1
|
Gupta S, Rawat S, Krishnakumar V, Rao EP, Mohanty S. Hypoxia preconditioning elicit differential response in tissue-specific MSCs via immunomodulation and exosomal secretion. Cell Tissue Res 2022; 388:535-548. [PMID: 35316374 DOI: 10.1007/s00441-022-03615-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
Mesenchymal stromal cells (MSCs) are emerging as an ideal candidate for regenerative medicine. It is known that the culture conditions impact the cellular properties of MSCs and their therapeutic behavior. Moreover, maintenance of MSCs in low oxygen tension for a short duration has shown to be beneficial for MSCs as it is similar to that of their physiological niche. However, the precise mechanism through which hypoxia pre-conditioning affects MSCs is not clear yet. Thus, in this study, we have investigated the effect of hypoxia exposure (1% O2) on tissue-specific MSCs over a period of time under serum-free culture conditions and evaluated the changes in expression of immuno-modulatory molecules and exosome biogenesis and secretion markers. It was observed that all MSCs responded differentially towards hypoxia exposure as indicated by the expression of HIF-1α. Moreover, this short-term exposure did not induce any changes in MSCs cellular morphology, proliferation rate, and surface marker profiling. In addition, we observed an enhancement in the expression of immunomodulatory factors (HLA-G, PGE-2, and IDO) after hypoxia exposure of 12 to 24 h in all tissue-specific MSCs. Interestingly, we have also observed the upregulation in exosome secretion that was further corelated to the upregulation of expression of exosome biogenesis and secretion markers (ALIX, TSG101, RAB27a, RAB27b). Though there was a differential response of MSCs where WJ-MSCs and BM-MSCs showed upregulation of these markers at 6-12 h of hypoxia pre-conditioning, while AD-MSCs showed similar changes beyond 24 h of hypoxia exposure.
Collapse
Affiliation(s)
- Suchi Gupta
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Vishnu Krishnakumar
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - E Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, 1stFloor, ORBO Complex, Ansari Nagar, New Delhi, India.
| |
Collapse
|
2
|
Towards Physiologic Culture Approaches to Improve Standard Cultivation of Mesenchymal Stem Cells. Cells 2021; 10:cells10040886. [PMID: 33924517 PMCID: PMC8069108 DOI: 10.3390/cells10040886] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies due to their multipotent differentiation and immunomodulatory capacities. In consequence of limited numbers following their isolation from the donor tissue, MSCs require extensive expansion performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use. However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation potential and alter their immunomodulatory properties. For that reason, preservation of these physiological characteristics of MSCs throughout their in vitro culture is essential for improving the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many studies already investigated certain parameters for enhancing current standard MSC culture protocols with regard to the effects of specific culture media components or culture conditions. Although there is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation and expansion is imperative. Therefore, we want to review on approaches for optimizing standard MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies investigate and suggest improvements focused on culture media components (amino acids, ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation during passaging), in order to preserve the MSC phenotype and functionality during the primary phase of in vitro culture.
Collapse
|
3
|
Tomecka E, Lech W, Zychowicz M, Sarnowska A, Murzyn M, Oldak T, Domanska-Janik K, Buzanska L, Rozwadowska N. Assessment of the Neuroprotective and Stemness Properties of Human Wharton's Jelly-Derived Mesenchymal Stem Cells under Variable (5% vs. 21%) Aerobic Conditions. Cells 2021; 10:717. [PMID: 33804841 PMCID: PMC8063843 DOI: 10.3390/cells10040717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
To optimise the culture conditions for human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.
Collapse
Affiliation(s)
- Ewelina Tomecka
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Wioletta Lech
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Anna Sarnowska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Magdalena Murzyn
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Tomasz Oldak
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Krystyna Domanska-Janik
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| |
Collapse
|
4
|
Samal JRK, Rangasami VK, Samanta S, Varghese OP, Oommen OP. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv Healthc Mater 2021; 10:e2002058. [PMID: 33533187 PMCID: PMC11469238 DOI: 10.1002/adhm.202002058] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.
Collapse
Affiliation(s)
- Jay R. K. Samal
- Department of Instructive Biomaterial EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Vignesh K. Rangasami
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Oommen P. Varghese
- Translational Chemical Biology LaboratoryDepartment of Chemistry, Polymer ChemistryÅngström LaboratoryUppsala UniversityUppsala751 21Sweden
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| |
Collapse
|
5
|
Casciaro F, Borghesan M, Beretti F, Zavatti M, Bertucci E, Follo MY, Maraldi T, Demaria M. Prolonged hypoxia delays aging and preserves functionality of human amniotic fluid stem cells. Mech Ageing Dev 2020; 191:111328. [DOI: 10.1016/j.mad.2020.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/10/2023]
|
6
|
Ribeiro TO, Silveira BM, Meira MC, Carreira ACO, Sogayar MC, Meyer R, Fortuna V. Investigating the potential of the secretome of mesenchymal stem cells derived from sickle cell disease patients. PLoS One 2019; 14:e0222093. [PMID: 31665139 PMCID: PMC6821040 DOI: 10.1371/journal.pone.0222093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic red cell disorder associated with multiple vascular complications, microvessel injury and wound-healing deficiency. Although stem cell transplantation with bone marrow-derived mesenchymal stem cells (BMSC) can promote wound healing and tissue repair in SCD patients, therapeutic efficacy is largely dependent on the paracrine activity of the implanted BM stromal cells. Since in vitro expansion and culture conditions are known to modulate the innate characteristics of BMSCs, the present study investigated the effects of normoxic and hypoxic cell-culture preconditioning on the BMSC secretome, in addition to the expression of paracrine molecules that induce angiogenesis and skin regeneration. BMSCs derived from SCD patients were submitted to culturing under normoxic (norCM) and hypoxic (hypoCM) conditions. We found that hypoxically conditioned cells presented increased expression and secretion of several well-characterized trophic growth factors (VEGF, IL8, MCP-1, ANG) directly linked to angiogenesis and tissue repair. The hypoCM secretome presented stronger angiogenic potential than norCM, both in vitro and in vivo, as evidenced by HUVEC proliferation, survival, migration, sprouting formation and in vivo angiogenesis. After local application in a murine wound-healing model, HypoCM showed significantly improved wound closure, as well as enhanced neovascularization in comparison to untreated controls. In sum, the secretome of hypoxia-preconditioned BMSC has increased expression of trophic factors involved in angiogenesis and skin regeneration. Considering that these preconditioned media are easily obtainable, this strategy represents an alternative to stem cell transplantation and could form the basis of novel therapies for vascular regeneration and wound healing in individuals with sickle cell disease.
Collapse
Affiliation(s)
- Tiago O. Ribeiro
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Brysa M. Silveira
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Mercia C. Meira
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Ana C. O. Carreira
- Cell and Molecular Therapy Center NUCEL-NETCEM, School of Medicine, Internal Medicine Department, University of São Paulo, São Paulo, SP, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center NUCEL-NETCEM, School of Medicine, Internal Medicine Department, University of São Paulo, São Paulo, SP, Brazil
- Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP, Brazil
| | - Roberto Meyer
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Vitor Fortuna
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
7
|
Farris AL, Cook CA, Grayson WL. Mathematical modeling of oxygen release from hyperbarically loaded polymers. Biotechnol Prog 2018; 35:e2751. [PMID: 30457221 DOI: 10.1002/btpr.2751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/10/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023]
Abstract
Polymer-based scaffolds are used extensively in the field of regenerative medicine. These biomaterials may induce therapeutic responses through modulating a wound microenvironment with or without the addition of cells. It has long been known that oxygen is a crucial component of the microenvironment that influences cellular and physiological processes such as metabolism, proliferation, differentiation, matrix deposition, phagocytic killing, and wound healing. Consequently, several studies have investigated the potential for using oxygen-eluting biomaterials to regulate the oxygen tension within a wound microenvironment and to tune the regenerative response. We recently demonstrated that hyperbarically loaded polymers could be used as oxygen delivery devices for biomedical uses. To further develop this strategy, it is important to quantitatively characterize the spatiotemporal oxygen diffusion profile from scaffolds. Here, we use analytical and numerical solutions to describe the profiles of oxygen diffusion from hyperbarically loaded polymers as a function of different scaffold geometries, material compositions, and ambient temperatures. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2751, 2019.
Collapse
Affiliation(s)
- Ashley L Farris
- Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Colin A Cook
- Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Warren L Grayson
- Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD.,Inst. for Nanobiotechnology (INBT), Johns Hopkins University Whiting School of Engineering, Baltimore, MD.,Dept. of Material Sciences and Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD
| |
Collapse
|
8
|
Wang D, Chen D, Yu J, Liu J, Shi X, Sun Y, Pan Q, Luo X, Yang J, Li Y, Cao H, Li L, Li L. Impact of Oxygen Concentration on Metabolic Profile of Human Placenta-Derived Mesenchymal Stem Cells As Determined by Chemical Isotope Labeling LC-MS. J Proteome Res 2018; 17:1866-1878. [PMID: 29671598 DOI: 10.1021/acs.jproteome.7b00887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The placenta resides in a physiologically low oxygen microenvironment of the body. Hypoxia induces a wide range of stem cell cellular activities. Here, we report a workflow for exploring the role of physiological (hypoxic, 5% oxygen) and original cell culture (normoxic, 21% oxygen) oxygen concentrations in regulating the metabolic status of human placenta-derived mesenchymal stem cells (hPMSCs). The general biological characteristics of hPMSCs were assessed via a variety of approaches such as cell counts, flow cytometry and differentiation study. A sensitive 13C/12C-dansyl labeling liquid chromatography-mass spectrometry (LC-MS) method targeting the amine/phenol submetabolome was used for metabolic profiling of the cell and corresponding culture supernatant. Multivariate and univariate statistical analyses were used to analyze the metabolomics data. hPMSCs cultured in hypoxia display smaller size, higher proliferation, greater differentiation ability and no difference in immunophenotype. Overall, 2987 and 2860 peak pairs or metabolites were detected and quantified in hPMSCs and culture supernatant, respectively. Approximately 86.0% of cellular metabolites and 84.3% of culture supernatant peak pairs were identified using a dansyl standard library or matched to metabolite structures using accurate mass search against human metabolome libraries. The orthogonal partial least-squares discriminant analysis (OPLS-DA) showed a clear separation between the hypoxic group and the normoxic group. Ten metabolites from cells and six metabolites from culture supernatant were identified as potential biomarkers of hypoxia. This study demonstrated that chemical isotope labeling LC-MS can be used to reveal the role of oxygen in the regulation of hPMSC metabolism, whereby physiological oxygen concentrations may promote arginine and proline metabolism, pantothenate and coenzyme A (CoA) biosynthesis, and alanine, aspartate and glutamate metabolism.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Jingqi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Xiaowei Shi
- Chu Kochen Honors College , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Yanni Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Qiaoling Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Xian Luo
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Jinfeng Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Yang Li
- Obstetrical Department, The First Affiliated Hospital, College of Medicine , Zhejiang University , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| | - Liang Li
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine , Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , 79 Qingchun Road , Hangzhou City 310003 , China
| |
Collapse
|
9
|
The Hypoxia-Mimetic Agent Cobalt Chloride Differently Affects Human Mesenchymal Stem Cells in Their Chondrogenic Potential. Stem Cells Int 2018; 2018:3237253. [PMID: 29731777 PMCID: PMC5872594 DOI: 10.1155/2018/3237253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/10/2017] [Accepted: 01/01/2018] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells are a promising cell source for cartilage regeneration. They resided in a special microenvironment known as the stem-cell niche, characterized by the presence of low oxygen concentration. Cobalt chloride (CoCl2) imitates hypoxia in vitro by stabilizing hypoxia-inducible factor-alpha (HIF-1α), which is the master regulator in the cellular adaptive response to hypoxia. In this study, the influence of CoCl2 on the chondrogenic potential of human MSCs, isolated from dental pulp, umbilical cord, and adipose tissue, was investigated. Cells were treated with concentrations of CoCl2 ranging from 50 to 400 μM. Cell viability, HIF-1α protein synthesis, and the expression of the chondrogenic markers were analyzed. The results showed that the CoCl2 supplementation had no effect on cell viability, while the upregulation of chondrogenic markers such as SOX9, COL2A1, VCAN, and ACAN was dependent on the cellular source. This study shows that hypoxia, induced by CoCl2 treatment, can differently influence the behavior of MSCs, isolated from different sources, in their chondrogenic potential. These findings should be taken into consideration in the treatment of cartilage repair and regeneration based on stem cell therapies.
Collapse
|
10
|
Pezzi A, Amorin B, Laureano Á, Valim V, Dahmer A, Zambonato B, Sehn F, Wilke I, Bruschi L, Silva MALD, Filippi-Chiela E, Silla L. Effects Of Hypoxia in Long-Term In Vitro Expansion of Human Bone Marrow Derived Mesenchymal Stem Cells. J Cell Biochem 2017; 118:3072-3079. [PMID: 28240374 DOI: 10.1002/jcb.25953] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSC) are considered multipotent stromal, non-hematopoietic cells with properties of self-renovation and differentiation. Optimal conditions for culture of MSC have been under investigation. The oxygen tension used for cultivation has been studied and appears to play an important role in biological behavior of mesenchymal cells. The aim is characterize MSC in hypoxia and normoxia conditions comparing their morphological and functional characteristics. Bone marrow-derived mesenchymal stem cells obtained from 15 healthy donors and cultured. MSC obtained from each donor were separated into two cultivation conditions normoxia (21% O2 ) and hypoxia (three donors at 1%, three donors at 2%, five donors at 3%, and four donors at 4% O2 ) up to second passage. MSC were evaluated for proliferation, differentiation, immunophenotyping, size and cell complexity, oxidative stress, mitochondrial activity, and autophagy. Culture conditions applied did not seem to affect immunophenotypic features and cellular plasticity. However, cells subjected to hypoxia showed smaller size and greater cellular complexity, besides lower proliferation (P < 0.002). Furthermore, cells cultured in low O2 tension had lower mitochondrial activity (P < 0.03) and a reduced tendency to autophagy, although oxidative stress did not vary among groups (P < 0.39). Oxygen tension seems to be a key regulator of cellular adaptation in vitro, and metabolic effects underlying this variable remain undescribed. Heterogeneity or even lack of results on the impact of oxygen concentration used for expanding MSC highlights the need for further research, in order to optimize conditions of cultivation and expansion and achieve greater safety and therapeutic efficacy. J. Cell. Biochem. 118: 3072-3079, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annelise Pezzi
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Amorin
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Centro Universitário Ritter dos Reis, Porto Alegre, Brazil
| | - Álvaro Laureano
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Valim
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alice Dahmer
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Zambonato
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Filipe Sehn
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ianaê Wilke
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Aparecida Lima da Silva
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil
| | | | - Lucia Silla
- Celular Therapy Center of Hospital de Clinicas de Porto Alegre, Center for Experimental Research, Porto Alegre, Brazil.,Post-graduation: Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Hematology and Bone Marrow Transplantation of Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
11
|
Niemiro GM, Parel J, Beals J, van Vliet S, Paluska SA, Moore DR, Burd NA, De Lisio M. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J Appl Physiol (1985) 2017; 122:675-682. [DOI: 10.1152/japplphysiol.00936.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022] Open
Abstract
Circulating progenitor cells (CPCs) are a heterogeneous population of stem/progenitor cells in peripheral blood that includes hematopoietic stem and progenitor cells (HSPCs and HSCs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs) that are involved in tissue repair and adaptation. CPC mobilization during exercise remains uncharacterized in young adults. The purpose of this study was to investigate the kinetics of CPC mobilization during and after submaximal treadmill running and their relationship to mobilization factors. Seven men [age = 25.3 ± 2.4 yr, body mass index = 23.5 ± 1.0 kg/m2, peak O2uptake (V̇o2peak) = 60.9 ± 2.74 ml·kg−1·min−1] ran on a treadmill for 60 min at 70% V̇o2peak. Blood sampling occurred before (Pre), during [20 min (20e), 40 min (40e), 60 min (60e)], and after exercise [15 min (15p), 60 min (60p), 120 min (120p)] for quantification of CPCs (CD34+), HSPCs (CD34+/CD45low), HSCs (CD34+/CD45low/CD38−), CD34+MSCs (CD45−/CD34+/CD31−/CD105+), CD34−MSCs (CD45−/CD34−/CD31−/CD105+), and EPCs (CD45−/CD34+/CD31+) via flow cytometry. CPC concentration increased compared with Pre at 20e and 40e (2.7- and 2.4-fold, respectively, P < 0.05). HSPCs and HSCs increased at 20e compared with 60p (2.7- and 2.8-fold, respectively, P < 0.05), whereas EPCs and both MSC populations did not change. CXC chemokine ligand (CXCL) 12 (1.5-fold; P < 0.05) and stem cell factor (1.3-fold; P < 0.05) were increased at 40e and remained elevated postexercise. The peak increase in CPCs was positively correlated to concentration of endothelial cells during exercise with no relationship to CXCL12 and SCF. Our data show the kinetics of progenitor cell mobilization during exercise that could provide insight into cellular mediators of exercise-induced adaptations, and have implication for the use of exercise as an adjuvant therapy for CPC collection in hematopoietic stem cell transplant.NEW & NOTEWORTHY Using a comprehensive evaluation of circulating progenitor cells (CPCs), we show that CPC mobilization during exercise is related to tissue damage, and not plasma concentrations of CXC chemokine ligand 12 and stem cell factor. These data have implications for the use of exercise interventions as adjuvant therapy for CPC mobilization in the context of hematopoietic stem cell transplant and also support the role of mobilized progenitor cells as cellular mediators of systemic adaptations to exercise.
Collapse
Affiliation(s)
- Grace M. Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Justin Parel
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Joseph Beals
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Scott A. Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; and
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
- School of Human Kinetics, Brain and Mind Institute, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Tiwari A, Wong CS, Nekkanti LP, Deane JA, McDonald C, Jenkin G, Kirkland MA. Impact of Oxygen Levels on Human Hematopoietic Stem and Progenitor Cell Expansion. Stem Cells Dev 2016; 25:1604-1613. [PMID: 27539189 DOI: 10.1089/scd.2016.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxygen levels are an important variable during the in vitro culture of stem cells. There has been increasing interest in the use of low oxygen to maximize proliferation and, in some cases, effect differentiation of stem cell populations. It is generally assumed that the defined pO2 in the incubator reflects the pO2 to which the stem cells are being exposed. However, we demonstrate that the pO2 experienced by cells in static culture can change dramatically during the course of culture as cell numbers increase and as the oxygen utilization by cells exceeds the diffusion of oxygen through the media. Dynamic culture (whereby the cell culture plate is in constant motion) largely eliminates this effect, and a combination of low ambient oxygen and dynamic culture results in a fourfold increase in reconstituting capacity of human hematopoietic stem cells compared with those cultured in static culture at ambient oxygen tension. Cells cultured dynamically at 5% oxygen exhibited the best expansion: 30-fold increase by flow cytometry, 120-fold increase by colony assay, and 11% of human CD45 engraftment in the bone marrow of NOD/SCID mice. To our knowledge, this is the first study to compare individual and combined effects of oxygen and static or dynamic culture on hematopoietic ex vivo expansion. Understanding and controlling the effective oxygen tension experienced by cells may be important in clinical stem cell expansion systems, and these results may have relevance to the interpretation of low oxygen culture studies.
Collapse
Affiliation(s)
- Abhilasha Tiwari
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia
| | | | - Lakshmi P Nekkanti
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia
| | - James A Deane
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia .,3 Department of Obstetrics and Gynaecology, Southern Clinical School, Monash University , Clayton, Australia
| | - Courtney McDonald
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia
| | - Graham Jenkin
- 1 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Australia .,3 Department of Obstetrics and Gynaecology, Southern Clinical School, Monash University , Clayton, Australia
| | | |
Collapse
|
13
|
Werle SB, Chagastelles P, Pranke P, Casagrande L. The effects of hypoxia on in vitro culture of dental-derived stem cells. Arch Oral Biol 2016; 68:13-20. [DOI: 10.1016/j.archoralbio.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/19/2022]
|
14
|
Hoffmann A, Floerkemeier T, Melzer C, Hass R. Comparison of in vitro-cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord. J Tissue Eng Regen Med 2016; 11:2565-2581. [PMID: 27125777 DOI: 10.1002/term.2153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/15/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Cell-mediated therapy is currently considered as a novel approach for many human diseases. Potential uses range from topic applications with the regeneration of confined tissue areas to systemic applications. Stem cells including mesenchymal stroma/stem cells (MSCs) represent a highly attractive option. Their potential to cure or alleviate human diseases is investigated in a number of clinical trials. A wide variety of methods has been established in the past years for isolation, cultivation and characterization of human MSCs as expansion is presently deemed a prerequisite for clinical application with high numbers of cells carrying reproducible properties. MSCs have been retrieved from various tissues and used in a multitude of settings whereby numerous experimental protocols are available for expansion of MSCs in vitro. Accordingly, different isolation, culture and upscaling techniques contribute to the heterogeneity of MSC characteristics and the, sometimes, controversial results. Therefore, this review discusses and summarizes certain experimental conditions for MSC in vitro culture focusing on adult bone marrow-derived and neonatal umbilical cord-derived MSCs in order to enhance our understanding for MSC tissue sources and to stratify different procedures. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Department of Orthopaedic Surgery, OE 8893, Hannover Medical School, Hannover, Germany
| | - Thilo Floerkemeier
- Department of Orthopaedic Surgery (Annastift), OE 6270, Hannover Medical School, Hannover, Germany
| | - Catharina Melzer
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, OE 6411, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, OE 6411, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Transamniotic stem cell therapy (TRASCET) mitigates bowel damage in a model of gastroschisis. J Pediatr Surg 2016; 51:56-61. [PMID: 26548631 DOI: 10.1016/j.jpedsurg.2015.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/06/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE We sought to determine whether intraamniotic delivery of concentrated amniotic-derived mesenchymal stem cells (afMSCs) could reduce damage to exposed bowel in experimental gastroschisis. METHODS Rat fetuses (n=117) with surgically created gastroschisis were divided into three groups: untreated animals (n=62) and two groups receiving volume-matched intraamniotic injections of either saline (n=25) or 2 × 10(6) cells/mL of syngeneic, labeled afMSCs (n=30). Animals were killed before term, along with normal controls (NL). Blinded observers performed computerized measurements of total and segmental (serosa, muscularis, and mucosa) intestinal wall thicknesses. Statistical comparisons were by ANOVA (P<0.05). RESULTS Among survivors with gastroschisis, there were statistically significant decreases in total bowel wall, serosal, muscular, and mucosal thicknesses in the afMSC group vs. the untreated group (P=0.001/0.035/0.001/0.005, respectively) and vs. the saline group (P=0.003/0.05/<0.001/0.026, respectively). There were no such significant differences between the untreated and saline groups. There were no differences between the afMSC group and NL, except for a significantly thicker muscular layer in the afMSC group (P=0.014). Labeled afMSCs were scarcely identified, suggesting a paracrine effect. CONCLUSIONS Amniotic mesenchymal stem cells mitigate bowel damage in experimental gastroschisis after concentrated intraamniotic injection. Transamniotic stem cell therapy (TRASCET) may become a practical component of the treatment of gastroschisis.
Collapse
|
16
|
Weiss DJ, Elliott M, Jang Q, Poole B, Birchall M. Tracheal bioengineering: the next steps. Proceeds of an International Society of Cell Therapy Pulmonary Cellular Therapy Signature Series Workshop, Paris, France, April 22, 2014. Cytotherapy 2014; 16:1601-13. [PMID: 25457172 DOI: 10.1016/j.jcyt.2014.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/15/2022]
Abstract
There has been significant and exciting recent progress in the development of bioengineering approaches for generating tracheal tissue that can be used for congenital and acquired tracheal diseases. This includes a growing clinical experience in both pediatric and adult patients with life-threatening tracheal diseases. However, not all of these attempts have been successful, and there is ongoing discussion and debate about the optimal approaches to be used. These include considerations of optimal materials, particularly use of synthetic versus biologic scaffolds, appropriate cellularization of the scaffolds, optimal surgical approaches and optimal measure of both clinical and biologic outcomes. To address these issues, the International Society of Cell Therapy convened a first-ever meeting of the leading clinicians and tracheal biologists, along with experts in regulatory and ethical affairs, to discuss and debate the issues. A series of recommendations are presented for how to best move the field ahead.
Collapse
Affiliation(s)
- Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Martin Elliott
- Department of Cardiothoracic Surgery, Great Ormond Street Hospital, London, United Kingdom
| | - Queenie Jang
- International Society for Cell Therapy, Vancouver, British Columbia, Canada
| | - Brian Poole
- International Society for Cell Therapy, Vancouver, British Columbia, Canada
| | - Martin Birchall
- Royal National Throat Nose, and Ear Hospital and University College London, London, United Kingdom.
| |
Collapse
|