1
|
Khanmohammadi Khorrami MM, Azimi N, Koopaie M, Mohammadi M, Manifar S, Khanmohammadi Khorrami M. Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Analysis of Saliva as a Diagnostic Specimen for Rapid Classification of Oral Squamous Cell Carcinoma Using Chemometrics Methods. Cancer Invest 2024:1-12. [PMID: 39354719 DOI: 10.1080/07357907.2024.2403086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/04/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND & AIM Recent advancements in analytical techniques have highlighted the potential of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy as a quick, cost-effective, non-invasive, and efficient tool for cancer diagnosis. This study aims to evaluate the effectiveness of ATR-FTIR spectroscopy in combination with supervised machine learning classification models for diagnosing OSCC using saliva samples. METHODS & MATERIALS Eighty unstimulated whole saliva samples from OSCC patients and healthy controls were collected. The ATR-FTIR spectroscopy was performed and spectral data were used to classify healthy and OSCC groups. The data were analyzed using machine learning classification methods such as Partial Least Squares-Discriminant Analysis (PLS-DA) and Support Vector Machine Classification (SVM-C). The classification performance of the models was evaluated by computing sensitivity, specificity, precision, and accuracy. RESULTS The samples were classified into two classes based on their spectral data. The obtained results demonstrate a high level of accuracy in the prediction sets of the PLS-DA and SVM-C models, with accuracy values of 0.960 and 0.962, respectively. The OSCC group sensitivity values for both PLS-DA and SVM-C models was 1.00, respectively. CONCLUSION The study indicates that ATR-FTIR spectroscopy, combined with chemometrics, is a potential method for the non-invasive diagnosis of OSCC using saliva samples. This method achieved high accuracy and the findings of this study suggest that ATR-FTIR spectroscopy could be further developed for clinical applications in OSCC diagnosis.
Collapse
Affiliation(s)
| | - Nozhan Azimi
- Student Research Committee, Dental Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Soheila Manifar
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Cancer Institute of Tehran, Imam Khomeini Hospital Complex, Tehran, Iran
| | | |
Collapse
|
2
|
Morais CLM, Lima KMG, Dickinson AW, Saba T, Bongers T, Singh MN, Martin FL, Bury D. Non-invasive diagnostic test for lung cancer using biospectroscopy and variable selection techniques in saliva samples. Analyst 2024. [PMID: 39105622 DOI: 10.1039/d4an00726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Lung cancer is one of the most commonly occurring malignant tumours worldwide. Although some reference methods such as X-ray, computed tomography or bronchoscope are widely used for clinical diagnosis of lung cancer, there is still a need to develop new methods for early detection of lung cancer. Especially needed are approaches that might be non-invasive and fast with high analytical precision and statistically reliable. Herein, we developed a swab "dip" test in saliva whereby swabs were analysed using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy harnessed to principal component analysis-quadratic discriminant analysis (QDA) and variable selection techniques employing successive projections algorithm (SPA) and genetic algorithm (GA) for feature selection/extraction combined with QDA. A total of 1944 saliva samples (56 designated as lung-cancer positive and 1888 designed as controls) were obtained in a lung cancer-screening programme being undertaken in North-West England. GA-QDA models achieved, for the test set, sensitivity and specificity values of 100.0% and 99.1%, respectively. Three wavenumbers (1422 cm-1, 1546 cm-1 and 1578 cm-1) were identified using the GA-QDA model to distinguish between lung cancer and controls, including ring C-C stretching, CN adenine, Amide II [δ(NH), ν(CN)] and νs(COO-) (polysaccharides, pectin). These findings highlight the potential of using biospectroscopy associated with multivariate classification algorithms to discriminate between benign saliva samples and those with underlying lung cancer.
Collapse
Affiliation(s)
- Camilo L M Morais
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
- Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil
| | - Kássio M G Lima
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
| | - Andrew W Dickinson
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Tarek Saba
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Thomas Bongers
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Maneesh N Singh
- Biocel UK Ltd, Hull HU10 6TS, UK
- Chesterfield Royal Hospital, Chesterfield Road, Calow, Chesterfield S44 5BL, UK
| | - Francis L Martin
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
- Biocel UK Ltd, Hull HU10 6TS, UK
| | - Danielle Bury
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| |
Collapse
|
3
|
Surboyo MDC, Merdietio Boedi R, Mahdani FY, Ayuningtyas NF, Shalgm B, Paramananda DB, Indriyani I. Alteration of salivary LPO, MDA, LDH, glutathione, GPx, SOD and vitamins in oral submucous fibrosis: A three-level meta-analysis study. Clin Biochem 2024; 130:110790. [PMID: 38969054 DOI: 10.1016/j.clinbiochem.2024.110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
This study aims to investigate the alteration of salivary biomarker profiling in the development of oral submucous fibrosis (OSMF) and to explore the influence of saliva in the diagnosis of OSMF. A systematic search of published articles using the PRISMA guidelines was conducted to identify relevant studies on OSMF and saliva. All eligible studies, including case-control, cross-sectional studies, cohort, and pilot studies, contained the evaluation of salivary biomarker profiling in patients with OSMF. Salivary biomarker data from 28 selected articles were categorized into nine groups, and their mean values were determined. A three-step meta-analysis was performed by grouping salivary biomarker profiling into more heterogeneous categories based on OSMF classification, considering functional, histological, and clinical grading. The salivary biomarker profiling analysis revealed significant alterations in all markers, indicating their efficacy in OSMF diagnosis. Subgroup analyses highlighted significant associations in oxidative stress and protein with increased mean values, particularly emphasizing lipid peroxidase (LPO), malondialdehyde (MDA), and lactate dehydrogenase (LDH). Conversely, decreased mean values were observed in glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and vitamins. Notably, OSMF grading analysis demonstrated a significant difference in weighted effect sizes for histological grading, particularly in stage IV. The study underscores the alteration of specific salivary biomarkers, particularly those associated with LPO, MDA, LDH, glutathione, GPx, SOD, and vitamins, in diagnosing and grading OSMF.
Collapse
Affiliation(s)
| | - Rizky Merdietio Boedi
- Department of Dentistry, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia; Centre of Forensic and Legal Medicine and Dentistry, School of Dentistry, University of Dundee, Dundee, United Kingdom
| | - Fatma Yasmin Mahdani
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Basher Shalgm
- Faculty of Dentistry, University of Sebha, Sebha, Libya; Unit of Cell & Molecular Biology, School of Dentistry, University of Dundee, Dundee, United Kingdom
| | - Dimas Bayu Paramananda
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ina Indriyani
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
4
|
Shree P, Aggarwal Y, Kumar M, Majhee L, Singh NN, Prakash O, Chandra A, Mahuli SA, Shamsi S, Rai A. Saliva Based Diagnostic Prediction of Oral Squamous Cell Carcinoma using FTIR Spectroscopy. Indian J Otolaryngol Head Neck Surg 2024; 76:2282-2289. [PMID: 38883442 PMCID: PMC11169329 DOI: 10.1007/s12070-023-04294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 06/18/2024] Open
Abstract
Oral cancer ranks as the sixth most prevalent form of cancer worldwide, presenting a significant public health concern. According to the World Health Organization (WHO), within a 5-year period following diagnosis, the mortality rate among oral cancer patients of all stages stands at 45%. In this study, a total of 60 patients divided into 2 groups were recruited. Group A included 30 histo-pathologically confirmed OSCC patients and Group B included 30 healthy controls. A standardized procedure was followed to collect saliva samples. FTIR spectroscopy was done for all the saliva samples collected from both Group A and B. An IR Prestige-21 (Shimadzu Corp, Japan) spectrometer was used to record IR spectra in the 40-4000 cm-1 range SVM classifier was applied in the classification of disease state from normal subjects using FTIR data. The peaks were identified at wave no 1180 cm-1, 1230 cm-1, 1340 cm-1, 1360 cm-1, 1420 cm-1, 1460 cm-1, 1500 cm-1, 1540 cm-1, 1560 cm-1, and 1637 cm-1. The observed results of SVM demonstrated the accuracy of 91.66% in the classification of Cancer tissues from the normal subjects with sensitivity of 83.33% while specificity and precision of 100.0%. The development of oral cancer leads to noticeable alterations in the secondary structure of proteins. These findings emphasize the promising use of ATR-FTIR platforms in conjunction with machine learning as a reliable, non-invasive, reagent-free, and highly sensitive method for screening and monitoring individuals with oral cancer.
Collapse
Affiliation(s)
- Priya Shree
- Dental College, Rajendra Institute of Medical Sciences (RIMS), Bariatu, Ranchi, Jharkhand 834009 India
| | - Yogendra Aggarwal
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi, India
| | - Manish Kumar
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Lakhan Majhee
- Department of Pharmacology, Rajendra Institute of Medical Sciences, Ranchi, India
| | - Narendra Nath Singh
- Oral Pathology, Microbiology and Forensic Odontology, Dental College, Rajendra Institute of Medical Sciences (RIMS), Bariatu, Ranchi, 834009 India
| | - Om Prakash
- Oral and Maxillofacial Pathology, Dental College, Rajendra Institute of Medical Sciences (RIMS), Bariatu, Ranchi, 834009 India
| | - Akhilesh Chandra
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Banaras Hindu University, Varanasi, India
| | - Simpy Amit Mahuli
- Dental College, Rajendra Institute of Medical Sciences (RIMS), Bariatu, Ranchi, 834009 India
| | - Shoa Shamsi
- Dental College, Rajendra Institute of Medical Sciences (RIMS), Bariatu, Ranchi, 834009 India
| | - Arpita Rai
- Dental College, Rajendra Institute of Medical Sciences (RIMS), Bariatu, Ranchi, Jharkhand 834009 India
| |
Collapse
|
5
|
Neves MM, Guerra RF, de Lima IL, Arrais TS, Guevara-Vega M, Ferreira FB, Rosa RB, Vieira MS, Fonseca BB, Sabino da Silva R, da Silva MV. Perspectives of FTIR as Promising Tool for Pathogen Diagnosis, Sanitary and Welfare Monitoring in Animal Experimentation Models: A Review Based on Pertinent Literature. Microorganisms 2024; 12:833. [PMID: 38674777 PMCID: PMC11052489 DOI: 10.3390/microorganisms12040833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, there is a wide application in the literature of the use of the Fourier Transform Infrared Spectroscopy (FTIR) technique. This basic tool has also proven to be efficient for detecting molecules associated with hosts and pathogens in infections, as well as other molecules present in humans and animals' biological samples. However, there is a crisis in science data reproducibility. This crisis can also be observed in data from experimental animal models (EAMs). When it comes to rodents, a major challenge is to carry out sanitary monitoring, which is currently expensive and requires a large volume of biological samples, generating ethical, legal, and psychological conflicts for professionals and researchers. We carried out a survey of data from the relevant literature on the use of this technique in different diagnostic protocols and combined the data with the aim of presenting the technique as a promising tool for use in EAM. Since FTIR can detect molecules associated with different diseases and has advantages such as the low volume of samples required, low cost, sustainability, and provides diagnostic tests with high specificity and sensitivity, we believe that the technique is highly promising for the sanitary and stress and the detection of molecules of interest of infectious or non-infectious origin.
Collapse
Affiliation(s)
- Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Renan Faria Guerra
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Thomas Santos Arrais
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.G.-V.); (R.S.d.S.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Rafael Borges Rosa
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| | - Mylla Spirandelli Vieira
- Faculty of Medicine, Maria Ranulfa Institute, Av. Vasconselos Costa 321, Uberlândia 38400-448, MG, Brazil;
| | | | - Robinson Sabino da Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.G.-V.); (R.S.d.S.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| |
Collapse
|
6
|
Shaikh S, Yadav DK, Bhadresha K, Rawal RM. Integrated computational screening and liquid biopsy approach to uncover the role of biomarkers for oral cancer lymph node metastasis. Sci Rep 2023; 13:14033. [PMID: 37640804 PMCID: PMC10462753 DOI: 10.1038/s41598-023-41348-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is an abnormal, heterogeneous growth of cells with the ability to invade surrounding tissue and even distant organs. Worldwide, GLOBOCAN had an estimated 18.1 million new cases and 9.6 million death rates of cancer in 2018. Among all cancers, Oral cancer (OC) is the sixth most common cancer worldwide, and the third most common in India, the most frequent type, oral squamous cell carcinoma (OSCC), tends to spread to lymph nodes in advanced stages. Throughout the past few decades, the molecular landscape of OSCC biology has remained unknown despite breakthroughs in our understanding of the genome-scale gene expression pattern of oral cancer particularly in lymph node metastasis. Moreover, due to tissue variability in single-cohort studies, investigations on OSCC gene-expression profiles are scarce or inconsistent. The work provides a comprehensive analysis of changed expression and lays a major focus on employing a liquid biopsy base method to find new therapeutic targets and early prediction biomarkers for lymph node metastasis. Therefore, the current study combined the profile information from GSE9844, GSE30784, GSE3524, and GSE2280 cohorts to screen for differentially expressed genes, and then using gene enrichment analysis and protein-protein interaction network design, identified the possible candidate genes and pathways in lymph node metastatic patients. Additionally, the mRNA expression of discovered genes was assessed using real-time PCR, and the Human Protein Atlas database was utilized to determine the protein levels of hub genes in tumor and normal tissues. Angiogenesis was been investigated using the Chorioallentoic membrane (CAM) angiogenesis test. In a cohort of OSCC patients, fibronectin (FN1), C-X-C Motif Chemokine Ligand 8 (CXCL8), and matrix metallopeptidase 9 (MMP9) were significantly upregulated, corroborating these findings. Our identified significant gene signature showed greater serum exosome effectiveness in early detection and clinically linked with intracellular communication in the establishment of the premetastatic niche. Also, the results of the CAM test reveal that primary OC derived exosomes may have a function in angiogenesis. As a result, our study finds three potential genes that may be used as a possible biomarker for lymph node metastasis early detection and sheds light on the underlying processes of exosomes that cause a premetastatic condition.
Collapse
Affiliation(s)
- Shayma Shaikh
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Deep Kumari Yadav
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Kinjal Bhadresha
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- National Institute of Health, Bethesda, MD, USA
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
7
|
Campanella B, Legnaioli S, Onor M, Benedetti E, Bramanti E. The Role of the Preanalytical Step for Human Saliva Analysis via Vibrational Spectroscopy. Metabolites 2023; 13:metabo13030393. [PMID: 36984834 PMCID: PMC10055013 DOI: 10.3390/metabo13030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Saliva is an easily sampled matrix containing a variety of biochemical information, which can be correlated with the individual health status. The fast, straightforward analysis of saliva by vibrational (ATR-FTIR and Raman) spectroscopy is a good premise for large-scale preclinical studies to aid translation into clinics. In this work, the effects of saliva collection (spitting/swab) and processing (two different deproteinization procedures) were explored by principal component analysis (PCA) of ATR-FTIR and Raman data and by investigating the effects on the main saliva metabolites by reversed-phase chromatography (RPC-HPLC-DAD). Our results show that, depending on the bioanalytical information needed, special care must be taken when saliva is collected with swabs because the polymeric material significantly interacts with some saliva components. Moreover, the analysis of saliva before and after deproteinization by FTIR and Raman spectroscopy allows to obtain complementary biological information.
Collapse
Affiliation(s)
- Beatrice Campanella
- Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR), 56124 Pisa, Italy
| | - Stefano Legnaioli
- Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR), 56124 Pisa, Italy
| | - Massimo Onor
- Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR), 56124 Pisa, Italy
| | - Edoardo Benedetti
- Hematology Unit of Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| | - Emilia Bramanti
- Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR), 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-315-2293
| |
Collapse
|
8
|
Oral Submucous Fibrosis: Etiological Mechanism, Malignant Transformation, Therapeutic Approaches and Targets. Int J Mol Sci 2023; 24:ijms24054992. [PMID: 36902423 PMCID: PMC10003551 DOI: 10.3390/ijms24054992] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Oral submucosal fibrosis (OSF) is a chronic, progressive and potentially malignant oral disorder with a high regional incidence and malignant rate. With the development of the disease, the normal oral function and social life of patients are seriously affected. This review mainly introduces the various pathogenic factors and mechanisms of OSF, the mechanism of malignant transformation into oral squamous cell carcinoma (OSCC), and the existing treatment methods and new therapeutic targets and drugs. This paper summarizes the key molecules in the pathogenic and malignant mechanism of OSF, the miRNAs and lncRNAs with abnormal changes, and the natural compounds with therapeutic effects, which provides new molecular targets and further research directions for the prevention and treatment of OSF.
Collapse
|
9
|
Wang G, Wu H, Yang C, Li Z, Chen R, Liang X, Yu K, Li H, Shen C, Liu R, Wei X, Sun Q, Zhang K, Wang Z. An Emerging Strategy for Muscle Evanescent Trauma Discrimination by Spectroscopy and Chemometrics. Int J Mol Sci 2022; 23:ijms232113489. [PMID: 36362276 PMCID: PMC9658611 DOI: 10.3390/ijms232113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Trauma is one of the most common conditions in the biomedical field. It is important to identify it quickly and accurately. However, when evanescent trauma occurs, it presents a great challenge to professionals. There are few reports on the establishment of a rapid and accurate trauma identification and prediction model. In this study, Fourier transform infrared spectroscopy (FTIR) and microscopic spectroscopy (micro-IR) combined with chemometrics were used to establish prediction models for the rapid identification of muscle trauma in humans and rats. The results of the average spectrum, principal component analysis (PCA) and loading maps showed that the differences between the rat muscle trauma group and the rat control group were mainly related to biological macromolecules, such as proteins, nucleic acids and carbohydrates. The differences between the human muscle trauma group and the human control group were mainly related to proteins, polysaccharides, phospholipids and phosphates. Then, a partial least squares discriminant analysis (PLS-DA) was used to evaluate the classification ability of the training and test datasets. The classification accuracies were 99.10% and 93.69%, respectively. Moreover, a trauma classification and recognition model of human muscle tissue was constructed, and a good classification effect was obtained. The classification accuracies were 99.52% and 91.95%. In conclusion, spectroscopy and stoichiometry have the advantages of being rapid, accurate and objective and of having high resolution and a strong recognition ability, and they are emerging strategies for the identification of evanescent trauma. In addition, the combination of spectroscopy and stoichiometry has great potential in the application of medicine and criminal law under practical conditions.
Collapse
|
10
|
da Silva JB, de Carvalho AEV, Schneider C, Corbellini VA. Saliva may predict quality of life in psoriasis as measured by Fourier transform infrared spectroscopy (FTIR) and chemometrics. Photodiagnosis Photodyn Ther 2022; 39:103017. [PMID: 35843561 DOI: 10.1016/j.pdpdt.2022.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Psoriasis is a chronic skin disease, with several comorbidities, such as psoriatic arthritis, inflammatory bowel disease, metabolic syndrome, and impaired quality of life and work activity. The Dermatology Life Quality Index (DLQI) is the most commonly used quality of life index in psoriatic patients, as it is a marker of severe disease. This study evaluated the association between salivary Fourier transform Infrared Spectroscopy (FTIR) metabolic fingerprints and severity of psoriasis as measured by DLQI, using chemometric algorithms. MATERIALS AND METHODS Saliva was collected from 56 (27 with DLQI ≤ 10 [GI]; 29 with DLQI > 10 [GII]) psoriatic patients diagnosed and assessed by DLQI for disease severity by a dermatologist and analyzed by the transflectance technique in mid-infrared. Hierarchic cluster analysis (HCA), principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and orthogonal partial least squares (OPLS) algorithms were used to associate salivary FTIR spectra with the respective DLQI scores. RESULTS Second derivative (2D) discriminated GI and GII at 2522 cm-1 (p < 0.0001). HCA and PCA partially discriminated GI from GII at 4000-450 cm-1 (p = 0.042 and 0.00821, respectively). Data processing with 1st derivative (1D), 3 latent variables (LV) and 1 orthogonal signal correction (OSC) component at 2550-1801 cm-1 generated an FTIR/OPLS-DA model with 100% accuracy to classify the severity of psoriasis, and an FTIR/OPLS model to quantify DLQI (range 0-28) with high performance: root mean square error of prediction (RMSEP) < 0.01 and coefficient of determination (R2) > 0.9999. CONCLUSIONS Salivary FTIR combined with chemometric algorithms such as OPLS-DA and OPLS can be used as a clinical tool to classify or predict the severity of psoriasis according to DLQI in patients with confirmed psoriasis.
Collapse
Affiliation(s)
- Jaquelini Barboza da Silva
- Postgraduate Program in Health Promotion, Universidade de Santa Cruz do Sul, RS, Brazil; Department of Life Sciences, Universidade de Santa Cruz do Sul, RS, Brazil.
| | | | - Carolina Schneider
- Postgraduate Program in Health Promotion, Universidade de Santa Cruz do Sul, RS, Brazil; Department of Life Sciences, Universidade de Santa Cruz do Sul, RS, Brazil
| | - Valeriano Antonio Corbellini
- Postgraduate Program in Health Promotion, Universidade de Santa Cruz do Sul, RS, Brazil; Postgraduate Program in Environmental Technology, Universidade de Santa Cruz do Sul, RS, Brazil; Department of Life Sciences, Universidade de Santa Cruz do Sul, RS, Brazil; Department of Sciences, Humanities and Education, Universidade de Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
11
|
Yang G, Wei L, Thong BKS, Fu Y, Cheong IH, Kozlakidis Z, Li X, Wang H, Li X. A Systematic Review of Oral Biopsies, Sample Types, and Detection Techniques Applied in Relation to Oral Cancer Detection. BIOTECH 2022; 11:5. [PMID: 35822813 PMCID: PMC9245907 DOI: 10.3390/biotech11010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Early identification of the stage of oral cancer development can lead to better treatment outcomes and avoid malignant transformation. Therefore, this review aims to provide a comprehensive overview that describes the development of standardized procedures for oral sample collection, characterization, and molecular risk assessment. This can help investigators to choose the appropriate sampling method and downstream analyses for different purposes. Methods: This systematic review was conducted according to the PRISMA guidelines. Using both PubMed and Web of Science databases, four independent authors conducted a literature search between 15 and 21 June 2021. We used key search terms to broaden the search for studies. Non-conforming articles were removed using an EndNote-based and manual approach. Reviewers used a designed form to extract data. Results: This review included a total of 3574 records, after eliminating duplicate articles and excluding papers that did not meet the inclusion criteria. Finally, 202 articles were included in this review. We summarized the sampling methods, biopsy samples, and downstream analysis. The biopsy techniques were classified into tissue and liquid biopsy. The common sequential analysis of tissue biopsy includes histopathological examination such as H&E or IHC to identify various pathogenic features. Meanwhile, liquid samples such as saliva, blood, and urine are analyzed for the purpose of screening to detect mutations in cancer. Commonly used technologies are PCR, RT-PCR, high-throughput sequencing, and metabolomic analysis. Conclusions: Currently, tissue biopsies provide increased diagnostic value compared to liquid biopsy. However, the minimal invasiveness and convenience of liquid biopsy make it a suitable method for mass screening and eventual clinical adoption. The analysis of samples includes histological and molecular analysis. Metabolite analysis is rising but remains scarce.
Collapse
Affiliation(s)
- Guanghuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Benjamin K. S. Thong
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Yuanyuan Fu
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Io Hong Cheong
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (G.Y.); (L.W.); (B.K.S.T.); (Y.F.); (I.H.C.); (X.L.)
| |
Collapse
|