1
|
Khasanov R, Svoboda D, Tapia-Laliena MÁ, Kohl M, Maas-Omlor S, Hagl CI, Wessel LM, Schäfer KH. Muscle hypertrophy and neuroplasticity in the small bowel in short bowel syndrome. Histochem Cell Biol 2023; 160:391-405. [PMID: 37395792 PMCID: PMC10624713 DOI: 10.1007/s00418-023-02214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following SBS, muscle tissue increases significantly in both parts of the small bowel, i.e., jejunum and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel with SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus had risen by more than twofold. Our findings suggest that the ENS is tightly connected to changes in intestinal muscle layers and is critically involved in the process of intestinal adaptation to SBS.
Collapse
Affiliation(s)
- Rasul Khasanov
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Daniel Svoboda
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Martina Kohl
- Department of Pediatric and Adolescent Medicine, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Silke Maas-Omlor
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Cornelia Irene Hagl
- Carl Remigius Medical School, Charles de Gaulle Str. 2, 81737, Munich, Germany
| | - Lucas M Wessel
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| |
Collapse
|
2
|
Shah J, Deas SB, Ren C, Jilling T, Brawner KM, Martin CA. The Effects of Gestational Psychological Stress on Neonatal Mouse Intestinal Development. J Surg Res 2018; 235:621-628. [PMID: 30691851 DOI: 10.1016/j.jss.2018.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Psychological stress during pregnancy has been shown to cause subsequent harm to the fetus and newborn. Many studies focus on neurodevelopmental outcomes, but little is known about the effect of gestational stress on intestinal immunity and development. The purpose of this study was to determine the effect of psychological stress during pregnancy on intestinal architecture and growth in newborns. METHODS Eight-week-old C57BL6 littermates underwent timed breeding. Pregnant dams were subjected to 1 h of daily psychological stress by using a well-established restraint model during days E7-E14. The distal ileum of 2-wk-old offspring of stressed mothers and nonstressed controls was harvested for histologic analysis. Slides were blinded to measure villus height and crypt depth and surface area. Serum was obtained to measure serum corticosterone levels. An explant model was used to measure corticosterone on the intestinal stem cell marker Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) and growth factors epidermal growth factor receptor and insulin-like growth factor-1. RESULTS The villus height, crypt depth, and surface area were significantly decreased in newborn exposed to stress during gestation. In addition, corticosterone levels were elevated in 2-wk-old mice exposed to stress. Real-time polymerase chain reaction revealed that explants exposed to corticosterone had a decrease in LGR5 compared with controls and an increase in epidermal growth factor receptor. CONCLUSIONS Here, we establish that neonatal mice from mothers that were subjected to psychological stress during pregnancy have significantly shorter villi and crypts compared with controls. In addition, pups from stressed mothers have decreased expression levels of the intestinal stem cell marker LGR5. These findings will aid in determining the effect of gestational psychological stress on intestinal development and stem cell plasticity.
Collapse
Affiliation(s)
- Juhi Shah
- Division of Pediatric Surgery, Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sara Beth Deas
- Division of Pediatric Surgery, Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Changchun Ren
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyle M Brawner
- Division of Pediatric Surgery, Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Colin A Martin
- Division of Pediatric Surgery, Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
3
|
Is maintenance of the ileocecal valve important to the intestinal adaptation mechanisms in a weaning rat model of short bowel? Pediatr Surg Int 2018; 34:1215-1224. [PMID: 30121781 DOI: 10.1007/s00383-018-4333-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE To evaluate the role of maintenance of the ileocecal valve (ICV) in intestinal adaptation mechanisms, in a weaning rat experimental model of short bowel. METHODS Forty animals were operated on to produce short bowel syndrome. They were divided into five groups: maintenance (MV) or resection of ICV (RV), kill after 4 days (MV4 and RV4) or 21 days (MV21 and RV21), and a control group (21-day-old rats). Body weights, small bowel and colon lengths and diameters, villus heights, crypt depths, lamina propria and muscle layer thickness, as well as the apoptosis index of villi and crypts and expression of pro- and anti-apoptotic genes, were studied. RESULTS Preservation of the ICV promoted increased weight gain (p = 0.0001) and intestinal villus height after 21 days; crypt depth was higher in comparison to controls. It was verified a higher expression of Ki-67 in bowel villi and crypts (p = 0.018 and p = 0.015, respectively) in RV4 group and a higher expression in bowel villi of MV4 group animals (p = 0.03). The maintenance of ICV promoted late increased expression of the anti-apoptotic gene Bcl-XL in the colon (p = 0.043, p = 0.002, p = 0.01). CONCLUSION The maintenance of the ICV led to positive changes in this model.
Collapse
|
4
|
Courtney CM, Onufer EJ, Seiler KM, Warner BW. An anatomic approach to understanding mechanisms of intestinal adaptation. Semin Pediatr Surg 2018; 27:229-236. [PMID: 30342597 DOI: 10.1053/j.sempedsurg.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cathleen M Courtney
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Emily J Onufer
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Kristen M Seiler
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Brad W Warner
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
5
|
Lim DW, Levesque CL, Vine DF, Muto M, Koepke JR, Nation PN, Wizzard PR, Li J, Bigam DL, Brubaker PL, Turner JM, Wales PW. Synergy of glucagon-like peptide-2 and epidermal growth factor coadministration on intestinal adaptation in neonatal piglets with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2017; 312:G390-G404. [PMID: 28104586 DOI: 10.1152/ajpgi.00281.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) treatment enhance intestinal adaptation. To determine whether these growth factors exert synergistic effects on intestinal growth and function, GLP-2 and EGF-containing media (EGF-cm) were administered, alone and in combination, in neonatal piglet models of short bowel syndrome (SBS). Neonatal Landrace-Large White piglets were block randomized to 75% midintestinal [jejunoileal (JI) group] or distal intestinal [jejunocolic (JC) group] resection or sham control, with 7-day infusion of saline (control), intravenous human GLP-2 (11 nmol·kg-1·day-1) alone, enteral EGF-cm (80 μg·kg-1·day-1) alone, or GLP-2 and EGF-cm in combination. Adaptation was assessed by intestinal length, histopathology, Üssing chamber analysis, and real-time quantitative PCR of intestinal growth factors. Combined EGF-cm and GLP-2 treatment increased intestinal length in all three surgical models (P < 0.01). EGF-cm alone selectively increased bowel weight per length and jejunal villus height in the JI group only. The JC group demonstrated increased intestinal weight and villus height (P < 0.01) when given either GLP-2 alone or in combination with EGF-cm, with no effect of EGF-cm alone. Jejunal permeability of mannitol and polyethylene glycol decreased with combination therapy in both SBS groups (P < 0.05). No difference was observed in fat absorption or body weight gain. IGF-1 mRNA was differentially expressed in JI vs. JC piglets with treatment. Combined treatment with GLP-2 and EGF-cm induced intestinal lengthening and decreased permeability, in addition to the trophic effects of GLP-2 alone. Our findings demonstrate the benefits of novel combination GLP-2 and EGF treatment for neonatal SBS, especially in the JC model representing most human infants with SBS.NEW & NOTEWORTHY Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) are intestinotrophic, with demonstrated benefit in both animal models and human studies of short bowel syndrome (SBS). The current research shows that over and above known trophic effects, the combination of GLP-2 and EGF synergistically lengthens the bowel in neonatal piglet models of SBS. Most notable benefit occurred with resection of the terminal ileum, the common clinical anatomy seen in neonatal SBS and associated with least de novo lengthening postsurgery.
Collapse
Affiliation(s)
- David W Lim
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, South Dakota
| | - Donna F Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Mitsuru Muto
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jacob R Koepke
- Department of Animal Science, South Dakota State University, Brookings, South Dakota
| | - Patrick N Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela R Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - David L Bigam
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L Brubaker
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Justine M Turner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W Wales
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery and Group for the Improvement of Intestinal Function and Treatment, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
6
|
Chen J, Qin Z, Shan H, Xiao Y, Cai W. Early Adaptation of Small Intestine After Massive Small Bowel Resection in Rats. IRANIAN JOURNAL OF PEDIATRICS 2015; 25:e530. [PMID: 26396708 PMCID: PMC4575806 DOI: 10.5812/ijp.530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/22/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is important that the residual bowel adapts after massive resection. The necessary intestinal adaptation is a progressive recovery from intestinal failure through increase in absorptive surface area and functional capacity and includes both morphological and functional adaptations. OBJECTIVES The aim of this study was to investigate intestinal morphological and functional adaptations of small bowel syndrome (SBS) model rats (SBS1W) 7 days after bowel resection. MATERIALS AND METHODS Male sprague-dawley rats (n = 20/group) underwent either a 75% proximal small bowel resection (SBS1W group) or a control operation (control group). Markers of morphological adaptation were revealed by TEM analysis of H&E-stained tissue samples. The intestinal barrier condition was assessed by BT, and sIgA concentration in intestinal mucus was measured by ELISA. Contractility and the slow wave rhythm of the entire intestinal remnant were measured and recorded. RESULTS The SBS1W group experienced more weight loss than control group and had a clearly different intestinal morphology as revealed in TEM images. Compared with control rats, the SBS1W group had a lower sIgA concentration in intestinal mucus and higher BT to lymph nodes (70% vs 40%; level I), portal blood (40% vs 10%; level II), and peripheral blood (60% vs 30%; level III). Disorder of spontaneous rhythmic contraction, irregular amplitude, and slow frequency were detected in the SBS1W group by a muscle strips test. Similarly, the slow wave of the entire intestinal remnant in the SBS1W group was irregular and uncoordinated. CONCLUSIONS The finding of intestinal adaptation following massive SBR in SBS1W rats provides more understanding of the mechanisms of progressive recovery from the intestinal failure that underlies SBS. The mechanical, chemical, immunological, and biological barriers were all impaired at 7 days following bowel resection, indicating that the SBS model rats were still in the intestinal adaptation phase.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pediatric Surgery, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Qin
- Department of Pediatric Surgery, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongmei Shan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University, Shanghai, China
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author: Wei Cai, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University, Shanghai, China. Tel: +86-2125078425, E-mail:
| |
Collapse
|
7
|
Chen J, Du L, Xiao YT, Cai W. Disruption of interstitial cells of Cajal networks after massive small bowel resection. World J Gastroenterol 2013; 19:3415-3422. [PMID: 23801833 PMCID: PMC3683679 DOI: 10.3748/wjg.v19.i22.3415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/22/2013] [Accepted: 04/16/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the disruptions of interstitial cells of Cajal (ICC) in the remaining bowel in rats after massive small bowel resection (mSBR).
METHODS: Thirty male Sprague-Dawley rats fitting entry criteria were divided randomly into three experimental groups (n = 10 each): Group A rats underwent bowel transection and re-anastomosis (sham) and tissue samples were harvested at day 7 post-surgery. Group B and C rats underwent 80% small bowel resection with tissue harvested from Group B rats at day 7 post-surgery, and from Group C rats at day 14 post-surgery. The distribution of ICC at the site of the residual small bowel was evaluated by immunohistochemical analysis of small intestine samples. The ultrastructural changes of ICC in the remnant ileum of model rats 7 and 14 d after mSBR were analyzed by transmission electron microscopy. Intracellular recordings of slow wave oscillations were used to evaluate electrical pacemaking. The protein expression of c-kit, ICC phenotypic markers, and membrane-bound stem cell factor (mSCF) in intestinal smooth muscle of each group were detected by Western blotting.
RESULTS: After mSBR, immunohistochemical analysis indicated that the number of c-kit-positive cells was dramatically decreased in Group B rats compared with sham tissues. Significant ultrastructural changes in ICC with associated smooth muscle hypertrophy were also observed. Disordered spontaneous rhythmic contractions with reduced amplitude (8.5 ± 1.4 mV vs 24.8 ± 1.3 mV, P = 0.037) and increased slow wave frequency (39.5 ± 2.1 cycles/min vs 33.0 ± 1.3 cycles/min, P = 0.044) were found in the residual intestinal smooth muscle 7 d post mSBR. The contractile function and electrical activity of intestinal circular smooth muscle returned to normal levels at 14 d post mSBR (amplitude, 14.9 ± 1.6 mV vs 24.8 ± 1.3 mV; frequency, 30.7 ± 1.7 cycles/min vs 33.0 ± 1.3 cycles/min). The expression of Mscf and c-kit protein was decreased at 7 d (P = 0.026), but gradually returned to normal levels at 14 d. The ICC and associated neural networks were disrupted, which was associated with the phenotype alterations of ICC.
CONCLUSION: Massive small bowel resection in rats triggered damage to ICC networks and decreased the number of ICC leading to disordered intestinal rhythmicity. The mSCF/c-kit signaling pathway plays a role in the regulation and maintenance of ICC phenotypes.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Blotting, Western
- Gastrointestinal Motility
- Hypertrophy
- Immunohistochemistry
- Interstitial Cells of Cajal/metabolism
- Interstitial Cells of Cajal/pathology
- Interstitial Cells of Cajal/ultrastructure
- Intestine, Small/innervation
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Intestine, Small/physiopathology
- Intestine, Small/surgery
- Male
- Microscopy, Electron, Transmission
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Phenotype
- Proto-Oncogene Proteins c-kit/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Stem Cell Factor/metabolism
- Time Factors
Collapse
|
8
|
Abstract
Adaptation is an important compensatory response to environmental cues resulting in enhanced survival. In the gut, the abrupt loss of intestinal length is characterized by increased rates of enterocyte proliferation and apoptosis and culminates in adaptive villus and crypt growth. In the development of an academic pediatric surgical career, adaptation is also an important compensatory response to survive the ever changing research, clinical, and economic environment. The ability to adapt in both situations is critical for patients and a legacy of pediatric surgical contributions to advance our knowledge of multiple conditions and diseases.
Collapse
|
9
|
Hitch MC, Leinicke JA, Wakeman D, Guo J, Erwin CR, Rowland KJ, Merrick EC, Heuckeroth RO, Warner BW. Ret heterozygous mice have enhanced intestinal adaptation after massive small bowel resection. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1143-50. [PMID: 22421622 PMCID: PMC3362098 DOI: 10.1152/ajpgi.00296.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal adaptation is an important compensatory response to massive small bowel resection (SBR) and occurs because of a proliferative stimulus to crypt enterocytes by poorly understood mechanisms. Recent studies suggest the enteric nervous system (ENS) influences enterocyte proliferation. We, therefore, sought to determine whether ENS dysfunction alters resection-induced adaptation responses. Ret+/- mice with abnormal ENS function and wild-type (WT) littermates underwent sham surgery or 50% SBR. After 7 days, ileal morphology, enterocyte proliferation, apoptosis, and selected signaling proteins were characterized. Crypt depth and villus height were equivalent at baseline in WT and Ret+/- mice. In contrast after SBR, Ret+/- mice had longer villi (Ret+/- 426.7 ± 46.0 μm vs. WT 306.5 ± 7.7 μm, P < 0.001) and deeper crypts (Ret+/- 119 ± 3.4 μm vs. WT 82.4 ± 3.1 μm, P < 0.001) than WT. Crypt enterocyte proliferation was higher in Ret+/- (48.8 ± 1.3%) than WT (39.9 ± 2.1%; P < 0.001) after resection, but apoptosis rates were similar. Remnant bowel of Ret+/- mice also had higher levels of glucagon-like peptide 2 (6.2-fold, P = 0.005) and amphiregulin (4.6-fold, P < 0.001) mRNA after SBR, but serum glucagon-like peptide 2 protein levels were equal in WT and Ret+/- mice, and there was no evidence of increased c-Fos nuclear localization in submucosal neurons. Western blot confirmed higher crypt epidermal growth factor receptor (EGFR) protein levels (1.44-fold; P < 0.001) and more phosphorylated EGFR (2-fold; P = 0.003) in Ret+/- than WT mice after SBR. These data suggest that Ret heterozygosity enhances intestinal adaptation after massive SBR, likely via enhanced EGFR signaling. Reducing Ret activity or altering ENS function may provide a novel strategy to enhance adaptation attenuating morbidity in patients with short bowel syndrome.
Collapse
Affiliation(s)
- Meredith C. Hitch
- 1Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, and
| | - Jennifer A. Leinicke
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Derek Wakeman
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Jun Guo
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Chris R. Erwin
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Kathryn J. Rowland
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Ellen C. Merrick
- 1Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, and
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, and ,3Department of Developmental, Regenerative and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Brad W. Warner
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| |
Collapse
|
10
|
Chen J, Wen J, Cai W. Smooth muscle adaptation and recovery of contractility after massive small bowel resection in rats. Exp Biol Med (Maywood) 2012; 237:578-84. [PMID: 22581812 DOI: 10.1258/ebm.2012.011338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies have suggested that massive small bowel resection (mSBR) compromises the normal intestinal processes of digestion and absorption, and requires an adaptive response to regain full function and reinstate coordinated contractile activity of the circular smooth muscle. This study was designed to investigate spontaneous contractile activity of circular smooth muscle using the mSBR rat model and to determine the functional role of M(2) and M(3) muscarinic acetylcholine receptors (mAChR) in this process. Male Sprague-Dawley rats underwent an 80% proximal SBR or sham operation. Markers of adaptation, including villus and microvillus height, were analyzed by hematoxylin and eosin staining and transmission electron microscopy. Contractility was measured by attaching the distal ileum strips to strain gauge transducers and exposing the tissue to varying doses of the cholinergic agonist carbachol. Protein expressions of M(2)- and M(3)-mAChR in intestinal smooth muscle (ISM) were detected by Western blot. Following mSBR, the ISM showed perturbed spontaneous rhythmic contraction, irregular amplitude and slow frequency by muscle strip test. However, by two weeks after mSBR, the contractile function of circular smooth muscle was found to have returned to normal levels. Protein expression of M(2)-mAChR was down-regulated following mSBR but up-regulated during the adaptive process when contractile activity of circular smooth muscle was regained. These results indicate that smooth muscle contractility was spontaneously restored in rats following mSBR, and involved the acetylcholine receptors M(2) and M(3). Thus, the disrupted contractile response of smooth muscle in short bowel syndrome may be corrected by therapeutic intervention to restore the expressions of M(2)- and M(3)-mAChR to pre-mSBR levels.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pediatric Surgery, School of Medicine, Xin Hua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University, 1665 Kong Jiang Road 200092, Shanghai, China
| | | | | |
Collapse
|
11
|
Chronology of the Effect of Massive Small Bowel Resection and Hepatocyte Growth Factor (HGF) on Intestinal Adaptation. J Surg Res 2011; 171:399-403. [DOI: 10.1016/j.jss.2011.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/06/2011] [Accepted: 04/05/2011] [Indexed: 12/11/2022]
|