1
|
Maddirevula S, Shagrani M, Ji AR, Horne CR, Young SN, Mather LJ, Alqahtani M, McKerlie C, Wood G, Potter PK, Abdulwahab F, AlSheddi T, van der Woerd WL, van Gassen KLI, AlBogami D, Kumar K, Muhammad Akhtar AS, Binomar H, Almanea H, Faqeih E, Fuchs SA, Scott JW, Murphy JM, Alkuraya FS. Large-scale genomic investigation of pediatric cholestasis reveals a novel hepatorenal ciliopathy caused by PSKH1 mutations. Genet Med 2024; 26:101231. [PMID: 39132680 DOI: 10.1016/j.gim.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
PURPOSE Pediatric cholestasis is the phenotypic expression of clinically and genetically heterogeneous disorders of bile acid synthesis and flow. Although a growing number of monogenic causes of pediatric cholestasis have been identified, the majority of cases remain undiagnosed molecularly. METHODS In a cohort of 299 pediatric participants (279 families) with intrahepatic cholestasis, we performed exome sequencing as a first-tier diagnostic test. RESULTS A likely causal variant was identified in 135 families (48.56%). These comprise 135 families that harbor variants spanning 37 genes with established or tentative links to cholestasis. In addition, we propose a novel candidate gene (PSKH1) (HGNC:9529) in 4 families. PSKH1 was particularly compelling because of strong linkage in 3 consanguineous families who shared a novel hepatorenal ciliopathy phenotype. Two of the 4 families shared a founder homozygous variant, whereas the third and fourth had different homozygous variants in PSKH1. PSKH1 encodes a putative protein serine kinase of unknown function. Patient fibroblasts displayed abnormal cilia that are long and show abnormal transport. A homozygous Pskh1 mutant mouse faithfully recapitulated the human phenotype and displayed abnormally long cilia. The phenotype could be rationalized by the loss of catalytic activity observed for each recombinant PSKH1 variant using in vitro kinase assays. CONCLUSION Our results support the use of genomics in the workup of pediatric cholestasis and reveal PSKH1-related hepatorenal ciliopathy as a novel candidate monogenic form.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad Shagrani
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ae-Ri Ji
- Translational Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada; The Centre for Phenogenomics, Toronto, ON, Canada
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Lucy J Mather
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Colin McKerlie
- Translational Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Geoffrey Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Paul K Potter
- Department of Biomedical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa AlSheddi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wendy L van der Woerd
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dalal AlBogami
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Kishwer Kumar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ali Syed Muhammad Akhtar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hiba Binomar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hadeel Almanea
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, Department of Pediatric Subspecialties, Children Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sabine A Fuchs
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Fan SP, Chen YF, Li CH, Kuo YC, Lee NC, Chien YH, Hwu WL, Tseng TC, Su TH, Hsu CT, Chen HL, Lin CH, Ni YH. Topographical metal burden correlates with brain atrophy and clinical severity in Wilson's disease. Neuroimage 2024; 299:120829. [PMID: 39233127 DOI: 10.1016/j.neuroimage.2024.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a post-processing technique that creates brain susceptibility maps reflecting metal burden through tissue magnetic susceptibility. We assessed topographic differences in magnetic susceptibility between participants with and without Wilson's disease (WD), correlating these findings with clinical severity, brain volume, and biofluid copper and iron indices. METHODS A total of 43 patients with WD and 20 unaffected controls, were recruited. QSM images were derived from a 3T MRI scanner. Clinical severity was defined using the minimal Unified Wilson's Disease Rating Scale (M-UWDRS) and Montreal Cognitive Assessment scoring. Differences in magnetic susceptibilities between groups were evaluated using general linear regression models, adjusting for age and sex. Correlations between the susceptibilities and clinical scores were analyzed using Spearman's method. RESULTS In age- and sex-adjusted analyses, magnetic susceptibility values were increased in WD patients compared with controls, including caudate nucleus, putamen, globus pallidus, and substantia nigra (all p < 0.01). Putaminal susceptibility was greater with an initial neuropsychiatric presentation (n = 25) than with initial hepatic dysfunction (n = 18; p = 0.04). Susceptibility changes correlated negatively with regional brain volume in almost all topographic regions. Serum ferritin, but not serum copper or ceruloplasmin, correlated positively with magnetic susceptibility level in the caudate nucleus (p = 0.04), putamen (p = 0.04) and the hippocampus (p = 0.03). The dominance of magnetic susceptibility in cortical over subcortical regions correlated with M-UWDRS scores (p < 0.01). CONCLUSION The magnetic susceptibility changes could serve as a surrogate marker for patients with WD.
Collapse
Affiliation(s)
- Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hsuan Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Yih-Chih Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Tai-Chung Tseng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Hsu
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan; Department of Pediatrics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
Lülecioğlu AA, Yazıcı YY, Baran A, Warasnhe K, Beyaz Ş, Aytekin C, Özçay F, Aydemir Y, Barış Z, Belkaya S. Whole-exome sequencing for genetic diagnosis of idiopathic liver injury in children. J Cell Mol Med 2024; 28:e18485. [PMID: 38864694 PMCID: PMC11167704 DOI: 10.1111/jcmm.18485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Genome-wide approaches, such as whole-exome sequencing (WES), are widely used to decipher the genetic mechanisms underlying inter-individual variability in disease susceptibility. We aimed to dissect inborn monogenic determinants of idiopathic liver injury in otherwise healthy children. We thus performed WES for 20 patients presented with paediatric-onset recurrent elevated transaminases (rELT) or acute liver failure (ALF) of unknown aetiology. A stringent variant screening was undertaken on a manually-curated panel of 380 genes predisposing to inherited human diseases with hepatobiliary involvement in the OMIM database. We identified rare nonsynonymous variants in nine genes in six patients (five rELT and one ALF). We next performed a case-level evaluation to assess the causal concordance between the gene mutated and clinical symptoms of the affected patient. A genetic diagnosis was confirmed in four rELT patients (40%), among whom two carried novel mutations in ACOX2 or PYGL, and two had previously-reported morbid variants in ABCB4 or PHKA2. We also detected rare variants with uncertain clinical significance in CDAN1, JAG1, PCK2, SLC27A5 or VPS33B in rELT or ALF patients. In conclusion, implementation of WES improves diagnostic yield and enables precision management in paediatric cases of liver injury with unknown aetiology, in particular recurrent hypertransaminasemia.
Collapse
Affiliation(s)
- Aysima Atılgan Lülecioğlu
- Department of Molecular Biology and Genetics, Faculty of Scienceİhsan Doğramacı Bilkent UniversityAnkaraTurkey
| | - Yılmaz Yücehan Yazıcı
- Department of Molecular Biology and Genetics, Faculty of Scienceİhsan Doğramacı Bilkent UniversityAnkaraTurkey
| | - Alperen Baran
- Department of Molecular Biology and Genetics, Faculty of Scienceİhsan Doğramacı Bilkent UniversityAnkaraTurkey
| | - Khaled Warasnhe
- Department of PediatricsBaşkent University Faculty of MedicineAnkaraTurkey
| | - Şengül Beyaz
- Department of Immunology and Allergy DiseasesAnkara Bilkent City HospitalAnkaraTurkey
| | - Caner Aytekin
- Department of Pediatric ImmunologyDr. Sami Ulus Maternity and Children's Health and Diseases Training and Research HospitalAnkaraTurkey
| | - Figen Özçay
- Department of Pediatric Gastroenterology and HepatologyBaşkent University Faculty of MedicineAnkaraTurkey
| | - Yusuf Aydemir
- Department of Pediatric Gastroenterology, Faculty of MedicineEskişehir Osmangazi UniversityEskişehirTurkey
| | - Zeren Barış
- Department of Pediatric Gastroenterology, Faculty of MedicineEskişehir Osmangazi UniversityEskişehirTurkey
| | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Faculty of Scienceİhsan Doğramacı Bilkent UniversityAnkaraTurkey
| |
Collapse
|
4
|
Inui A, Ko JS, Chongsrisawat V, Sibal A, Hardikar W, Chang MH, Treepongkaruna S, Arai K, Kim KM, Chen HL. Update on the diagnosis and management of neonatal intrahepatic cholestasis caused by citrin deficiency: Expert review on behalf of the Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2024; 78:178-187. [PMID: 38374571 DOI: 10.1002/jpn3.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 02/21/2024]
Abstract
Citrin deficiency is an autosomal recessive metabolic liver disease caused by mutations in the SLC25A13 gene. The disease typically presents with cholestasis, elevated liver enzymes, hyperammonemia, hypercitrullinemia, and fatty liver in young infants, resulting in a phenotype known as "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD). The diagnosis relies on clinical manifestation, biochemical evidence of hypercitrullinemia, and identifying mutations in the SLC25A13 gene. Several common mutations have been found in patients of East Asian background. The mainstay treatment is nutritional therapy in early infancy utilizing a lactose-free and medium-chain triglyceride formula. This approach leads to the majority of patients recovering liver function by 1 year of age. Some patients may remain asymptomatic or undiagnosed, but a small proportion of cases can progress to cirrhosis and liver failure, necessitating liver transplantation. Recently, advancements in newborn screening methods have improved the age of diagnosis. Early diagnosis and timely management improve patient outcomes. Further studies are needed to elucidate the long-term follow-up of NICCD patients into adolescence and adulthood.
Collapse
Affiliation(s)
- Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamshi Tobu Hospital, Yokohama, Japan
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Voranush Chongsrisawat
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Winita Hardikar
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Australia
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Suporn Treepongkaruna
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Katsuhiro Arai
- Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
- Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|