1
|
Thakur U, Ramachandran S, Mazal AT, Cheng J, Le L, Chhabra A. Multiparametric whole-body MRI of patients with neurofibromatosis type I: spectrum of imaging findings. Skeletal Radiol 2024:10.1007/s00256-024-04765-6. [PMID: 39105762 DOI: 10.1007/s00256-024-04765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Neurofibromatosis (NF) type I is a neuroectodermal and mesodermal dysplasia caused by a mutation of the neurofibromin tumor suppressor gene. Phenotypic features of NF1 vary, and patients develop benign peripheral nerve sheath tumors and malignant neoplasms, such as malignant peripheral nerve sheath tumor, malignant melanoma, and astrocytoma. Multiparametric whole-body MR imaging (WBMRI) plays a critical role in disease surveillance. Multiparametric MRI, typically used in prostate imaging, is a general term for a technique that includes multiple sequences, i.e. anatomic, diffusion, and Dixon-based pre- and post-contrast imaging. This article discusses the value of multiparametric WBMRI and illustrates the spectrum of whole-body lesions of NF1 in a single imaging setting. Examples of lesions include those in the skin (tumors and axillary freckling), soft tissues (benign and malignant peripheral nerve sheath tumors, visceral plexiform, and diffuse lesions), bone and joints (nutrient nerve lesions, non-ossifying fibromas, intra-articular neurofibroma, etc.), spine (acute-angled scoliosis, dural ectasia, intraspinal tumors, etc.), and brain/skull (optic nerve glioma, choroid plexus xanthogranuloma, sphenoid wing dysplasia, cerebral hamartomas, etc.). After reading this article, the reader will gain knowledge of the variety of lesions encountered with NF1 and their WBMRI appearances. Timely identification of such lesions can aid in accurate diagnosis and appropriate patient management.
Collapse
Affiliation(s)
- Uma Thakur
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Shyam Ramachandran
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Alexander T Mazal
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jonathan Cheng
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lu Le
- Department of Dermatology and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Li Q, Wang L, Yang H, Yang X, Liu L, Wang L, Song Y. Surgical Treatment Outcomes of Anterior-Only Correction and Reconstruction for Severe Cervical Kyphotic Deformity with Neurofibromatosis-1: A Retrospective Study with a 5-Year Follow-Up. Orthop Surg 2024; 16:1631-1641. [PMID: 38769783 PMCID: PMC11216833 DOI: 10.1111/os.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVES Currently, anterior-only (AO), posterior-only, and combined anterior-posterior spinal fusions are common strategies for treating cervical kyphosis in patients with neurofibromatosis-1 NF-1. Nevertheless, the choice of surgical strategy remains a topic of controversy. The aim of our study is to evaluate the safety and effectiveness of anterior decompression and spinal reconstruction for the treatment of cervical kyphosis in patients with NF-1. METHODS Twelve patients with NF-1-associated cervical kyphotic deformity were reviewed retrospectively between January 2010 and April 2020. All patients underwent AO correction and reconstruction. The X-ray was followed up in all these patients to assess the preoperative and postoperative local kyphosis angle (LKA), the global kyphosis angle (GKA), the sagittal vertical axis, and the T1 slope. The visual analog scale score, Japanese Orthopedic Association (JOA) score, and neck disability index (NDI) score were used to evaluate the improvement inclinical symptoms. The results of the difference in improvement from preoperatively to the final follow-up assessment were assessed using a paired t-test or Mann-Whitney U-test. RESULTS The LKA and GKA decreased from the preoperative average of 64.42 (range, 38-86) and 35.50 (range, 10-81) to an average of 16.83 (range, -2 to 46) and 4.25 (range, -22 to 39) postoperatively, respectively. The average correction rates of the LKA and GKA were 76.11% and 111.97%, respectively. All patients had achieved satisfactory relief of neurological symptoms (p < 0.01). JOA scores were improved from 10.42 (range, 8-16) preoperatively to 15.25 (range, 11-18) at final follow-up (p < 0.01). NDI scores were decreased from an average of 23.25 (range, 16-34) preoperatively to an average of 7.08 (range, 3-15) at the final follow-up (p < 0.01). CONCLUSION Anterior-only correction and reconstruction is a safe and effective method for correcting cervical kyphosis in NF-1 patients. In fixed cervical kyphosis cases, preoperative skull traction should also be considered.
Collapse
Affiliation(s)
- Qiujiang Li
- Department of Orthopedic SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Liang Wang
- Department of Orthopedic SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Huiliang Yang
- Department of Orthopedic SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Xi Yang
- Department of Orthopedic SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Limin Liu
- Department of Orthopedic SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Lei Wang
- Department of Orthopedic SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Yueming Song
- Department of Orthopedic SurgeryWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
3
|
Kaspiris A, Vasiliadis E, Iliopoulos ID, Panagopoulos F, Melissaridou D, Lianou I, Ntourantonis D, Savvidou OD, Papadimitriou E, Pneumaticos SG. Bone mineral density, vitamin D and osseous metabolism indices in neurofibromatosis type 1: A systematic review and meta-analysis. Bone 2024; 180:116992. [PMID: 38141750 DOI: 10.1016/j.bone.2023.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic autosomal neurocutaneous syndrome correlated with skeletal dysplasia and defects in the osseous microarchitecture. The physiological mechanism for the development of NF1-related bone abnormal turnover is still unclear. OBJECTIVES A meta-analysis was performed to investigate the effects of NF1 on bone mineral density (BMD) and osseous metabolic indices in order to provide clinical evidence for the pathogenesis of the associated skeletal deformities. METHODS A systematic literature review search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in the PubMed/Medline and Web of Science databases from the date of inception of each database through to 10 September 2023. Specific inclusion and exclusion criteria were applied for the identification of studies examining the effects of NF1 on bone strength and metabolism. The Newcastle-Ottawa and Jadad scales were applied to assess the quality of the included studies. RevMan 5.3 software was used for the analysis of the data, and MedCalc was applied to examine publication bias. RESULTS Overall, 13 studies met the inclusion criteria comprised of 5 cross-sectional, 6 case-control and 2 retrospective studies. 703 patients and 973 healthy subjects formed the NF1 and control group, respectively. The results of the meta-analysis displayed that lumbar (SMD = -3.85, 95%CI = -7.53 to -0.18, Z = 2.05, p = 0.04) and femoral (SMD = -4.78, 95%CI = -8.86 to -0.69, Z = 2.29, p = 0.02) BMD was reduced in the NF1 group. Both in children and adults the serum levels of 25 hydroxyvitamin D3 were also decreased in NF1 group, but without any statistical significance (SMD = -0.62, 95%CI = -1.34 to -0.11, Z = 1.66, p = 0.10). Serum Parathyroid hormone (PTH) (SMD = 0.73, 95%CI = 0.31 to 1.15, Z = 3.43, p = 0.0006) and C-telopeptide of type 1 collagen (CTX) (SMD = 0.82, 95%CI = 0.33 to 1.30, Z = 3.29, p = 0.001) were elevated in NF1 patients, while serum calcium (SMD = -0.10, 95%CI = -0.74 to 0.53, Z = 0.32, p = 0.75) phosphorous (SMD = 0.33, 95%CI = -0.38 to 1.05, Z = 0.92, p = 0.36), alkaline phosphatase (ALP) (SMD = -0.36, 95%CI = -0.77 to 0.05, Z = 1.71, p = 0.09), osteocalcin (SMD = 1.81, 95%CI = -0.37 to -3.98, Z = 1.63, p = 0.10) and bone formation markers (SMD = 0.28, 95%CI = -0.37 to -0.94, Z = 0.85, p = 0.39) were not. CONCLUSION NF1 is associated with decreased BMD at the lumbar spine and femur. Taking into account that the serum levels of PTH, CTX were increased whereas the concentrations of vitamin D, calcium, phosphorous, ALP, osteocalcin and bone formation markers were not altered significantly in the NF1 patients compared with the healthy subjects, a vitamin D independent dysregulated bone cellular activity could be considered. STUDY REGISTRATION Registered on PROSPERO (CRD42023424751).
Collapse
Affiliation(s)
- Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece.
| | - Elias Vasiliadis
- Third Department of Orthopaedic Surgery, "KAT" General Hospital and Medical School, University of Athens, Athens 14561, Greece
| | - Ilias D Iliopoulos
- Department of Orthopaedic Surgery, "Rion" University Hospital and Medical School, School of Health Sciences, University of Patras, Patras 26504,Greece
| | - Fotis Panagopoulos
- Department of Orthopaedic Surgery, General Hospital of Eastern Achaia-NHS, Aigion, Greece
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University General Hospital, Rimini 1, Athens 12462, Greece
| | - Ioanna Lianou
- Department of Orthopaedic Surgery, "Rion" University Hospital and Medical School, School of Health Sciences, University of Patras, Patras 26504,Greece
| | - Dimitrios Ntourantonis
- Emergency Department, Rion" University Hospital and Medical School, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Olga D Savvidou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University General Hospital, Rimini 1, Athens 12462, Greece
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Spiros G Pneumaticos
- Third Department of Orthopaedic Surgery, "KAT" General Hospital and Medical School, University of Athens, Athens 14561, Greece
| |
Collapse
|
4
|
Gross AM, Plotkin SR, Watts NB, Fisher MJ, Klesse LJ, Lessing AJ, McManus ML, Larson AN, Oberlander B, Rios JJ, Sarnoff H, Simpson BN, Ullrich NJ, Stevenson DA. Potential endpoints for assessment of bone health in persons with neurofibromatosis type 1. Clin Trials 2024; 21:29-39. [PMID: 37772407 PMCID: PMC10920397 DOI: 10.1177/17407745231201338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Neurofibromatosis type 1 is a genetic syndrome characterized by a wide variety of tumor and non-tumor manifestations. Bone-related issues, such as scoliosis, tibial dysplasia, and low bone mineral density, are a significant source of morbidity for this population with limited treatment options. Some of the challenges to developing such treatments include the lack of consensus regarding the optimal methods to assess bone health in neurofibromatosis type 1 and limited data regarding the natural history of these manifestations. In this review, the Functional Committee of the Response Evaluation in Neurofibromatosis and Schwannomatosis International Collaboration: (1) presents the available techniques for measuring overall bone health and metabolism in persons with neurofibromatosis type 1, (2) reviews data for use of each of these measures in the neurofibromatosis type 1 population, and (3) describes the strengths and limitations for each method as they might be used in clinical trials targeting neurofibromatosis type 1 bone manifestations. The Response Evaluation in Neurofibromatosis and Schwannomatosis International Collaboration supports the development of a prospective, longitudinal natural history study focusing on the bone-related manifestations and relevant biomarkers of neurofibromatosis type 1. In addition, we suggest that the neurofibromatosis type 1 research community consider adding the less burdensome measurements of bone health as exploratory endpoints in ongoing or planned clinical trials for other neurofibromatosis type 1 manifestations to expand knowledge in the field.
Collapse
Affiliation(s)
- Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Nelson B Watts
- Mercy Health Osteoporosis and Bone Health Services, Cincinnati, OH, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura J Klesse
- Division of Hematology/Oncology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herb Sarnoff
- Research and Development, Infixion Bioscience, Inc., San Diego, CA, USA
| | - Brittany N Simpson
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Li S, Wu Z, Ma Y, Zhu Y, Feng Z, Zhu Z, Qiu Y, Mao S. Differential Gene Expression Profiles and Pathways Highlight the Role of Osteoimmunology in Neurofibromatosis Type 1-Related Dystrophic Scoliosis With Osteopenia. Spine (Phila Pa 1976) 2023; 48:1588-1598. [PMID: 37614007 DOI: 10.1097/brs.0000000000004805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
STUDY DESIGN Microarray approach and integrated gene network analysis. OBJECTIVE To explore the differential genetic expression profile, Gene Ontology terms, and Kyoto Encyclopedia of Genes and Genomes pathways in human trabecular bone (HTB)-derived cells of dystrophic scoliosis secondary to neurofibromatosis type 1 (DS-NF1) and compare these to normal controls. SUMMARY OF BACKGROUND DATA The pathogenesis of DS-NF1 and the accompanying generalized osteopenia remain unclear. We hypothesized that HTBs may play a significant role in the etiology and pathogenesis of DS-NF1. MATERIALS AND METHODS Microarray analysis was used to identify differentially expressed genes of HTBs from patients with DS-NF1 compared with those from healthy individuals. Functional and pathway enrichment analysis were implemented through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway database. Then, the "search tool for the retrieval of interacting genes/proteins" database, Cytoscape, and "Molecular Complex Detection" were applied to construct the protein-protein interaction (PPI) network and screen hub genes. Pathway enrichment analysis was further performed for hub genes and gene clusters identified through module analysis. Six potential crucial genes were selected for validation by reverse transcription polymerase chain reaction. RESULTS Bioinformatic analysis revealed that there are 401 previously unrecognized differentially expressed genes (238 up and 163 downregulated genes) in HTBs from patients with DS-NF1, and they were mainly enriched in terms of immune response, type-I interferon (IFN) signaling, TNF signaling pathway and etinoic acid inducible gene I-like receptor signaling pathway. Five hub genes, including signal transducer and activator of transcription 1, 2'-5'-oligoadenylate synthetase-like, IFN induced with helicase C domain 1, IFN regulatory factor 7, and MX dynamin-like GTPase 1 were identified through PPI network, which were mainly enriched in terms of Jak-STAT and etinoic acid inducible gene I-like receptor signaling pathway. An independently dysregulated protein cluster containing CCL2, CXCL1, CXCL3, CX3CL1, TLR1 , and CXCL12 was also identified through the PPI network. This indicated that the upper abnormally expressed genes may play essential roles in DS-NF1 pathogenesis and accompanied osteopenia. CONCLUSION Six key genes were identified in the progression of DS-NF1-related osteopenia. Immune response might play a key role in the progression of osteopenia, whereas a CXCL12 -mediated osteogenic effect might play a protective role.
Collapse
Affiliation(s)
- Song Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Papadopoulou A, Bountouvi E. Skeletal defects and bone metabolism in Noonan, Costello and cardio-facio-cutaneous syndromes. Front Endocrinol (Lausanne) 2023; 14:1231828. [PMID: 37964950 PMCID: PMC10641803 DOI: 10.3389/fendo.2023.1231828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Noonan, Costello and Cardio-facio-cutaneous syndromes belong to a group of disorders named RASopathies due to their common pathogenetic origin that lies on the Ras/MAPK signaling pathway. Genetics has eased, at least in part, the distinction of these entities as they are presented with overlapping clinical features which, sometimes, become more pronounced with age. Distinctive face, cardiac and skeletal defects are among the primary abnormalities seen in these patients. Skeletal dysmorphisms range from mild to severe and may include anterior chest wall anomalies, scoliosis, kyphosis, short stature, hand anomalies, muscle weakness, osteopenia or/and osteoporosis. Patients usually have increased serum concentrations of bone resorption markers, while markers of bone formation are within normal range. The causative molecular defects encompass the members of the Ras/MAPK/ERK pathway and the adjacent cascades, important for the maintenance of normal bone homeostasis. It has been suggested that modulation of the expression of specific molecules involved in the processes of bone remodeling may affect the osteogenic fate decision, potentially, bringing out new pharmaceutical targets. Currently, the laboratory imprint of bone metabolism on the clinical picture of the affected individuals is not clear, maybe due to the rarity of these syndromes, the small number of the recruited patients and the methods used for the description of their clinical and biochemical profiles.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Clinical Biochemistry, University General Hospital “Attikon”, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
7
|
Idler J, Turkoglu O, Patek K, Stuart S, Taskin B, Sivaswamy L, Whitten A. Neurocutaneous Disorders in Pregnancy. Obstet Gynecol Surv 2023; 78:606-619. [PMID: 37976316 DOI: 10.1097/ogx.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Importance Neurocutaneous disorders have significant implications for care of the pregnant patient. As neurocutaneous disorders are uncommon, obstetricians may be unfamiliar with these disorders and with recommendations for appropriate care of this population. Objective This review aims to summarize existing literature on the interaction between neurocutaneous disorders and pregnancy and to provide a guide for physicians caring for an affected patient. Evidence Acquisition A PubMed, MEDLINE, and Google Scholar search was carried out with a broad range of combinations of the medical subject headings (MeSH) terms "pregnancy," "Sturge -Weber," "Neurofibromatosis Type 1," "neurofibromatosis type 2," "von Hippel Lindau," "Tuberous Sclerosis," "neurocutaneous disorder," "treatment," "congenital malformations," "neurodevelopmental defects," "miscarriage," "breastfeeding," "autoimmune," "pathophysiology," and "management." References of included articles were searched to identify any articles that may have been missed after the above method was used. Results Neurocutaneous disorders are associated with increased pregnancy-associated maternal and fetal/neonatal morbidity, largely surrounding hypertensive disorders, epilepsy, and medication exposure. Some features of neurocutaneous disorders may be worsened or accelerated by pregnancy. Neurocutaneous disorders can often be diagnosed prenatally. Therefore, directed assessment should be offered to affected individuals with a personal or family history of a neurocutaneous disorder. Conclusion and Relevance Patients affected by neurocutaneous disorders who are pregnant or planning for future pregnancy should be carefully followed by a multidisciplinary team, which could include maternal-fetal medicine, neurology, and anesthesia, as well as other relevant subspecialists. Additional research is required regarding optimal counseling and management of these patients.
Collapse
Affiliation(s)
- Jay Idler
- Maternal Fetal Medicine Specialist, Allegheny Health Network, Pittsburgh, PA; Assistant Professor, Drexel College of Medicine, Philadelphia, PA
| | | | | | - Sean Stuart
- Obstetrics and Gynecology Resident, William Beaumont University Hospital, Corewell Health, Royal Oak
| | - Birce Taskin
- Child Neurologist, Pediatric Neurology Department, Children's Hospital of Michigan, Wayne State University, Detroit
| | - Lalitha Sivaswamy
- Child Neurologist, Pediatric Neurology Department, Children's Hospital of Michigan, Wayne State University, Detroit
| | - Amy Whitten
- Maternal Fetal Medicine Fellow; Maternal Fetal Medicine Specialist and Associate Professor, William Beaumont University Hospital, Corewell Health, Royal Oak, MI
| |
Collapse
|
8
|
Stevenson DA, Viscogliosi G, Leoni C. Bone health in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:459-470. [PMID: 36461161 DOI: 10.1002/ajmg.c.32020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
The RASopathies are a group of disorders due to pathogenic variants in genes involved in the Ras/MAPK pathway, many of which have overlapping clinical features (e.g., neurofibromatosis type 1, Costello syndrome, cardiofaciocutaneous syndrome and Noonan syndrome) including musculoskeletal manifestations. Osteopenia and osteoporosis are reported in many of the RASopathies suggesting a shared pathogenesis. Even though osteopenia and osteoporosis are often detected and fractures have been reported, the clinical impact of bone mineralization defects on the skeleton of the various syndromes is poorly understood. Further knowledge of the role of the Ras/MAPK pathway on the bone cellular function, and more detailed musculoskeletal phenotyping will be critical in helping to develop therapies to improve bone health in the RASopathies.
Collapse
Affiliation(s)
- David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Germana Viscogliosi
- Center for Rare Diseases and Birth Defect, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defect, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
9
|
de Blank PMK, Gross AM, Akshintala S, Blakeley JO, Bollag G, Cannon A, Dombi E, Fangusaro J, Gelb BD, Hargrave D, Kim A, Klesse LJ, Loh M, Martin S, Moertel C, Packer R, Payne JM, Rauen KA, Rios JJ, Robison N, Schorry EK, Shannon K, Stevenson DA, Stieglitz E, Ullrich NJ, Walsh KS, Weiss BD, Wolters PL, Yohay K, Yohe ME, Widemann BC, Fisher MJ. MEK inhibitors for neurofibromatosis type 1 manifestations: Clinical evidence and consensus. Neuro Oncol 2022; 24:1845-1856. [PMID: 35788692 PMCID: PMC9629420 DOI: 10.1093/neuonc/noac165] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The wide variety of clinical manifestations of the genetic syndrome neurofibromatosis type 1 (NF1) are driven by overactivation of the RAS pathway. Mitogen-activated protein kinase kinase inhibitors (MEKi) block downstream targets of RAS. The recent regulatory approvals of the MEKi selumetinib for inoperable symptomatic plexiform neurofibromas in children with NF1 have made it the first medical therapy approved for this indication in the United States, the European Union, and elsewhere. Several recently published and ongoing clinical trials have demonstrated that MEKi may have potential benefits for a variety of other NF1 manifestations, and there is broad interest in the field regarding the appropriate clinical use of these agents. In this review, we present the current evidence regarding the use of existing MEKi for a variety of NF1-related manifestations, including tumor (neurofibromas, malignant peripheral nerve sheath tumors, low-grade glioma, and juvenile myelomonocytic leukemia) and non-tumor (bone, pain, and neurocognitive) manifestations. We discuss the potential utility of MEKi in related genetic conditions characterized by overactivation of the RAS pathway (RASopathies). In addition, we review practical treatment considerations for the use of MEKi as well as provide consensus recommendations regarding their clinical use from a panel of experts.
Collapse
Affiliation(s)
- Peter M K de Blank
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Ashley Cannon
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Fangusaro
- Children's Hospital of Atlanta, Emory University and the Aflac Cancer Center, Atlanta, Georgia, USA
| | - Bruce D Gelb
- Department of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Darren Hargrave
- Department of Oncology, Great Ormond Street Hospital for Children, London, UK
| | - AeRang Kim
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Laura J Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mignon Loh
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Staci Martin
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Roger Packer
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Nathan Robison
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Elizabeth K Schorry
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin Shannon
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Elliot Stieglitz
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Brian D Weiss
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kaleb Yohay
- Department of Neurology and Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Năstase F, Radaschin DS, Niculeț E, Brădeanu AV, Verenca MC, Nechita A, Chioncel V, Nwabudike LC, Baroiu L, Drima Polea E, Fotea S, Anghel L, Nechifor A, Tatu AL. Orthopaedic manifestations of neurofibromatosis type 1: A case report. Exp Ther Med 2022; 23:135. [PMID: 35069816 PMCID: PMC8756425 DOI: 10.3892/etm.2021.11058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) or von Recklinghausen disease is one of the most common autosomal dominant genetic diseases. It is characterized by ‘café-au-lait’ spots and multiple tumors starting from the central and peripheric nervous system. The diagnosis is determined on two out of seven criteria: i) A total of 6 or more light brown spots larger than 5 mm in diameter (pre-puberty) or 15 mm in diameter (post-puberty); ii) a total of 2 or more neurofibromas or one plexiform neurofibroma; iii) axillary or inguinal freckling; iv) optic glioma; v) a total of 2 or more Lisch nodules; vi) bone abnormalities: tibia pseudarthrosis or dysplasia of the sphenoid wing; and vii) a relative of first degree having an NF1 diagnosis. A total of ~50% of patients have significant musculoskeletal manifestation, with scoliosis and congenital pseudarthrosis of tibia most common. Management of the orthopaedic manifestations of NF1 is often difficult. Due to NF1 influencing multiple organ systems, patients are likely to benefit most from a multidisciplinary treatment strategy.
Collapse
Affiliation(s)
- Florentina Năstase
- Department of Neuropsychomotor Rehabilitation, 'Sf. Ioan' Clinical Hospital for Children, 800487 Galati, Romania
| | - Diana Sabina Radaschin
- Clinical Medical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania.,Research Center in The Field of Medical and Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania
| | - Elena Niculeț
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania.,Department of Pathology, 'Sf. Apostol Andrei' Emergency Clinical Hospital, 800578 Galati, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research MIC-DIR, 'Dunarea de Jos' University, 800010 Galati, Romania
| | - Andrei Vlad Brădeanu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania
| | - Mădălina Codruța Verenca
- Department of Neuropsychomotor Rehabilitation, 'Sf. Ioan' Clinical Hospital for Children, 800487 Galati, Romania
| | - Aurel Nechita
- Department of Pediatrics, 'Sf. Ioan' Clinical Hospital for Children, 800487 Galati, Romania
| | - Valentin Chioncel
- Cardio-thoracic Department, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Clinical Cardiology Department, 'Bagdasar Arseni' Emergency Hospital, 041915 Bucharest, Romania
| | | | - Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania.,First Infectious Diseases Department, 'Sf. Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| | - Eduard Drima Polea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research MIC-DIR, 'Dunarea de Jos' University, 800010 Galati, Romania
| | - Lucretia Anghel
- Clinical Medical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania.,Internal Medicine Department, 'Sf Andrei' Clinical Emergency Hospital, 800578 Galati, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania
| | - Alin Laurenţiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania.,Research Center in The Field of Medical and Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, 800010 Galati, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research MIC-DIR, 'Dunarea de Jos' University, 800010 Galati, Romania.,Dermatology Department, 'Sf. Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| |
Collapse
|
11
|
Current Aspects on the Pathophysiology of Bone Metabolic Defects during Progression of Scoliosis in Neurofibromatosis Type 1. J Clin Med 2022; 11:jcm11020444. [PMID: 35054138 PMCID: PMC8781800 DOI: 10.3390/jcm11020444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 1 (NF1), which is the most common phacomatoses, is an autosomal dominant disorder characterized by clinical presentations in various tissues and organs, such as the skin, eyes and nervous and skeletal systems. The musculoskeletal implications of NF1 include a variety of deformities, including scoliosis, kyphoscoliosis, spondylolistheses, congenital bony bowing, pseudarthrosis and bone dysplasia. Scoliosis is the most common skeletal problem, affecting 10-30% of NF1 patients. Although the pathophysiology of spinal deformities has not been elucidated yet, defects in bone metabolism have been implicated in the progression of scoliotic curves. Measurements of Bone Mineral Density (BMD) in the lumbar spine by using dual energy absorptiometry (DXA) and quantitative computer tomography (QCT) have demonstrated a marked reduction in Z-score and osteoporosis. Additionally, serum bone metabolic markers, such as vitamin D, calcium, phosphorus, osteocalcin and alkaline phosphatase, have been found to be abnormal. Intraoperative and histological vertebral analysis confirmed that alterations of the trabecular microarchitecture are associated with inadequate bone turnover, indicating generalized bone metabolic defects. At the molecular level, loss of function of neurofibromin dysregulates Ras and Transforming Growth factor-β1 (TGF-β1) signaling and leads to altered osteoclastic proliferation, osteoblastic activity and collagen production. Correlation between clinical characteristics and molecular pathways may provide targets for novel therapeutic approaches in NF1.
Collapse
|
12
|
Ireland A, Riddell A, Prentice A, Eelloo J, Mughal MZ, Ward KA. Development of tibia & fibula bone deficits in children with neurofibromatosis type I - A longitudinal case-control comparison. Bone 2022; 154:116183. [PMID: 34600162 DOI: 10.1016/j.bone.2021.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022]
Abstract
Neurofibromatosis type 1 (NF1) is associated with lower bone mass and increased risk of fracture. Children with NF1 display faltering growth from mid-childhood. However, to date tibia bone development in children with NF1 across childhood and the role of body size have not been explored. Therefore, we recruited 24 children with NF1 (12 girls, mean age 8.2 ± 1.1y) and 104 children without NF1 (52 girls, mean age 11 ± 1.7y). Tibia and fibula bone characteristics were assessed at 4% and 38% distal-proximal tibia length in all children at baseline using peripheral quantitative computed tomography (pQCT). Longitudinal scans were obtained in 21 children with NF1 (12 girls) over 3.4 ± 0.3y and 71 children without NF1 (34 girls) over 1.1 ± 0.1y, such that at follow-up mean age of both groups (NF1 10.9 ± 1.3y, controls 11.4 ± 1.4y) were similar. Effects of group (NF1/control) on bone outcomes as well as group-by-age interactions, indicating differences in rate of change in bone outcome bone outcomes were assessed via linear mixed effects models with adjustment for sex, age, pubertal status and in additional models with adjustment for height and weight Z-scores. Group (NF1/control)-by-age interactions indicated a slower rate of tibia and fibula bone mass accrual in children with NF1 at all measured sites. These associations were attenuated by 25-50% by adjustment for height and weight Z-scores. At the 4% site, deficits in bone mass at older ages were related to slower trabecular BMD accrual. At the 38% site, group-by-age interactions suggested that bone mass deficits resulted from poorer accrual of cortical CSA and to a lesser extent cortical BMD. Lower limb bone mass deficits evident in children with NF1 appear to be progressive and emerge in mid-childhood. In part, they are related to development of a similar pattern of deficits in longitudinal growth and body weight in NF1. Interventions promoting muscle development or physical activity may be partially effective in attenuating bone mass accrual deficits in this population.
Collapse
Affiliation(s)
- Alex Ireland
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.
| | - Amy Riddell
- Institute for Infection and Immunity, Paediatric Infectious Diseases Research Group, St. George's University of London, UK; previously at MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Ann Prentice
- previously at MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK; MRC Nutrition and Bone Health Group, Cambridge, UK
| | - Judith Eelloo
- Nationally Commissioned Complex NF1 Service, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - M Zulf Mughal
- Nationally Commissioned Complex NF1 Service, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Kate A Ward
- MRC Lifecourse Epidemiology Unit, Human Development and Health, University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Siano MA, Pivonello R, Salerno M, Falco M, Mauro C, De Brasi D, Klain A, Sestito S, De Luca A, Pinna V, Simeoli C, Concolino D, Mainolfi CG, Mannarino T, Strisciuglio P, Tartaglia M, Melis D. Endocrine system involvement in patients with RASopathies: A case series. Front Endocrinol (Lausanne) 2022; 13:1030398. [PMID: 36483002 PMCID: PMC9724702 DOI: 10.3389/fendo.2022.1030398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Endocrine complications have been described in patients affected by RASopathies but no systematic assessment has been reported. In this study, we investigate the prevalence of endocrine disorders in a consecutive unselected cohort of patients with RASopathies. STUDY DESIGN 72 patients with a genetically confirmed RASopathy (Noonan syndrome [NS], N=53; 29 LEOPARD syndrome [LS], N=2; cardiofaciocutaneous syndrome [CFCS], N=14; subjects showing co-occurring pathogenic variants in PTPN11 and NF1, N=3) and an age- and sex-matched healthy controls were included in the study. Endocrine system involvement was investigated by assessing the thyroid function, pubertal development, auxological parameters, adrenal function and bone metabolism. RESULTS Short stature was detected in 40% and 64% of the NS and CFCS subcohorts, respectively. Patients showed lower Z-scores at DXA than controls (p<0.05) when considering the entire case load and both NS and CFCS groups. Vitamin D and Calcitonin levels were significantly lower (p< 0.01), Parathormone levels significantly higher (p<0.05) in patients compared to the control group (p<0.05). Patients with lower BMD showed reduced physical activity and joint pain. Finally, anti-TPO antibody levels were significantly higher in patients than in controls when considering the entire case load and both NS and CFCS groups. CONCLUSIONS The collected data demonstrate a high prevalence of thyroid autoimmunity, confirming an increased risk to develop autoimmune disorders both in NS and CFCS. Reduced BMD, probably associated to reduced physical activity and inflammatory cytokines, also occurs. These findings are expected to have implications for the follow-up and prevention of osteopenia/osteoporosis in both NS and CFCS.
Collapse
Affiliation(s)
- M. A. Siano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - R. Pivonello
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples “Federico II”, Naples, Italy
| | - M. Salerno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - M. Falco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - C. Mauro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - D. De Brasi
- Dipartimento di Pediatria, Azienda Ospedaliera di rilievo Nazionale (A.O.R.N). “Santobono-Pausillipon”, Napoli, Italy
| | - A. Klain
- Dipartimento di Pediatria, Azienda Ospedaliera di rilievo Nazionale (A.O.R.N). “Santobono-Pausillipon”, Napoli, Italy
| | - S. Sestito
- Dipartimento di Medicina Clinica e Sperimentale, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - A. De Luca
- Molecular Genetics Unit, Fondazione Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Giovanni Rotondo, Foggia, Italy
| | - V. Pinna
- Molecular Genetics Unit, Fondazione Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Giovanni Rotondo, Foggia, Italy
| | - C. Simeoli
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples “Federico II”, Naples, Italy
| | - D. Concolino
- Dipartimento di Medicina Clinica e Sperimentale, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - Ciro Gabriele Mainolfi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - T. Mannarino
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - P. Strisciuglio
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - M. Tartaglia
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - D. Melis
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- *Correspondence: D. Melis,
| |
Collapse
|
14
|
Chinoy A, Vassallo GR, Wright EB, Eelloo J, West S, Hupton E, Galloway P, Pilkington A, Padidela R, Mughal MZ. The skeletal muscle phenotype of children with Neurofibromatosis Type 1 - A clinical perspective. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:70-78. [PMID: 35234161 PMCID: PMC8919663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurofibromatosis type 1 (NF1) can affect multiple systems in the body. An under recognised phenotype is one of muscle weakness. Clinical studies using dynamometry and jumping mechanography have demonstrated that children with NF1 are more likely to have reduced muscle force and power. Many children with NF1 are unable to undertake physical activities to the same level as their peers, and report leg pains on physical activity and aching hands on writing. Children and adolescents with NF1 reporting symptoms of muscle weakness should have a focused assessment to exclude alternative causes of muscle weakness. Assessments of muscle strength and fine motor skills by physiotherapists and occupational therapists can provide objective evidence of muscle function and deficits, allowing supporting systems in education and at home to be implemented. In the absence of an evidence base for management of NF1-related muscle weakness, we recommend muscle-strengthening exercises and generic strategies for pain and fatigue management. Currently, trials are underway involving whole-body vibration therapy and carnitine supplementation as potential future management options.
Collapse
Affiliation(s)
- Amish Chinoy
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK,Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK,Corresponding author: Amish Chinoy, Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL, UK E-mail:
| | - Grace R. Vassallo
- NHSE Highly Specialised Service for Complex NF1, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK,Department of Paediatric Neurology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Emma Burkitt Wright
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK, NHSE Highly Specialised Service for Complex NF1, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Judith Eelloo
- NHSE Highly Specialised Service for Complex NF1, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Siobhan West
- NHSE Highly Specialised Service for Complex NF1, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK,Department of Paediatric Neurology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Eileen Hupton
- NHSE Highly Specialised Service for Complex NF1, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paula Galloway
- Therapy and Dietetic Department, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Amy Pilkington
- Therapy and Dietetic Department, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK,Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - M. Zulf Mughal
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK,Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK, NHSE Highly Specialised Service for Complex NF1, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
15
|
Leoni C, Viscogliosi G, Onesimo R, Bisanti C, Massese M, Giorgio V, Corbo F, Tedesco M, Acampora A, Cipolla C, Dell'Atti C, Flex E, Gervasoni J, Primiano A, Rigante D, Tartaglia M, Zampino G. Characterization of bone homeostasis in individuals affected by cardio-facio-cutaneous syndrome. Am J Med Genet A 2021; 188:414-421. [PMID: 34854525 DOI: 10.1002/ajmg.a.62588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023]
Abstract
Cardio-facio-cutaneous syndrome (CFCS) is a rare disorder characterized by distinctive craniofacial appearance, cardiac, neurologic, cutaneous, and musculoskeletal abnormalities. It is due to heterozygous mutations in BRAF, MAP2K1, MAP2K2, and KRAS genes, belonging to the RAS/MAPK pathway. The role of RAS signaling in bone homeostasis is highly recognized, but data on bone mineral density (BMD) in CFCS are lacking. In the present study we evaluated bone parameters, serum and urinary bone metabolites in 14 individuals with a molecularly confirmed diagnosis of CFCS. Bone assessment was performed through dual X-ray absorptiometry (DXA); height-adjusted results were compared to age- and sex-matched controls. Blood and urinary bone metabolites were also analyzed and compared to the reference range. Despite vitamin D supplementation and almost normal bone metabolism biomarkers, CFCS patients showed significantly decreased absolute values of DXA-assessed subtotal and lumbar BMD (p ≤ 0.05), compared to controls. BMD z-scores and t-scores (respectively collected for children and adults) were below the reference range in CFCS, while normal in healthy controls. These findings confirmed a reduction in BMD in CFCS and highlighted the importance of monitoring bone health in these affected individuals.
Collapse
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Germana Viscogliosi
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristian Bisanti
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Miriam Massese
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Corbo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marta Tedesco
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Acampora
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clelia Cipolla
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudia Dell'Atti
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jacopo Gervasoni
- Department of Laboratory and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Aniello Primiano
- Department of Laboratory and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Donato Rigante
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica Sacro Cuore, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Delagrange M, Rousseau V, Cessans C, Pienkowski C, Oliver I, Jouret B, Cartault A, Diene G, Tauber M, Salles JP, Yart A, Edouard T. Low bone mass in Noonan syndrome children correlates with decreased muscle mass and low IGF-1 levels. Bone 2021; 153:116170. [PMID: 34492361 DOI: 10.1016/j.bone.2021.116170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
Abstract
Although musculoskeletal abnormalities have long been described in patients with Noonan syndrome (NS), only a few studies have investigated the bone status of these patients. The aim of this retrospective observational study was to describe the bone health of children with NS. Thirty-five patients with a genetically confirmed diagnosis of NS were enrolled. We analyzed the axial skeleton (lumbar spine) using dual energy X-ray absorptiometry and the appendicular skeleton (hand) with the BoneXpert system. Bone metabolism markers, including mineral homeostasis parameters, serum 25-hydroxy vitamin D (25-OHD) levels and markers of bone formation and resorption were also reported. Compared to the general population, axial and appendicular bone mass was significantly decreased in children with NS (p < 0.0001). Serum 25-OHD levels were low in about half of the patients and were negatively correlated with age (r = -0.52; p < 0.0001). Patients with NS exhibited reduced bone formation marker levels and increased bone resorption marker levels (p < 0.0001). No gender difference or genotype-phenotype correlations were found for the different bone parameters. Muscle mass and, to a lesser extent, serum insulin-like growth factor 1 (IGF-1) levels were independent predictors of whole-body bone mineral content (p < 0.0001 for both parameters; adjusted R2 = 0.97). In conclusion, bone mass is reduced in children with NS and correlates with decreased muscle mass and low serum IGF-1 levels. These data justify addressing all potential threats to bone health including sufficient calcium and vitamin D intake, regular physical exercise, and hormone replacement therapy.
Collapse
Affiliation(s)
- Marine Delagrange
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Vanessa Rousseau
- MeDatAS-CIC unit, CIC1436, Toulouse University Hospital, Toulouse, France
| | - Catie Cessans
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Catherine Pienkowski
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Isabelle Oliver
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Béatrice Jouret
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Audrey Cartault
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Gwenaelle Diene
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Maithé Tauber
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Jean-Pierre Salles
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France; RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse, France.
| |
Collapse
|
17
|
Fowlkes JL, Thrailkill KM, Bunn RC. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Bone 2021; 152:116060. [PMID: 34144233 PMCID: PMC8316423 DOI: 10.1016/j.bone.2021.116060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.
Collapse
Affiliation(s)
- John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| |
Collapse
|
18
|
Marini F, Giusti F, Iantomasi T, Brandi ML. Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis? Genes (Basel) 2021; 12:genes12081286. [PMID: 34440460 PMCID: PMC8393565 DOI: 10.3390/genes12081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Endocrine tumors are neoplasms originating from specialized hormone-secreting cells. They can develop as sporadic tumors, caused by somatic mutations, or in the context of familial Mendelian inherited diseases. Congenital forms, manifesting as syndromic or non-syndromic diseases, are caused by germinal heterozygote autosomal dominant mutations in oncogenes or tumor suppressor genes. The genetic defect leads to a loss of cell growth control in target endocrine tissues and to tumor development. In addition to the classical cancer manifestations, some affected patients can manifest alterations of bone and mineral metabolism, presenting both as pathognomonic and/or non-specific skeletal clinical features, which can be either secondary complications of endocrine functioning primary tumors and/or a direct consequence of the gene mutation. Here, we specifically review the current knowledge on possible direct roles of the genes that cause inherited endocrine tumors in the regulation of bone modeling and remodeling by exploring functional in vitro and in vivo studies highlighting how some of these genes participate in the regulation of molecular pathways involved in bone and mineral metabolism homeostasis, and by describing the potential direct effects of gene mutations on the development of skeletal and mineral metabolism clinical features in patients.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
- Fondazione Italiana Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
- Correspondence: ; Tel.: +39-055-2336663
| |
Collapse
|
19
|
Modulation of spine fusion with BMP-2, MEK inhibitor (PD0325901), and zoledronic acid in a murine model of NF1 double inactivation. J Orthop Sci 2021; 26:684-689. [PMID: 32713795 DOI: 10.1016/j.jos.2020.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Spine fusion is a common procedure for the treatment of severe scoliosis, a frequent and challenging deformity associated with Neurofibromatosis type 1 (NF1). Moreover, deficiencies in NF1-Ras-MEK signaling affect bone formation and resorption that in turn impacts on spine fusion outcomes. METHODS In this study we describe a new model for AdCre virus induction of Nf1 deficiency in the spines of Nf1flox/flox mice. The virus is delivered locally to the mouse spine in a fusion procedure induced using BMP-2. Systemic adjunctive treatment with the MEK inhibitor (MEKi) PD0325901 and the bisphosphonate zoledronic acid (ZA) were next trialed in this model. RESULTS AdCre delivery resulted in abundant fibrous tissue (Nf1null +393%, P < 0.001) and decreased marrow space (Nf1null -67%, P < 0.001) compared to controls. While this did not significantly impact on the bone volume of the fusion mass (Nf1null -14%, P = 0.999 n.s.), the presence of fibrous tissue was anticipated to impact on the quality of spine fusion. Multinucleated TRAP + cells were observed in the fibrous tissues seen in Nf1null spines. In Nf1null spines, MEKi increased bone volume (+194%, P < 0.001) whereas ZA increased bone density (+10%, P < 0.002) versus BMP-2 alone. Both MEKi and ZA decreased TRAP + cells in the fibrous tissue (MEKi -62%, P < 0.01; ZA -43%, P = 0.054). No adverse effects were seen with either MEKi or ZA treatment including weight loss or signs of illness or distress that led to premature euthanasia. CONCLUSIONS These data not only support the utility of an AdCre-virus induced knockout spine model, but also support further investigation of MEKi and ZA as adjunctive therapies for improving BMP-2 induced spine fusion in the context of NF1.
Collapse
|
20
|
Jalabert M, Ferkal S, Souberbielle JC, Sbidian E, Mageau A, Eymard F, Le Corvoisier P, Allanore L, Chevalier X, Wolkenstein P, Guignard S. Bone Status According to Neurofibromatosis Type 1 Phenotype: A Descriptive Study of 60 Women in France. Calcif Tissue Int 2021; 108:738-745. [PMID: 33558959 DOI: 10.1007/s00223-021-00807-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
There is an increased risk of osteoporosis and an abnormal bone turn over in neurofibromatosis 1 (NF1). Our objective is to evaluate bone status in NF1 and to look for associations with cutaneous phenotype. We conducted a descriptive, monocentric study. We included 60 NF1 women, 18-51 years old, non-menopausal, divided in 2 groups: «at risk phenotype» (ARP) composed by 30 patients with at least 2 subcutaneous neurofibromas (SC-NF) and «classical phenotype» (CP) composed by 30 patients with none or 1 SC-NF. We evaluated low bone mineral density (BMD) risk factors and measured BMD, calcium and phosphorus homeostasis and bone turnover markers. Before 50 years old, Z-score has to be used to assess BMD. Z-score < - 2 is below expected range and represents 2.5% of the population. There was no difference between the two groups. Overall, Z-scores were low and 5 patients had a Z-score < - 2 (8.3%), which is 3 times general population low BMD frequency. 10 fragility fractures occurred in 8 patients, among which 2 were vertebral fractures. 85% had low calcium intake. 12 patients had hypophosphoremia, 25 elevated PTH. Vitamin D levels were low for 86.4%. 41 patients (69.5%) had at least one abnormal bone turnover markers. Low BMD is 3.3 times more frequent in NF1 than in general population, with high fracture risk, regardless of the skin phenotype, classical or at risk, because of high bone turn over and secondary hyperparathyroidism due to vitamin D deficiency and poor calcium intake.
Collapse
Affiliation(s)
- Maud Jalabert
- Rhumatologie, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France.
| | - Salah Ferkal
- Centre d'investigation clinique, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | | | - Emilie Sbidian
- Dermatologie, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Arthur Mageau
- Médecine Interne, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Florent Eymard
- Rhumatologie, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Philippe Le Corvoisier
- Centre d'investigation clinique, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Laurence Allanore
- Dermatologie, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Xavier Chevalier
- Rhumatologie, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Pierre Wolkenstein
- Dermatologie, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| | - Sandra Guignard
- Rhumatologie, Hôpital Henri Mondor, 51 Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| |
Collapse
|
21
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To review the differential diagnosis of low bone mineral density (BMD). RECENT FINDINGS Osteoporosis is the most common cause of low BMD in adults; however, non-osteoporotic causes of low BMD should be considered in the differential diagnosis of patients with low BMD. Mild osteogenesis imperfecta, osteomalacia, and mineral and bone disorder of chronic kidney disease as well as several other rare diseases can be characterized by low BMD. This review summarizes the differential diagnosis of low BMD. It is important to differentiate osteoporosis from other causes of low BMD since treatment regimens can vary tremendously between these different disease processes. In fact, some treatments for osteoporosis could worsen or exacerbate the mineral abnormalities in other causes of low BMD.
Collapse
Affiliation(s)
- Smita Jha
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Section on Congenital Disorders, National Institutes of Health Clinical Center, 10 Center Drive, Bldg. 10-CRC, Room 1-5362, MSC-1504, Bethesda, MD, 20892, USA.
| | - Marquis Chapman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelly Roszko
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Kinoshita H, Miyakoshi N, Kobayashi T, Abe T, Kikuchi K, Shimada Y. A case report of revision occipital-cervical fusion after atlanto-axial instrumentation failure for neurofibromatosis type I. BMC Surg 2019; 19:44. [PMID: 31023294 PMCID: PMC6485174 DOI: 10.1186/s12893-019-0502-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 04/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 is an autosomal dominant genetic disease with characteristic café-au-lait spots, neurofibroma, and dystrophic changes in the bones. However, complications involving atlanto-axial dislocation are rare. CASE PRESENTATION We report a case of neurofibromatosis with atlanto-axial dislocation. The chief complaints were numbness of the upper limb and gait disturbance. We performed short fusion using the Brooks method. However, recurrence of the dislocation was found after 5 months recovery, and the patient underwent posterior fusion from the occipital bone to C4. Thereafter, she had a good postoperative course. CONCLUSIONS Neurofibromatosis patients often exhibit a low bone mineral density because of dystrophic changes, and are prone to fragile bones. In the present case, the use of long fusion at the first surgery may have helped to form a strong fusion of fragile bone.
Collapse
Affiliation(s)
- Hayato Kinoshita
- Akita Kosei Medical Center, 1-1-1 Nishibukuro Iijima, Akita, 011-0948 Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543 Japan
| | - Takashi Kobayashi
- Akita Kosei Medical Center, 1-1-1 Nishibukuro Iijima, Akita, 011-0948 Japan
| | - Toshiki Abe
- Akita Kosei Medical Center, 1-1-1 Nishibukuro Iijima, Akita, 011-0948 Japan
| | - Kazuma Kikuchi
- Akita Kosei Medical Center, 1-1-1 Nishibukuro Iijima, Akita, 011-0948 Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543 Japan
| |
Collapse
|
24
|
Wang J, Liu C, Wang C, Li J, Lv G, A J, Deng Y, Wang W. Early and Midterm Outcomes of Surgical Correction for Severe Dystrophic Cervical Kyphosis in Patients with Neurofibromatosis Type 1: A Retrospective Multicenter Study. World Neurosurg 2019; 127:e1190-e1200. [PMID: 31004860 DOI: 10.1016/j.wneu.2019.04.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate the early and midterm outcomes of surgical correction for severe dystrophic cervical kyphosis in patients with neurofibromatosis type 1 (NF-1) and analyze the pathomechanics and the influence on surgical efficacy of related systemic skeletal dystrophy. METHODS Ten patients who underwent surgical correction for NF-1-related severe dystrophic cervical kyphosis were reviewed. Radiographic parameters, including local and global Cobb angle, sagittal vertical axis, and T-1 slope, were measured. The visual analog scale score, Japanese Orthopaedic Association score, Neck Disability Index, Patient Satisfaction Index, and complications were evaluated. RESULTS The average follow-up was 50.6 months. The local and global Cobb angle improved from the preoperative average of 82.0° and 54.9° to an average of 35.6° and 29.8°, respectively, at the time of final follow-up. The C2-7 sagittal vertical axis averaged 5.8 mm before surgery and 8.9 mm at the final follow-up. The average T1 slope was -12.3° before surgery and -1.6° at the final follow-up. The visual analog scale score, Japanese Orthopaedic Association score, and Neck Disability Index improved significantly, and the overall satisfaction rate was 90.0%. One death and 4 instrumentation failures occurred, 3 patients showed progression of the kyphosis, and 2 fusion failures were observed. CONCLUSIONS Surgical correction, specifically the combined anteroposterior procedure, is essential and effective for management of NF-1-related severe dystrophic cervical kyphosis. However, high incidences of instrumentation failure, kyphosis progression, and fusion failure were observed. NF-1-related continuous skeletal dystrophy caused by multiple metabolic factors remarkably affected the midterm outcomes. Early prevention and targeted pharmacotherapy may be necessary.
Collapse
Affiliation(s)
- Jingcheng Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Congcong Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan, P.R. China
| | - Jing Li
- Department of Orthopedics, Qinghai Red Cross Hospital, Xining, Qinghai, P.R. China
| | - Guohua Lv
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jiancuo A
- Department of Orthopedics, Qinghai Red Cross Hospital, Xining, Qinghai, P.R. China
| | - Youwen Deng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
25
|
Deo N, El-Hoss J, Kolind M, Mikulec K, Peacock L, Little DG, Schindeler A. JNK inhibitor CC-930 reduces fibrosis in a murine model of Nf1-deficient fracture repair. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Progressive bone impairment with age and pubertal development in neurofibromatosis type I. Arch Osteoporos 2018; 13:93. [PMID: 30151698 DOI: 10.1007/s11657-018-0507-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/14/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED Bone density impairment represents an established complication in adults with neurofibromatosis type 1, while few data exist in the pediatric population. Age- and gender-adjusted bone mass decreases with age and pubertal development, identifying childhood as the best time frame to introduce prevention strategies aiming at peak bone mass achievement. PURPOSE The present study aims at evaluating bone mineral density (BMD) in a population of children with neurofibromatosis type I (NF-1), with particular focus on changes occurring during growth and pubertal development. METHODS Bone metabolic markers and bone status [by dual-energy X-ray absorptiometry scans (DXA) of the total body and lumbar spine with morphometric analysis] were assessed in 50 children (33 males; mean age ± SD, 11.6 ± 4 years). Bone mineral apparent density (BMAD), trabecular bone score (TBS), and bone strain (BS) of the lumbar spine (LS) DXA were also obtained. RESULTS In our cohort areal BMD (aBMD) Z-score was below the mean in 88% of the patients at LS (70% after correction for bone size) and in 86% considering total body (TB) DXA. However, aBMD Z-score was < - 2 in 12% after correction for bone size at LS and TB, respectively. Lumbar spine aBMD Z-score (r = - 0.54, P < 0.0001), LS BMAD Z-score (r = - 0.53, P < 0.0001), and TB Z-score (r = - 0.39, P = 0.005) showed a negative correlation with growth and pubertal development (P = 0.007, P = 0.02, P = 0.01, respectively), suggesting that patients failed to gain as much as expected for age. CONCLUSION Bone density impairment becomes more evident with growth and pubertal development in NF-1 patients, thus identifying childhood as the best time frame to introduce prevention strategies aiming at peak bone mass achievement. TBS and BS, providing bone DXA qualitative information, could be useful during longitudinal follow-up for better characterizing bone impairment in these patients.
Collapse
|
27
|
Newey PJ, Thakker RV. Multiple Endocrine Neoplasia Syndromes. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:699-732. [DOI: 10.1016/b978-0-12-804182-6.00038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
|
29
|
Baldassarre G, Mussa A, Carli D, Molinatto C, Ferrero GB. Constitutional bone impairment in Noonan syndrome. Am J Med Genet A 2017; 173:692-698. [PMID: 28211980 DOI: 10.1002/ajmg.a.38086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022]
Abstract
Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Diana Carli
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Cristina Molinatto
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
30
|
Poyrazoğlu HG, Baş VN, Arslan A, Bastug F, Canpolat M, Per H, Gümüs H, Kumandas S. Bone mineral density and bone metabolic markers' status in children with neurofibromatosis type 1. J Pediatr Endocrinol Metab 2017; 30:175-180. [PMID: 28125404 DOI: 10.1515/jpem-2016-0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/21/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multisystem disorder characterized by progressive manifestations, which is inherited in an autosomal dominant manner. The majority of patients with NF1 experience a diffuse, significant reduction in bone mass over time, with osteoporosis, osteopenia in the absence of severe scoliosis, or gross bone deformities. This study aimed to determine the bone mineral density (BMD) status, evaluate bone metabolism, and to determine the relevant factors in children with NF1. METHODS The study population included 33 pediatric NF1 patients (20 males and 13 females). Bone metabolic markers, such as total calcium, phosphorus, magnesium, alkaline phosphatase, parathyroid hormone, and 25-OH vitamin D, the urinary calcium/creatine ratio were measured. In addition, BMD was measured at both the lumbar spine (LS) and the femoral neck in all the patients. RESULTS All the patients had a low 25-OH vitamin D level, but it was significantly lower in the females than in the males (p<0.009). Overall, 18.2% of the patients had skeletal abnormalities. The lumbar Z-score was ≤2 in 21.2% of the patients, whereas the femoral neck Z-score was ≤2 in 9.1%. The urinary calcium/creatine ratio was significantly higher in the female than in the male patients (p<0.027). In all, six patients had skeletal abnormalities. CONCLUSIONS It is widely known that bone mineral metabolism markers and BMD are significantly affected in NF1 patients; however, the present study did not identify any effective parameters that could be used to predict skeletal abnormalities, or diagnose early osteoporosis and osteopenia in pediatric NF1 patients.
Collapse
|
31
|
Madhuri V, Mathew SE, Rajagopal K, Ramesh S, Antonisamy B. Does pamidronate enhance the osteogenesis in mesenchymal stem cells derived from fibrous hamartoma in congenital pseudarthrosis of the tibia? Bone Rep 2016; 5:292-298. [PMID: 28580399 PMCID: PMC5440779 DOI: 10.1016/j.bonr.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a commonly occurring genetic disorder in children. Mutation in the NF1 gene has its implication in poor osteoblastic capabilities. We hypothesised that pamidronate will enhance the osteoblastic potential of the mesenchymal stem cells (MSCs) derived from lipofibromatosis tissue of children with congenital pseudarthrosis tibia (CPT) associated with NF1. In this study, bone marrow MSCs (BM MSCs) and CPT MSCs were obtained from three patients undergoing salvage surgeries/bone grafting (healthy controls) and those undergoing excision of the hamartoma and corrective surgeries respectively. The effects of pamidronate (0, 10 nM, 100 nM and 1 μM) on cell proliferation, toxicity and differentiation potential were assessed and the outcome was measured by staining and gene expression. Our outcome showed that CPT MSCs had more proliferation rate as compared to BM MSCs. All 3 doses of pamidronate did not cause any toxicity to the cells in both the groups. The CPT MSCs showed less differentiation with pamidronate compared to the healthy control MSCs. This was quantitated by staining and gene expression analysis. Therefore, supplementation with pamidronate alone will not aid in bone formation in patients diagnosed with CPT. An additional stimulus is required to enhance bone formation. First study demonstrating the differentiation potential of MSCs derived from the hamartoma using pamidronate The CPT MSCs have lower osteogenic potential as compared to BM MSCs. The osteoblastic response does not improve with the addition of pamidronate (1 μM) in CPT MSCs. Pamidronate enhances osteogenic differentiation in normal BM MSCs.
Collapse
Affiliation(s)
- Vrisha Madhuri
- Paediatric Orthopaedics Unit, Department of Orthopaedics, Christian Medical College, Vellore 632004, Tamil Nadu, India.,Centre for Stem Cell Research, a unit of inStem, Bengaluru, Christian Medical College Campus, Vellore 632002, Tamil Nadu, India
| | - Smitha Elizabeth Mathew
- Paediatric Orthopaedics Unit, Department of Orthopaedics, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Karthikeyan Rajagopal
- Paediatric Orthopaedics Unit, Department of Orthopaedics, Christian Medical College, Vellore 632004, Tamil Nadu, India.,Centre for Stem Cell Research, a unit of inStem, Bengaluru, Christian Medical College Campus, Vellore 632002, Tamil Nadu, India
| | - Sowmya Ramesh
- Paediatric Orthopaedics Unit, Department of Orthopaedics, Christian Medical College, Vellore 632004, Tamil Nadu, India.,Centre for Stem Cell Research, a unit of inStem, Bengaluru, Christian Medical College Campus, Vellore 632002, Tamil Nadu, India
| | - B Antonisamy
- Department of Biostatistics, Christian Medical College, Vellore 632004, Tamil Nadu, India
| |
Collapse
|
32
|
Rhodes SD, Yang FC. Aberrant Myeloid Differentiation Contributes to the Development of Osteoporosis in Neurofibromatosis Type 1. Curr Osteoporos Rep 2016; 14:10-5. [PMID: 26932441 DOI: 10.1007/s11914-016-0298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 (NF1), also known as von Recklinghausen disease, is a common autosomal dominant genetic disorder affecting approximately 1 in 3000 individuals worldwide. NF1 results from heritable or spontaneous mutations of the NF1 tumor suppressor gene. NF1 encodes the protein neurofibromin, which functions to negatively regulate Ras-activity. Approximately 50 % of NF1 patients develop osteopenia or osteoporosis, resulting in significantly increased rates of long-bone fracture and morbidity. While defective osteoblast bone anabolism has been implicated as a central factor in the pathogenesis of NF1 associated skeletal deficits, recent data suggest that NF1 (Nf1) haploinsufficiency within the hematopoietic compartment, particularly in osteoclasts and myeloid progenitors, plays a pivotal role in engendering NF1 osseous manifestations. In this chapter, we review the latest data from clinical studies and murine models delineating a critical role for hematopoietic compartment, myeloid progenitors of NF1 (Nf1) haploinsufficient and their progeny-osteoclasts, in the pathogenesis of NF1 associated osteopenia/osteoporosis and discuss putative targets for future therapeutics.
Collapse
Affiliation(s)
- Steven D Rhodes
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, R. Bunn Gautier Building, 417 1011 NW 15th street, Locator R-629, Miami, FL, 33136, USA.
| |
Collapse
|
33
|
Rhodes SD, Yang H, Dong R, Menon K, He Y, Li Z, Chen S, Staser KW, Jiang L, Wu X, Yang X, Peng X, Mohammad KS, Guise TA, Xu M, Yang FC. Nf1 Haploinsufficiency Alters Myeloid Lineage Commitment and Function, Leading to Deranged Skeletal Homeostasis. J Bone Miner Res 2015; 30:1840-51. [PMID: 25917016 PMCID: PMC5441523 DOI: 10.1002/jbmr.2538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
Although nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.
Collapse
Affiliation(s)
- Steven D. Rhodes
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hao Yang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ruizhi Dong
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Keshav Menon
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yongzheng He
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhaomin Li
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Shi Chen
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Karl W. Staser
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Li Jiang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaohua Wu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xianlin Yang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xianghong Peng
- Endocrinology and Metabolism, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Khalid S. Mohammad
- Endocrinology and Metabolism, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theresa A. Guise
- Endocrinology and Metabolism, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mingjiang Xu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Feng-Chun Yang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
34
|
Pinheiro FS, Rothner AD, Moodley M, Zahka KG. Massive Soft Tissue Neurofibroma (Elephantiasis Neuromatosa): Case Report and Review of Literature. J Child Neurol 2015; 30:1537-43. [PMID: 25694465 DOI: 10.1177/0883073815571635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022]
Abstract
The authors review the literature on massive soft tissue neurofibroma. The methods included a review of 71 reports (PubMed search 1929-2012) with a total of 91 massive soft tissue neurofibroma patients and illustration of clinical and radiological progression of massive soft tissue neurofibroma on a patient with neurofibromatosis type 1. The mean age at initial examination was 21 years. Tumor onset was mostly in childhood years. The commonest affected body segment was the lower extremity (46%), followed by head/neck (30%). Surgical management was pursued in the majority of cases (79%). Bleeding was a common complication (25%). Recurrence was described in 12%; multiple resections cases were described. Malignant transformation occurred in 5%. Although massive soft tissue neurofibroma may be present early in life, massive tumor overgrowth may take years. Predicting disease progression and/or benefit of surgical intervention early in the disease course is challenging. Recurrence and malignant transformation are possible. Massive soft tissue neurofibroma does not respond to chemotherapy or radiotherapy and is associated with life-threatening surgical complications.
Collapse
Affiliation(s)
| | - A David Rothner
- Pediatric Neurology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Manikum Moodley
- Pediatric Neurology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kenneth G Zahka
- Pediatric Cardiology, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
35
|
Batista PB, Bertollo EMG, Costa DDS, Eliam L, Cunha KSG, Cunha-Melo JR, Darrigo Junior LG, Geller M, Gianordoli-Nascimento IF, Madeira LG, Mendes HM, Miranda DMD, Mata-Machado NA, Morato EG, Pavarino ÉC, Pereira LB, Rezende NAD, Rodrigues LDO, Sette JBC, Silva CMD, Souza JFD, Souza MLRD, Martins AS, Valadares ER, Vidigal PVT, Waisberg V, Waisberg Y, Rodrigues LOC. Neurofibromatosis: part 2 – clinical management. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:531-43. [DOI: 10.1590/0004-282x20150042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
Abstract
Part 1 of this guideline addressed the differential diagnosis of the neurofibromatoses (NF): neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2) and schwannomatosis (SCH). NF shares some features such as the genetic origin of the neural tumors and cutaneous manifestations, and affects nearly 80 thousand Brazilians. Increasing scientific knowledge on NF has allowed better clinical management and reduced rate of complications and morbidity, resulting in higher quality of life for NF patients. Most medical doctors are able to perform NF diagnosis, but the wide range of clinical manifestations and the inability to predict the onset or severity of new features, consequences, or complications make NF management a real clinical challenge, requiring the support of different specialists for proper treatment and genetic counseling, especially in NF2 and SCH. The present text suggests guidelines for the clinical management of NF, with emphasis on NF1.
Collapse
|
36
|
Rhodes SD, Zhang W, Yang D, Yang H, Chen S, Wu X, Li X, Yang X, Mohammad KS, Guise TA, Bergner AL, Stevenson DA, Yang FC. Dystrophic spinal deformities in a neurofibromatosis type 1 murine model. PLoS One 2015; 10:e0119093. [PMID: 25786243 PMCID: PMC4364663 DOI: 10.1371/journal.pone.0119093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/16/2015] [Indexed: 12/28/2022] Open
Abstract
Despite the high prevalence and significant morbidity of spinal anomalies in neurofibromatosis type 1 (NF1), the pathogenesis of these defects remains largely unknown. Here, we present two murine models: Nf1flox/−;PeriCre and Nf1flox/−;Col.2.3Cre mice, which recapitulate spinal deformities seen in the human disease. Dynamic histomorphometry and microtomographic studies show recalcitrant bone remodeling and distorted bone microarchitecture within the vertebral spine of Nf1flox/−;PeriCre and Nf1flox/−;Col2.3Cre mice, with analogous histological features present in a human patient with dystrophic scoliosis. Intriguingly, 36–60% of Nf1flox/−;PeriCre and Nf1flox/−;Col2.3Cre mice exhibit segmental vertebral fusion anomalies with boney obliteration of the intervertebral disc (IVD). While analogous findings have not yet been reported in the NF1 patient population, we herein present two case reports of IVD defects and interarticular vertebral fusion in patients with NF1. Collectively, these data provide novel insights regarding the pathophysiology of dystrophic spinal anomalies in NF1, and provide impetus for future radiographic analyses of larger patient cohorts to determine whether IVD and vertebral fusion defects may have been previously overlooked or underreported in the NF1 patient population.
Collapse
Affiliation(s)
- Steven D. Rhodes
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wei Zhang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Hebei Medical University, The Third Hospital, Shijiazhuang, China
| | - Dalong Yang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Hebei Medical University, The Third Hospital, Shijiazhuang, China
| | - Hao Yang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Shi Chen
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohua Wu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohong Li
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xianlin Yang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Khalid S. Mohammad
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Theresa A. Guise
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Amanda L. Bergner
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - David A. Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Feng-Chun Yang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
37
|
Karolak MR, Yang X, Elefteriou F. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation. Hum Mol Genet 2015; 24:2552-64. [PMID: 25616962 DOI: 10.1093/hmg/ddv019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/20/2015] [Indexed: 01/22/2023] Open
Abstract
Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component.
Collapse
Affiliation(s)
| | - Xiangli Yang
- Department of Pharmacology, Vanderbilt Center for Bone Biology, Department of Medicine and
| | - Florent Elefteriou
- Department of Pharmacology, Vanderbilt Center for Bone Biology, Department of Medicine and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
38
|
|
39
|
de Souza MLR, Jansen AK, Martins AS, Rodrigues LOC, de Rezende NA. Nutrient intake in neurofibromatosis type 1: A cross-sectional study. Nutrition 2014; 31:858-62. [PMID: 25933494 DOI: 10.1016/j.nut.2014.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/26/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To evaluate nutrient intake among adult neurofibromatosis type 1 (NF1) patients. METHODS A cross-sectional study of 60 NF1 patients (29 men, 31 women) who were ≥18 y old and were evaluated from September 2012 to September 2013 in a neurofibromatosis outpatient reference center. Patients underwent nutritional assessment, including anthropometric and dietary data collection. Food intake was evaluated using three, non-consecutive, self-reported 24-h dietary recall surveys, and nutrient intake was analyzed according to the recommendations of the dietary reference intake document. RESULTS Forty-three patients (72%) recorded energy consumption lower than the estimated daily energy requirement (EER). Men (25/29, 86.2%) were more likely to fail to meet their target EER, compared to women (18/31, 58.1%) (P = 0.016). Inadequate intake of vitamin D, magnesium, calcium, and pyridoxine was noted between men and women, and all patients consumed excess sodium. NF1 patients did not consume adequate amounts of fiber or vitamins A and C. Excessive consumption of saturated fatty acids and lipids was also observed in both male and female patients. CONCLUSIONS In this study, NF1 patients consumed an unhealthy diet that was rich in fats and sodium and lacking in fiber, vitamins, and minerals. Further studies are needed to investigate the role of these dietary and nutritional patterns in the severity of the clinical manifestations of NF1.
Collapse
|
40
|
Abstract
Neurofibromatosis type 1 is a relatively common inherited disorder. Patients have a high predisposition to develop both benign and malignant tumours. Although many manifestations of neurofibromatosis type 1 affect the nervous system, other organs and tissues can also be affected. Because of the varying features and clinical heterogeneity inherent to this disorder, patients can present to different medical and surgical specialists and, therefore, the association of clinical symptoms with neurofibromatosis type 1 might not be appreciated. Thus, for prompt diagnosis and to provide optimum care for patients with neurofibromatosis type 1, clinicians must be aware of the diverse clinical features of this disorder. We advocate a multidisciplinary approach to care, entailing a dedicated team of specialists throughout the lifetime of the patient. As our understanding of this disorder deepens through basic laboratory and clinical investigations, swift implementation of new effective treatments becomes feasible.
Collapse
Affiliation(s)
- Angela C Hirbe
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
41
|
de la Croix Ndong J, Makowski AJ, Uppuganti S, Vignaux G, Ono K, Perrien DS, Joubert S, Baglio SR, Granchi D, Stevenson DA, Rios JJ, Nyman JS, Elefteriou F. Asfotase-α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat Med 2014; 20:904-10. [PMID: 24997609 PMCID: PMC4126855 DOI: 10.1038/nm.3583] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
Abstract
Mineralization of the skeleton depends on the balance between levels of
pyrophosphate (PPi), an inhibitor of hydroxyapatite formation, and phosphate generated
from PPi breakdown by alkaline phosphatase (ALP). We report here that ablation of
Nf1, encoding the RAS/GTPase–activating protein neurofibromin,
in bone–forming cells leads to supraphysiologic PPi accumulation, caused by a
chronic ERK–dependent increase in genes promoting PPi synthesis and extracellular
transport, namely Enpp1 and Ank. It also prevents
BMP2–induced osteoprogenitor differentiation and, consequently, expression of ALP
and PPi breakdown, further contributing to PPi accumulation. The short stature, impaired
bone mineralization and strength in mice lacking Nf1 in
osteochondroprogenitors or osteoblasts could be corrected by enzyme therapy aimed at
reducing PPi concentration. These results establish neurofibromin as an essential
regulator of bone mineralization, suggest that altered PPi homeostasis contributes to the
skeletal dysplasiae associated with neurofibromatosis type-1 (NF1), and that some of the
NF1 skeletal conditions might be preventable pharmacologically.
Collapse
Affiliation(s)
- Jean de la Croix Ndong
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander J Makowski
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA. [3] Department of Orthopaedic Surgery &Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [4] Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Sasidhar Uppuganti
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Orthopaedic Surgery &Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Guillaume Vignaux
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Koichiro Ono
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [3] Department of Orthopaedics, Nohon Koukan Hospital, Kawasaki, Kanagawa, Japan
| | - Daniel S Perrien
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Orthopaedic Surgery &Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [3] Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA. [4] Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Serena R Baglio
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David A Stevenson
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Jonathan J Rios
- 1] Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA. [2] Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA. [3] Eugene McDermott Center for Human Growth &Development, UT Southwestern Medical Center, Dallas, Texas, USA. [4] Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffry S Nyman
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA. [3] Department of Orthopaedic Surgery &Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [4] Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Florent Elefteriou
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [3] Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [4] Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
42
|
Tadini G, Milani D, Menni F, Pezzani L, Sabatini C, Esposito S. Is it time to change the neurofibromatosis 1 diagnostic criteria? Eur J Intern Med 2014; 25:506-10. [PMID: 24784952 DOI: 10.1016/j.ejim.2014.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022]
Abstract
Neurofibromatosis 1 is a complex inherited neurocutaneous disease that is often difficult to diagnose early because of its age-dependent presentation. The diagnosis is also extremely difficult to communicate to patients and their parents because of the disease's clinical variability, unpredictable evolution, and uncertain prognosis. Since 1988, the year of publication of the last Consensus Conference statement concerning the diagnosis of neurofibromatosis 1, our understanding of the disease has naturally increased and, in addition to the availability of increasingly precise molecular analyses, some new clinical signs have been reported such as anaemic nevi, unidentified bright objects, choroidal hamartomas, and a typical neuropsychological phenotype. We critically review the current diagnostic criteria, and suggest the addition of new signs on the basis of published findings and our own clinical experience. This proposal aims to improve diagnostic power in paediatric age, securing a better and more reliable healthcare transition toward adult age. We finally recommend a new Consensus Conference in order to revise the diagnostic criteria, possibly differentiated by age of presentation.
Collapse
Affiliation(s)
- Gianluca Tadini
- Section of Dermatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Pace 9, 20122 Milano, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milano, Italy
| | - Francesca Menni
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milano, Italy
| | - Lidia Pezzani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milano, Italy
| | - Caterina Sabatini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milano, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milano, Italy.
| |
Collapse
|
43
|
Antônio JR, Goloni-Bertollo EM, Trídico LA. Neurofibromatosis: chronological history and current issues. An Bras Dermatol 2014; 88:329-43. [PMID: 23793209 PMCID: PMC3754363 DOI: 10.1590/abd1806-4841.20132125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/29/2012] [Indexed: 05/12/2023] Open
Abstract
Neurofibromatosis, which was first described in 1882 by Von Recklinghausen, is a
genetic disease characterized by a neuroectodermal abnormality and by clinical
manifestations of systemic and progressive involvement which mainly affect the skin,
nervous system, bones, eyes and possibly other organs. The disease may manifest in
several ways and it can vary from individual to individual. Given the wealth of
information about neurofibromatosis, we attempted to present this information in
different ways. In the first part of this work, we present a chronological history,
which describes the evolution of the disease since the early publications about the
disorder until the conclusion of this work, focusing on relevant aspects which can be
used by those wishing to investigate this disease. In the second part, we present an
update on the various aspects that constitute this disease.
Collapse
Affiliation(s)
- João Roberto Antônio
- Faculdade Estadual de Medicina, São José do Rio Preto (FAMERP), Hospital de Base, Dermatology Service, São José do Rio Preto, SP, Brazil.
| | | | | |
Collapse
|
44
|
Johnson BA, MacWilliams BA, Stevenson DA. Postural control in children with and without neurofibromatosis type 1. Hum Mov Sci 2014; 34:157-63. [DOI: 10.1016/j.humov.2014.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022]
|
45
|
Leoni C, Stevenson DA, Martini L, De Sanctis R, Mascolo G, Pantaleoni F, De Santis S, La Torraca I, Persichilli S, Caradonna P, Tartaglia M, Zampino G. Decreased bone mineral density in Costello syndrome. Mol Genet Metab 2014; 111:41-5. [PMID: 24246682 DOI: 10.1016/j.ymgme.2013.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/11/2013] [Accepted: 08/11/2013] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Costello syndrome (CS) is a multisystemic disorder characterized by postnatal reduced growth, facial dysmorphism, cardiac defects, cognitive impairment, skin and musculo-skeletal anomalies, and predisposition to certain cancers. CS is caused by activating germline mutations in the HRAS proto-oncogene. Similar to what is observed in other RASopathies, CS causative HRAS mutations promote enhanced signal flow through the RAF-MEK-ERK and PI3K-AKT signaling cascades. While decreased bone mineralization has been documented in other RASopathies, such as neurofibromatosis type 1 and Noonan syndrome, systematic studies investigating bone mineral density (BMD) are lacking in CS. MATERIALS AND METHODS Dual-energy X-ray absorptiometry (DXA) was utilized to assess BMD and body composition (fat and fat-free mass) in a cohort of subjects with molecularly confirmed diagnosis of CS (n = 9) and age-matched control individuals (n = 29). Using general linear regression, subtotal body (total body less head), lumbar, femoral neck and femur BMD parameters were compared considering age, sex, body mass index (BMI) and Tanner stage. Blood and urine biomarkers of bone metabolism were also assessed. RESULTS All individuals with CS showed significantly lower mean values of subtotal, lumbar and femoral neck BMD compared to the control group (p ≤ 0.01). Similarly, mean total body mass and fat-free mass parameters were lower among the CS patients than in controls (p < 0.01). Low 25-OH vitamin D concentration was documented in all individuals with CS, with values below the reference range in two patients. No significant correlation between vitamin D levels and BMD parameters was observed. DISCUSSION CS belongs to a family of developmental disorders, the RASopathies, that share skeletal defects as a common feature. The present data provide evidence that, similar to what is recently seen in NF1 and NS, bone homeostasis is impaired in CS. The significant decrease in BMD and low levels of vitamin D documented in the present cohort, along with the risk for pathologic fractures reported in adult individuals with CS, testifies the requirement for a preventive treatment to alleviate evolutive complications resulting from dysregulated bone metabolism.
Collapse
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases, Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy; Division of Medical Genetics, Department of Pediatrics, University of Utah, UT, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, University of Utah, UT, USA
| | - Lucilla Martini
- Center for Rare Diseases, Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto De Sanctis
- Center for Rare Diseases, Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanna Mascolo
- Center for Rare Diseases, Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Pantaleoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara De Santis
- Center for Rare Diseases, Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilaria La Torraca
- Center for Rare Diseases, Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Persichilli
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Caradonna
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Tartaglia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases, Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
46
|
Rhodes SD, Wu X, He Y, Chen S, Yang H, Staser KW, Wang J, Zhang P, Jiang C, Yokota H, Dong R, Peng X, Yang X, Murthy S, Azhar M, Mohammad KS, Xu M, Guise TA, Yang FC. Hyperactive transforming growth factor-β1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. J Bone Miner Res 2013; 28:2476-89. [PMID: 23703870 PMCID: PMC6774615 DOI: 10.1002/jbmr.1992] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/29/2013] [Accepted: 05/10/2013] [Indexed: 01/04/2023]
Abstract
Dysregulated transforming growth factor beta (TGF-β) signaling is associated with a spectrum of osseous defects as seen in Loeys-Dietz syndrome, Marfan syndrome, and Camurati-Engelmann disease. Intriguingly, neurofibromatosis type 1 (NF1) patients exhibit many of these characteristic skeletal features, including kyphoscoliosis, osteoporosis, tibial dysplasia, and pseudarthrosis; however, the molecular mechanisms mediating these phenotypes remain unclear. Here, we provide genetic and pharmacologic evidence that hyperactive TGF-β1 signaling pivotally underpins osseous defects in Nf1(flox/-) ;Col2.3Cre mice, a model which closely recapitulates the skeletal abnormalities found in the human disease. Compared to controls, we show that serum TGF-β1 levels are fivefold to sixfold increased both in Nf1(flox/-) ;Col2.3Cre mice and in a cohort of NF1 patients. Nf1-deficient osteoblasts, the principal source of TGF-β1 in bone, overexpress TGF-β1 in a gene dosage-dependent fashion. Moreover, Nf1-deficient osteoblasts and osteoclasts are hyperresponsive to TGF-β1 stimulation, potentiating osteoclast bone resorptive activity while inhibiting osteoblast differentiation. These cellular phenotypes are further accompanied by p21-Ras-dependent hyperactivation of the canonical TGF-β1-Smad pathway. Reexpression of the human, full-length neurofibromin guanosine triphosphatase (GTPase)-activating protein (GAP)-related domain (NF1 GRD) in primary Nf1-deficient osteoblast progenitors, attenuated TGF-β1 expression levels and reduced Smad phosphorylation in response to TGF-β1 stimulation. As an in vivo proof of principle, we demonstrate that administration of the TGF-β receptor 1 (TβRI) kinase inhibitor, SD-208, can rescue bone mass deficits and prevent tibial fracture nonunion in Nf1(flox/-) ;Col2.3Cre mice. In sum, these data demonstrate a pivotal role for hyperactive TGF-β1 signaling in the pathogenesis of NF1-associated osteoporosis and pseudarthrosis, thus implicating the TGF-β signaling pathway as a potential therapeutic target in the treatment of NF1 osseous defects that are refractory to current therapies.
Collapse
Affiliation(s)
- Steven D Rhodes
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Approaches to treating NF1 tibial pseudarthrosis: consensus from the Children's Tumor Foundation NF1 Bone Abnormalities Consortium. J Pediatr Orthop 2013; 33:269-75. [PMID: 23482262 DOI: 10.1097/bpo.0b013e31828121b8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neurofibromatosis 1 (NF1) is an autosomal dominant disorder with various skeletal abnormalities occurring as part of a complex phenotype. Tibial dysplasia, which typically presents as anterolateral bowing of the leg with subsequent fracture and nonunion (pseudarthrosis), is a serious but infrequent osseous manifestation of NF1. Over the past several years, results from clinical and experimental studies have advanced our knowledge of the role of NF1 in bone. On the basis of current knowledge, we propose a number of concepts to consider as a theoretical approach to the optimal management of tibial pseudarthrosis. METHODS A literature review for both clinical treatment and preclinical models for tibial dysplasia in NF1 was performed. Concepts were discussed and developed by experts who participated in the Children's Tumor Foundation sponsored International Bone Abnormalities Consortium meeting in 2011. RESULTS Concepts for a theoretical approach to treating tibial pseudarthrosis include: bone fixation appropriate to achieve stability in any given case; debridement of the "fibrous pseudarthrosis tissue" between the bone segments associated with the pseudarthrosis; creating a healthy vascular bed for bone repair; promoting osteogenesis; controlling overactive bone resorption (catabolism); prevention of recurrence of the "fibrous pseudarthrosis tissue"; and achievement of long-term bone health to prevent recurrence. CONCLUSIONS Clinical trials are needed to assess effectiveness of the wide variation of surgical and pharmacologic approaches currently in practice for the treatment of tibial pseudarthrosis in NF1. LEVEL OF EVIDENCE Level V, expert opinion.
Collapse
|
48
|
Does the presence of dystrophic features in patients with type 1 neurofibromatosis and spinal deformities increase the risk of surgery? Spine (Phila Pa 1976) 2013; 38:1595-601. [PMID: 23680833 DOI: 10.1097/brs.0b013e31829a7779] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective chart and radiographical review. OBJECTIVE To present the demographics of patients with scoliosis and neurofibromatosis type 1 (NF-1), to record the incidence of dystrophic features, and to determine whether the presence of dystrophic features increase the risk of surgery in patients with NF-1 and associated spinal pathology. SUMMARY OF BACKGROUND DATA The most common of the osseous complications of NF-1 is spinal deformity, occurring in 10% to 30% of individuals with NF-1. Many of these patients will eventually require surgery for curve progression, which makes study of demographics and identification of features predicting the need for surgery essential in this patient population. METHODS A retrospective review was performed in patients with NF-1 and spinal deformities, followed in a multidisciplinary neurofibromatosis center. A subset of 56 patients with complete radiographical evaluation was reviewed for identification of risk factors for spine surgery. RESULTS One hundred thirty-one patients from a population of 694 patients with NF-1 (19%) had scoliosis. Mean age at diagnosis of scoliosis was 9 years (range; 1-17 yr). Scoliosis and need for surgery were equally distributed between males and females. In the group of 56 patients, 63% had 3 or more dystrophic features. The presence of 3 or more dystrophic features was the strongest predictor of the need for surgery (odds ratio = 14.34; P < 0.001). Individual features most predictive of need for surgery were the presence of vertebral scalloping (odds ratio = 13.19; P < 0.001) followed by the presence of dural ectasia (odds ratio = 6.38; P = 0.005). Patients with no dystrophic features were unlikely to progress to need for surgery. CONCLUSION Scoliosis and need for surgery were equally distributed between males and females. The presence of 3 or more dystrophic features was highly predictive of the need for surgery, with the most significant individual predictors being vertebral scalloping and dural ectasia. A combination of radiographical and MRI features can be used to predict need for spinal surgery. LEVEL OF EVIDENCE 3.
Collapse
|
49
|
Sharma R, Wu X, Rhodes SD, Chen S, He Y, Yuan J, Li J, Yang X, Li X, Jiang L, Kim ET, Stevenson DA, Viskochil D, Xu M, Yang FC. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice. Hum Mol Genet 2013; 22:4818-28. [PMID: 23863460 DOI: 10.1093/hmg/ddt333] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1(-/-) pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3Cre;Nf1(flox/-). Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1.
Collapse
|
50
|
Armstrong L, Jett K, Birch P, Kendler DL, McKay H, Tsang E, Stevenson DA, Hanley DA, Egeli D, Burrows M, Friedman JM. The generalized bone phenotype in children with neurofibromatosis 1: a sibling matched case-control study. Am J Med Genet A 2013; 161A:1654-61. [PMID: 23713011 DOI: 10.1002/ajmg.a.36001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 03/28/2013] [Indexed: 11/07/2022]
Abstract
People with neurofibromatosis 1 (NF1) have low bone mineralization, but the natural history and pathogenesis are poorly understood. We performed a sibling-matched case-control study of bone mineral status, morphology, and metabolism. Eighteen children with NF1 without focal bony lesions were compared to unaffected siblings and local population controls. Bone mineral content at the lumbar spine and proximal femur (dual energy X-ray absorptiometry (DXA)) was lower in children with NF1; this difference persisted after adjusting for height and weight. Peripheral quantitative computed tomography (pQCT) of the distal tibia showed that trabecular density was more severely compromised than cortical. Peripheral QCT-derived estimates of bone strength and resistance to bending and stress were poorer among children with NF1 although there was no difference in fracture frequencies. There were no differences in the size or shape of bones after adjusting for height. Differences in markers of bone turnover between cases and controls were in the directions predicted by animal studies, but did not reach statistical significance. Average serum calcium concentration was higher (although within the normal range) in children with NF1; serum 25-OH vitamin D, and PTH levels did not differ significantly between cases and controls. Children with NF1 were less mature (assessed by pubertal stage) than unaffected siblings or population controls. Children with NF1 have a generalized difference of bone metabolism that predominantly affects trabecular bone. Effects of decreased neurofibromin on bone turnover, calcium homeostasis, and pubertal development may contribute to the differences in bone mineral content observed among people with NF1.
Collapse
Affiliation(s)
- Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|