when the three simulated samples of Patinopecten yessoensis, Ruditapes philippinarum, and Scapharca broughtonii tested, indicating that the method is not affected by samples in a complex matrix. In conclusion, this study establishes a practical new method for on-site rapid detection of TDH, which is easy to operate, fast response, easy to carry and can be implemented under the field conditions without expensive equipment and professional person.
Collapse
Affiliation(s)
- Xuexin Bai
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenyi Hu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Zhiying Jin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Wei Wan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China.
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China.
| |
Collapse
|
11
|
Park J. Lateral Flow Immunoassay Reader Technologies for Quantitative Point-of-Care Testing. SENSORS (BASEL, SWITZERLAND) 2022; 22:7398. [PMID: 36236497 PMCID: PMC9571991 DOI: 10.3390/s22197398] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/01/2023]
Abstract
Due to the recent pandemic caused by coronavirus disease 2019 (COVID-19), the lateral flow immunoassay used for its rapid antigen test is more popular than ever before. However, the history of the lateral flow immunoassay is about 60 years old, and its original purpose of use, such as a COVID-19 rapid antigen test or a pregnancy test, was the qualitative detection of a target analyte. Recently, the demand for quantitative analysis of lateral flow immunoassays is increasing in various fields. Lateral flow immunoassays for quantitative detection using various materials and sensor technologies are being introduced, and readers for analyzing them are being developed. Quantitative analysis readers are highly anticipated for their future development in line with technological advancements such as optical, magnetic field, photothermal, and electrochemical sensors and trends such as weight reduction, miniaturization, and cost reduction of systems. In addition, the sensing, processing, and communication functions of portable personal devices such as smartphones can be used as tools for the quantitative analysis of lateral flow immunoassays. As a result, lateral flow immunoassays can efficiently achieve the goal of rapid diagnosis by point-of-care testing. Readers used for the quantification of lateral flow immunoassays were classified according to the adopted sensor technology, and the research trends in each were reviewed in this paper. The development of a quantitative analysis system was often carried out in the assay aspect, so not only the readers but also the assay development cases were reviewed if necessary. In addition, systems for quantitative analysis of COVID-19, which have recently been gaining importance, were introduced as a separate section.
Collapse
Affiliation(s)
- Jongwon Park
- Department of Biomedical Engineering, Kyungil University, Gyeongsan 38428, Korea
| |
Collapse
|
12
|
Liu C, Chen C, Lai H, Liang H, Zhong S, Guo G, Wang L, Li L. A New Method for Early Screening of Gastric Cancer (G17 and CA724 Dual-Labeled Time-Resolved Fluorescence Immunoassay). COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1704948. [PMID: 35912162 PMCID: PMC9328981 DOI: 10.1155/2022/1704948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Gastric carcinoma (GC) is one of the most common malignancies in the world with the great early screening challenges. The study is aimed at establishing a new detection method for early screening GC using time-resolved fluorescence immunoassay (TRFIA) via quantitative detection of gastrin-17 (G-17) and carbohydrate antigen 724 (CA724) in serum. Time-resolved analyzer measured the fluorescence intensity. The standards of G-17/CA724 were used for drawing the standard curve, which is used to calculate the concentration of G-17 and CA724 in serum sample. The sensitivity for G-17 was 0.54 pg/mL and for CA724 was 0.28 U/mL with a wide-range analyze concentration (0.1-1000) pg/mL or U/mL. The average recoveries ranged from 100.52% to 110.30% for G-17 and 103.02% to 116.00% for CA724. All CVs of the intra- and interassay were below 10% with high specificity. There was a high Pearson coefficient between this TRFIA method and the commercially available kits (Pearson r 0.9117 for G-17 and 0.9449 for CA724). Additionally, the cutoff value was 88.41 pg/mL and 5.47 U/mL for CA724 in health subjects. This study established a TRFIA method for simultaneous detection of the concentrations of G-17 and CA724 in serum, which provide a new method for sensitive, accurate, and specific early screening of gastric cancer.
Collapse
Affiliation(s)
- Chang Liu
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Cuicui Chen
- Guangzhou Youdi Bio-Technology Co., Ltd., Guangzhou 510663, China
| | - Hongrui Lai
- Guangzhou Youdi Bio-Technology Co., Ltd., Guangzhou 510663, China
| | - Huankun Liang
- Guangzhou Youdi Bio-Technology Co., Ltd., Guangzhou 510663, China
| | - Shuhai Zhong
- Guangzhou Youdi Bio-Technology Co., Ltd., Guangzhou 510663, China
| | - Guiling Guo
- Guangzhou Youdi Bio-Technology Co., Ltd., Guangzhou 510663, China
| | - Lei Wang
- Guangzhou Youdi Bio-Technology Co., Ltd., Guangzhou 510663, China
| | - Laiqing Li
- Guangzhou Youdi Bio-Technology Co., Ltd., Guangzhou 510663, China
| |
Collapse
|
13
|
Silent Antibodies Start Talking: Enhanced Lateral Flow Serodiagnosis with Two-Stage Incorporation of Labels into Immune Complexes. BIOSENSORS 2022; 12:bios12070434. [PMID: 35884237 PMCID: PMC9313186 DOI: 10.3390/bios12070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
The presence of pathogen-specific antibodies in the blood is widely controlled by a serodiagnostic technique based on the lateral flow immunoassay (LFIA). However, its common one-stage format with an antigen immobilized in the binding zone of a test strip and a nanodispersed label conjugated with immunoglobulin-binding proteins is associated with risks of very low analytical signals. In this study, the first stage of the immunochromatographic serodiagnosis was carried out in its traditional format using a conjugate of gold nanoparticles with staphylococcal immunoglobulin-binding protein A and an antigen immobilized on a working membrane. At the second stage, a labeled immunoglobulin-binding protein was added, which enhanced the coloration of the bound immune complexes. The use of two separated steps, binding of specific antibodies, and further coloration of the formed complexes, allowed for a significant reduction of the influence of non-specific immunoglobulins on the assay results. The proposed approach was applied for the serodiagnosis using a recombinant RBD protein of SARS-CoV-2. As a result, an increase in the intensity of test zone coloration by more than two orders of magnitude was demonstrated, which enabled the significant reduction of false-negative results. The diagnostic sensitivity of the LFIA was 62.5% for the common format and 100% for the enhanced format. Moreover, the diagnostic specificity of both variants was 100%.
Collapse
|
14
|
Liang C, Liu B, Li J, Lu J, Zhang E, Deng Q, Zhang L, Chen R, Fu Y, Li C, Li T. A nanoenzyme linked immunochromatographic sensor for rapid and quantitative detection of SARS-CoV-2 nucleocapsid protein in human blood. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 349:130718. [PMID: 34539081 PMCID: PMC8435070 DOI: 10.1016/j.snb.2021.130718] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 05/03/2023]
Abstract
The establishment of a simple, low-cost, high-sensitive and rapid immunoassay for detecting SARS-CoV-2 antigen in human blood is an effective mean of discovering early SARS-CoV-2 infection and controlling the pandemic of COVID-19. Herein, a smartphone based nanozyme linked immunochromatographic sensor (NLICS) for the detection of SARS-CoV-2 nucleocapsid protein (NP) has been developed on demand. The system is integrated by disposable immunochromatography assay (ICA) and optical sensor devices. Immunoreaction and enzyme-catalyzed substrate color reaction were carried out on the chromatographic strip in a device, of which the light signal was read by a photometer through a biosensor channel, and the data was synchronously transmitted via the Bluetooth to the app in-stored smartphone for reporting the result. With a limit of detection (LOD) of 0.026 ng/mL NP, NLICS had the linear detection range (LDR) between 0.05 and 1.6 ng/mL NP, which was more sensitive than conventional ICA. NLICS took 25 min for reporting results. For detection of NP antigen in clinical serum samples from 21 COVID-19 patients and 80 healthy blood donor controls, NLICS and commercial enzyme linked immunosorbent assay (ELISA) had 76.2% or 47.6% positivity, and 100% specificity, respectively (P = 0.057), while a good correlation coefficient (r = 0.99) for quantification of NP between two assays was obtained. In conclusion, the NLICS was a rapid, simple, cheap, sensitive and specific immunochromatographic sensing assay for early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chaolan Liang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bochao Liu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, China
- Guangzhou Blood Center, Guangzhou, China
| | - Jinfeng Li
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinhui Lu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Enhui Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qitao Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ruiai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Dursun AD, Borsa BA, Bayramoglu G, Arica MY, Ozalp VC. Surface plasmon resonance aptasensor for Brucella detection in milk. Talanta 2021; 239:123074. [PMID: 34809985 DOI: 10.1016/j.talanta.2021.123074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
A Surface Plasmon Resonance (SPR) aptasensor was developed for the detection of Brucella melitensis (B. melitensis) in milk samples. Brucellosis is a bacterial zoonotic disease with global distribution caused mostly by contaminated milk or their products. Aptamers recognizing B. melitensis were selected following a whole bacteria-SELEX procedure. Two aptamers were chosen for high affinity and high specificity. The high affinity aptamer (B70 aptamer) was immobilized on the surface of magnetic silica core-shell nanoparticles for initial purification of the target bacteria cells from milk matrix. Another aptamer, highly specific for B. melitensis cells (B46 aptamer), was used to prepare SPR sensor chips for sensitive determination of Brucella in eluted samples from magnetic purification since direct injection of milk samples to SPR sensor chips is known for a high background unspecific signal. Thus, we integrated a quick and efficient magnetic isolation step for subsequent instant detection of B. melitensis contamination in one ml of milk sample by SPR with a LOD value as low as 27 ± 11 cells.
Collapse
Affiliation(s)
- Ali D Dursun
- Department of Physiology, School of Medicine, Atilim University, 06830, Ankara, Turkey; Vocational School of Health Services, Atilim University, 06830, Ankara, Turkey
| | - Baris A Borsa
- Linköping University, Molecular Physics and Nanoscience (MOLYT), Nucleic Acids Technology Lab (Nat-Lab), Linköping, Sweden
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| | - M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| | - Veli C Ozalp
- Department of Biology, Medical School, Atilim University, 06830, Ankara, Turkey.
| |
Collapse
|
16
|
An CH, Nie SM, Sun YX, Fan SP, Luo BY, Li Z, Liu ZG, Chang WH. Seroprevalence trend of human brucellosis and MLVA genotyping characteristics of Brucella melitensis in Shaanxi Province, China, during 2008-2020. Transbound Emerg Dis 2021; 69:e423-e434. [PMID: 34510783 DOI: 10.1111/tbed.14320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
In this study, a total of 179,907 blood samples from populations with suspected Brucella spp. infections were collected between 2008 and 2020 and analyzed by the Rose Bengal plate test (RBPT) and serum agglutination test (SAT). Moreover, conventional biotyping, B. abortus-melitensis-ovis-suis polymerase chain reaction (AMOS-PCR), and multiple-locus variable-number tandem repeat analysis (MLVA) was applied to characterize the isolated strains. A total of 8103 (4.50%) samples were positive in RBPT, while 7705 (4.28%, 95% confidence interval (CI) 4.19-4.37) samples were positive in SAT. There was a significant difference in seroprevalence for human brucellosis over time, in different areas and different cities (districts) (χ2 = 2 = 32.23, 1984.14, and 3749.51, p < .05). The highest seropositivity (8.22% (4, 965/60393; 95% CI 8.00-8.44) was observed in Yulin City, which borders Inner Mongolia, Ningxia, and Gansu Province, China, regions that have a high incidence of human brucellosis. Moreover, 174 Brucella strains were obtained, including nine with B. melitensis bv. 1, 145 with B. melitensis bv. 3, and 20 with B. melitensis variants. After random selection, 132 B. melitensis were further genotyped using MLVA-16. The 132 strains were sorted into 100 MLVA-16 genotypes (GTs) (GT 1-100), 81 of which were single GTs represented by singular independent strains. The remaining 19 shared GTs involved 51 strains, and each GT included two to seven isolates from the Shaan northern and Guanzhong areas. These data indicated that although sporadic cases were a dominant epidemic characteristic of human brucellosis in this province, more than 38.6% (51/132) outbreaks were also found in the Shaan northern area and Guanzhong areas. The 47 shared MLVA-16 GTs were observed in strains (n = 71) from this study and strains (n = 337) from 19 other provinces of China. These data suggest that strains from the northern provinces are a potential source of human brucellosis cases in Shaanxi Province. It is urgent to strengthen the surveillance and control of the trade and transfer of infected sheep among regions.
Collapse
Affiliation(s)
- Cui-Hong An
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China.,Department of Microbiology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shou-Min Nie
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Yang-Xin Sun
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Suo-Ping Fan
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Bo-Yan Luo
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Zhi-Guo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Wen-Hui Chang
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| |
Collapse
|
17
|
Shi F, Tang Y, Xu ZH, Sun YX, Ma MZ, Chen CF. Visual typing detection of brucellosis with a lateral flow immunoassay based on coloured latex microspheres. J Appl Microbiol 2021; 132:199-208. [PMID: 34319629 DOI: 10.1111/jam.15240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
AIMS Treatment and preventive control strategies for Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) infection differ. A lateral flow immunoassay (LFIA) for the rapid typing and detection of brucellosis by using polychromatic dye-doped latex microspheres (LMs) as a labelling material was developed. METHODS AND RESULTS This LFIA utilizes a double-antigen sandwich method in which the BP26 protein is used as the diagnostic antigen to detect brucellosis infection and the OMP31 protein is used as the identified antigen to distinguish between bovine and sheep brucellosis. Thus, people and animals infected with brucellosis can be diagnosed according to the different colours of the signals displayed on the detection lines. The results indicated that the accuracy of this assay was found to reach 98%, and the immunochromatographic test strip is highly accurate, shows good sensitivity and can facilitate typing diagnosis, among other features. CONCLUSIONS The established LFIA can distinguish B. melitensis infection from B. abortus infection and produces results in a short period of time while retaining the advantages of LFIAs. SIGNIFICANCE AND IMPACT OF THE STUDY This technology lays a foundation for the development of multi-disease test strips and the establishment of methods for rapid, multi-specimen quantitative detection and is thus of great importance for the development of medical diagnostic technologies.
Collapse
Affiliation(s)
- Feng Shi
- College of Life Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Yan Tang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Zhi-Hua Xu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Yi-Xiao Sun
- College of Life Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Ming-Ze Ma
- College of Life Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Chuang-Fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, P. R. China
| |
Collapse
|