1
|
Gonçalves AN, Moura RS, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching morphogenesis: involvement of PIEZO1/PIEZO2. Respir Res 2023; 24:42. [PMID: 36740669 PMCID: PMC9901166 DOI: 10.1186/s12931-023-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
Collapse
Affiliation(s)
- Ana N. Gonçalves
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal. .,Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
2
|
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. Distinct Epithelial Cell Profiles in Normal Versus Induced-Congenital Diaphragmatic Hernia Fetal Lungs. Front Pediatr 2022; 10:836591. [PMID: 35601428 PMCID: PMC9120630 DOI: 10.3389/fped.2022.836591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recent studies identified a great diversity of cell types in precise number and position to create the architectural features of the lung that ventilation and respiration at birth depend on. With damaged respiratory function at birth, congenital diaphragmatic hernia (CDH) is one of the more severe causes of fetal lung hypoplasia with unspecified cellular dynamics. OBJECTIVES To characterize the epithelial cell tissue in hypoplastic lungs, a careful analysis regarding pulmonary morphology and epithelial cell profile was conducted from pseudoglandular-to-saccular phases in normal versus nitrofen-induced CDH rat lungs. DESIGN Our analysis comprises three experimental groups, control, nitrofen (NF) and CDH, in which the relative expression levels (western blot) by group and developmental stage were analyzed in whole lung. Spatiotemporal distribution (immunohistochemistry) was revealed by pulmonary structure during normal and hypoplastic fetal lung development. Surfactant protein-C (SP-C), calcitonin gene-related peptide (CGRP), clara cell secretory protein (CCSP), and forkhead box J1 (FOXJ1) were the used molecular markers for alveolar epithelial cell type 2 (AEC2), pulmonary neuroendocrine, clara, and ciliated cell profiles, respectively. RESULTS Generally, we identified an aberrant expression of SP-C, CGRP, CCSP, and FOXJ1 in nitrofen-exposed lungs. For instance, the overexpression of FOXJ1 and CGRP in primordia of bronchiole defined the pseudoglandular stage in CDH lungs, whereas the increased expression of CGRP in bronchi; FOXJ1 and CGRP in terminal bronchiole; and SP-C in BADJ classified the canalicular and saccular stages in hypoplastic lungs. We also described higher expression levels in NF than CDH or control groups for both FOXJ1 in bronchi, terminal bronchiole and BADJ at canalicular stage, and SP-C in bronchi and terminal bronchiole at canalicular and saccular stages. Finally, we report an unexpected expression of FOXJ1 in BADJ at canalicular and saccular stages, whereas the multi cilia observed in bronchi were notably absent at embryonic day 21.5 in induced-CDH lungs. CONCLUSION The recognized alterations in the epithelial cell profile contribute to a better understanding of neonatal respiratory insufficiency in induced-CDH lungs and indicate a problem in the epithelial cell differentiation in hypoplastic lungs.
Collapse
Affiliation(s)
- Ana N Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal
| |
Collapse
|
3
|
Tando S, Sakai K, Takayama S, Fukunaga K, Higashi M, Fumino S, Aoi S, Furukawa T, Tajiri T, Ogi H, Itoh K. Maldevelopment of intrapulmonary bronchial cartilage in congenital diaphragmatic hernia. Pediatr Pulmonol 2020; 55:1771-1780. [PMID: 32374083 DOI: 10.1002/ppul.24799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pulmonary hypoplasia is an important cause of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). This study aimed to verify our hypothesis that the abnormal development of bronchial cartilage as well as alveolar immaturity, might play a central role in hypoplasia of the lung in human CDH. METHOD We retrospectively analyzed autopsied lungs from 10 CDH cases and compared with nine age-matched controls to assess the bronchial cartilage and alveolar maturity using morphological techniques. RESULT Ki-67 and thyroid transcription factor-1 (TTF-1) expression in the alveoli significantly increased in bilateral lungs with CDH. The shortest distance from the bronchial cartilage to the pleura was significantly shorter in ipsilateral (left) lungs with CDH, showing a positive correlation with the radial alveolar count (RAC). Regarding the small bronchial cartilages less than 20 000 μm2 , the average cartilage area significantly decreased in left lungs with CDH, and tended to decrease in right lungs with CDH. In addition, cartilage around the bronchi less than 200 μm in diameter tended to be smaller in left lungs with CDH. In contrast, regarding the cartilage around the bronchi 200 to 400 μm in diameter, the ratio of the total cartilage area relative to the bronchial diameter tended to be higher in left lungs with CDH, although there was a large variation. CONCLUSIONS These opposite directional cartilage abnormalities around the distal and more proximal bronchi support our hypothesis that abnormal development of bronchial cartilage might play an important role in the hypoplastic lung in CDH.
Collapse
Affiliation(s)
- So Tando
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Kohei Sakai
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Shohei Takayama
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Kenji Fukunaga
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Shigeyoshi Aoi
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Taizo Furukawa
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan.,SCREEN Holdings Co., Ltd. (SCREEN), Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| |
Collapse
|
4
|
Takayama S, Sakai K, Fumino S, Furukawa T, Kishida T, Mazda O, Tajiri T. An intra-amniotic injection of mesenchymal stem cells promotes lung maturity in a rat congenital diaphragmatic hernia model. Pediatr Surg Int 2019; 35:1353-1361. [PMID: 31559457 DOI: 10.1007/s00383-019-04561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE We aimed to evaluate the effect of human mesenchymal stem cells (hMSCs) on congenital diaphragmatic hernia (CDH) by intra-amniotic injection in a rat CDH model. METHODS Nitrofen (100 mg) was administered to pregnant rats at E9.5. hMSCs (1.0 × 106) or PBS was injected into each amniotic cavity at E18, and fetuses were harvested at E21. The fetal lungs were classified into normal, CDH, and CDH-hMSCs groups. To determine the lung maturity, we assessed the alveolar histological structure by H&E and Weigert staining and the alveolar arteries by Elastica Van Gieson (EVG) staining. TTF-1, a marker of type II alveolar epithelial cells, was also evaluated by immunohistochemical staining and real-time reverse transcription polymerase chain reaction. RESULTS The survival rate after intra-amniotic injection was 72.1%. The CDH-hMSCs group had significantly more alveoli and secondary septa than the CDH group (p < 0.05). The CDH-hMSCs group had larger air spaces and thinner alveolar walls than the CDH group (p < 0.05). The medial and adventitial thickness of the pulmonary artery in the CDH-hMSCs group were significantly better (p < 0.001), and there were significantly fewer TTF-1-positive cells than in the CDH group (p < 0.001). CONCLUSION These results suggest that intra-amniotic injection of hMSCs has therapeutic potential for CDH.
Collapse
Affiliation(s)
- Shohei Takayama
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan. .,Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kohei Sakai
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taizo Furukawa
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
5
|
Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr Surg Int 2019; 35:41-61. [PMID: 30386897 DOI: 10.1007/s00383-018-4375-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To study pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH), investigators have been employing a fetal rat model based on nitrofen administration to dams. Herein, we aimed to: (1) investigate the validity of the model, and (2) synthesize the main biological pathways implicated in the development of PH associated with CDH. METHODS Using a defined strategy, we conducted a systematic review of the literature searching for studies reporting the incidence of CDH or factors involved in PH development. We also searched for PH factor interactions, relevance to lung development and to human PH. RESULTS Of 335 full-text articles, 116 reported the incidence of CDH after nitrofen exposure or dysregulated factors in the lungs of nitrofen-exposed rat fetuses. CDH incidence: 54% (27-85%) fetuses developed a diaphragmatic defect, whereas the whole litter had PH in varying degrees. Downregulated signaling pathways included FGF/FGFR, BMP/BMPR, Sonic Hedgehog and retinoid acid signaling pathway, resulting in a delay in early epithelial differentiation, immature distal epithelium and dysfunctional mesenchyme. CONCLUSIONS The nitrofen model effectively reproduces PH as it disrupts pathways that are critical for lung branching morphogenesis and alveolar differentiation. The low CDH rate confirms that PH is an associated phenomenon rather than the result of mechanical compression alone.
Collapse
|
6
|
Kardon G, Ackerman KG, McCulley DJ, Shen Y, Wynn J, Shang L, Bogenschutz E, Sun X, Chung WK. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10:955-970. [PMID: 28768736 PMCID: PMC5560060 DOI: 10.1242/dmm.028365] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Congenital diaphragmatic hernias (CDHs) and structural anomalies of the diaphragm are a common class of congenital birth defects that are associated with significant morbidity and mortality due to associated pulmonary hypoplasia, pulmonary hypertension and heart failure. In ∼30% of CDH patients, genomic analyses have identified a range of genetic defects, including chromosomal anomalies, copy number variants and sequence variants. The affected genes identified in CDH patients include transcription factors, such as GATA4, ZFPM2, NR2F2 and WT1, and signaling pathway components, including members of the retinoic acid pathway. Mutations in these genes affect diaphragm development and can have pleiotropic effects on pulmonary and cardiac development. New therapies, including fetal endoscopic tracheal occlusion and prenatal transplacental fetal treatments, aim to normalize lung development and pulmonary vascular tone to prevent and treat lung hypoplasia and pulmonary hypertension, respectively. Studies of the association between particular genetic mutations and clinical outcomes should allow us to better understand the origin of this birth defect and to improve our ability to predict and identify patients most likely to benefit from specialized treatment strategies.
Collapse
Affiliation(s)
- Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kate G Ackerman
- Departments of Pediatrics (Critical Care) and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J McCulley
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Linshan Shang
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric Bogenschutz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wendy K Chung
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Enhanced Pulmonary Vascular and Alveolar Development via Prenatal Administration of a Slow-Release Synthetic Prostacyclin Agonist in Rat Fetal Lung Hypoplasia. PLoS One 2016; 11:e0161334. [PMID: 27529478 PMCID: PMC4987057 DOI: 10.1371/journal.pone.0161334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/03/2016] [Indexed: 12/05/2022] Open
Abstract
Lung hypoplasia and pulmonary hypertension are the major causes of mortality in neonates with congenital diaphragmatic hernia (CDH). Although the prostaglandin pathway plays a pivotal role in lung development, the reported efficacy of postnatal prostaglandin agonist treatment is suboptimal. We hypothesized that prenatal treatment with ONO-1301SR, a slow-release form of a novel synthetic prostacyclin agonist with thromboxane inhibitory activity, might enhance the development of lungs exhibiting hypoplasia in the fetal period. On embryonic day (E) 9.5, nitrofen was given to pregnant Sprague-Dawley rats to establish a CDH-related lung hypoplasia model, whereas normal rats received the vehicle only. The same day, either ONO-1301SR or a placebo was also randomly administered. On E21.5, the fetuses of the normal group and those exhibiting CDH were analyzed. Prenatal ONO-1301SR administration had no influence on the incidence of nitrofen-induced CDH. The lung-to-body weight ratio in the CDH+ONO group was greater than that in the CDH group. Histologically, the medial wall in the CDH+ONO group was two-thirds thinner than that in the CDH group. In addition, the number of Ttf-1-positive cells and the capillary density were ≥1.5 times greater in the CDH+ONO group than in the CDH group, and this increase was associated with higher expression of vascular endothelial growth factor and stromal cell-derived factor in the CDH+ONO group, suggesting enhanced development of the alveolar and capillary networks. Thus, prenatal ONO-1301SR was protective against the progression of lung hypoplasia associated with CDH in a nitrofen-induced rat model, indicating the potential of this treatment for pathologies exhibiting lung hypoplasia.
Collapse
|
8
|
Eastwood MP, Russo FM, Toelen J, Deprest J. Medical interventions to reverse pulmonary hypoplasia in the animal model of congenital diaphragmatic hernia: A systematic review. Pediatr Pulmonol 2015; 50:820-38. [PMID: 25994108 DOI: 10.1002/ppul.23206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 12/25/2022]
Abstract
We aimed to systematically review all published pre-clinical research on prenatal medical treatment of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH). Background The neonatal mortality due to isolated CDH remains high. Whether fetal endoscopic tracheal occlusion (FETO) reduces mortality is still to be demonstrated. Therefore more potent preferentially medical therapy would be welcomed. Methods We searched MEDLINE (Pubmed), Embase and the Web of Science including all studies from the earliest date (1951) to December 2013. Article quality was assessed using the modified CAMRADES checklist. Inclusion criteria were those animal studies addressing prenatal medical interventions and principal variables were confirmation of a diaphragmatic defect, lung to body weight ratio (LBWR), formal airway morphometry or DNA/protein content. Results In total 983 articles were identified. Following abstract review, 96 articles were assessed by two authors in agreement with a third for eligibility. Of these, 43 were included in the final analysis. The median number of study quality checklist items (maximum 10) scored was 4 (IQ range: 2-5). Thirty (69.8%) of studies were in the nitrofen rat. The majority were treated with vitamins or glucocorticoids. Single studies reported some improvement in lung morphology with alternative therapies. It was impossible to identify a pattern in animal model selection or creation, mode, time point or duration of treatment and readouts. Only one study reported a sample size calculation. Conclusion Comparison in pre-clinical studies in CDH is challenging due to methodological variation. Agreed standardized methods need to be applied in future investigation of new medical therapies.
Collapse
Affiliation(s)
- Mary Patrice Eastwood
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Francesca Maria Russo
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Paediatrics, UZ Leuven, KU Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, Fetal Medicine Unit, UZ Leuven, Leuven, Belgium
| |
Collapse
|