1
|
Koyan Karadeniz GN, Karadeniz O, Bulutlar E, Yilmaz B, Gedikbasi A, Arslan HS, Cetin BA, Polat İ. Comparison of salpingectomy and tubal detorsion procedures after experimental ischemia-reperfusion injury in a rat fallopian tube model: biochemical and histopathological evaluation. F&S SCIENCE 2024; 5:195-203. [PMID: 38580179 DOI: 10.1016/j.xfss.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To compare salpingectomy and detorsion procedures and investigate the biochemical and histopathological changes in the fallopian tubes in the experimentally isolated fallopian tube torsion model in rats. DESIGN Experimental study. SETTING Experimental surgery laboratory in a training and research hospital. ANIMAL(S) Twenty-seven Sprague-Dawley rats in the reproductive period. INTERVENTION(S) Group 1, control group (n = 6); group 2, bilateral total salpingectomy group after 4 hours of tubal ischemia (n = 7); group 3: 4 hours of bilateral tubal ischemia plus 1 week of reperfusion (n = 7); and group 4, 4-hour period of bilateral tubal ischemia plus 30 days of reperfusion (n = 7). A 22-gauge catheter was administered before and after surgery using methylene blue through the uterine horn of the rat to evaluate tubal patency. MAIN OUTCOME MEASURE(S) Preoperative and postoperative serum antimüllerian hormone (AMH) levels, histopathological examination of the rat tuba uterine and histopathological damage scores, antioxidant compounds (superoxide dismutase [SOD], catalase, and glutathione peroxidase [GSH-Px]), and oxidative stress end product levels (malondialdehyde [MDA] and 8-hydroxy-2'-deoxyguanosine [8-OHdG]). RESULT(S) Although a significant difference was observed in the tissue SOD, GSH-Px, MDA, and 8-OHdG values, no significant difference was observed between the groups in serum samples. The tissue SOD and tissue GSH-Px levels in group 2 significantly decreased, and a significant increase was observed in the tissue MDA and 8-OHdG values in group 2. Among the histopathological parameters, epithelial changes, vascular congestion, and the total fallopian tube mean damage score of 4 showed a significant decrease in group 4. When the methylene blue transitions before and after ischemia-reperfusion injury were compared, the values of the methylene blue transition after ischemia-reperfusion injury in groups 2-4 significantly decreased. When the serum AMH levels were analyzed, the postoperative AMH value in group 2 significantly increased. CONCLUSION(S) This study reveals that biochemical and histopathological improvement is observed in the fallopian tube tissues gradually when the detorsion procedure is performed for the necrotized tubal tissue instead of salpingectomy. Although there is restoration of epithelial integrity after reperfusion, tubal passage remains absent. CLINICAL TRIAL REGISTRATION NUMBER This study was approved by the Local Ethics Committee for Animal Experiments of the Health Sciences University, Istanbul Hamidiye Medicine Faculty (approval number 27.05.2022-9269). The study followed the ethics standards recommended by the Declaration of Helsinki.
Collapse
Affiliation(s)
- Gizem Nur Koyan Karadeniz
- Department of Gynaecology and Obstetrics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Ozan Karadeniz
- Department of Gynaecology and Obstetrics, Arnavutkoy State Hospital, Istanbul, Turkey
| | - Eralp Bulutlar
- Department of Obstetrics and Gynecology, Health Sciences University, Zeynep Kamil Women and Children's Diseases Training and Research Hospital, Istanbul, Turkey
| | - Bugra Yilmaz
- Department of Gynaecology and Obstetrics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Asuman Gedikbasi
- Department of Biochemistry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hilal Serap Arslan
- Department of Pathology, University of Health Sciences, Basaksehir Cam ve Sakura City Hospital, Istanbul, Turkey
| | - Berna Aslan Cetin
- Department of Gynaecology and Obstetrics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - İbrahim Polat
- Department of Gynaecology and Obstetrics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
The effects of vitamin B12 on the TLR-4/NF-κB signaling pathway in ovarian ischemia-reperfusion injury-related inflammation. Int Immunopharmacol 2022; 107:108676. [DOI: 10.1016/j.intimp.2022.108676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
|
3
|
Mu Q, Lv K, Yu J, Chu S, Zhang L, Kong L, Zhang L, Tian Y, Jia X, Liu B, Wei Y, Yang N. Hydrogen Repairs LPS-Induced Endothelial Progenitor Cells Injury via PI3K/AKT/eNOS Pathway. Front Pharmacol 2022; 13:894812. [PMID: 35645804 PMCID: PMC9133378 DOI: 10.3389/fphar.2022.894812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Endotoxins and other harmful substances may cause an increase in permeability in endothelial cells (ECs) monolayers, as well as ECs shrinkage and death to induce lung damage. Lipopolysaccharide (LPS) can impair endothelial progenitor cells (EPCs) functions, including proliferation, migration, and tube formation. EPCs can migrate to the damaged area, differentiate into ECs, and participate in vascular repair, which improves pulmonary capillary endothelial dysfunction and maintains the integrity of the endothelial barrier. Hydrogen (H2) contributes to the repairment of lung injury and the damage of ECs. We therefore speculate that H2 protects the EPCs against LPS-induced damage, and it's mechanism will be explored. The bone marrow-derived EPCs from ICR Mice were treated with LPS to establish a damaged model. Then EPCs were incubated with H2, and treated with PI3K inhibitor LY294002 and endothelial nitric oxide synthase (eNOS) inhibitor L-NAME. MTT assay, transwell assay and tube formation assay were used to detect the proliferation, migration and angiogenesis of EPCs. The expression levels of target proteins were detected by Western blot. Results found that H2 repaired EPCs proliferation, migration and tube formation functions damaged by LPS. LY294002 and L-NAME significantly inhibited the repaired effect of H2 on LPS-induced dysfunctions of EPCs. H2 also restored levels of phosphor-AKT (p-AKT), eNOS and phosphor-eNOS (p-eNOS) suppressed by LPS. LY294002 significantly inhibited the increase of p-AKT and eNOS and p-eNOS expression exposed by H2. L-NAME significantly inhibited the increase of eNOS and p-eNOS expression induced by H2. H2 repairs the dysfunctions of EPCs induced by LPS, which is mediated by PI3K/AKT/eNOS signaling pathway.
Collapse
Affiliation(s)
- Qingjie Mu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kaixuan Lv
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jielun Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| | - Shangmin Chu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lichun Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lingyu Kong
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Linlin Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yan Tian
- Research Center of Translational Medicine Shanghai East Hospital, Tongji University, Shanghai, China
| | - Xiaopeng Jia
- Shandong Qilu Stem Cell Engineering Co., Jinan, China
| | - Benhong Liu
- Department of Respiratory, Dongying People's Hospital, Dongying, China
| | - Youzhen Wei
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| |
Collapse
|
4
|
Oral H, Türkyılmaz Z, Karabulut R, Kaya C, Dayanır D, Karakaya C, Sonmez K. Protective Effects of Hydrogen-Rich Saline on Experimental Intestinal Volvulus in Rats. J INVEST SURG 2022; 35:1427-1433. [PMID: 35331073 DOI: 10.1080/08941939.2022.2056273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Intestinal volvulus can cause morbidity and mortality. Surgical reduction, on the other hand, could result in ischemia-reperfusion (I/R) injury. Hydrogen rich saline solution (HRSS neutralizes free radicals in the body. This study aimed to investigate the effects of HRSS in I/R injury in experimental intestinal volvulus in rats. METHODS Thirty rats were randomly allocated into 5 groups. All procedures were done under general anesthesia and sterile conditions in each animal. Five ml/kg of saline and HRSS were administered intraperitoneally (ip) in Sham (Group 1) and HRSS (Group 2) groups, respectively. Groups 3, 4, and 5 constituted the study groups in which volvulus was created in a 5-cm- long ileal segment 2 cm proximal to the ileocecal valve. After 2 hours the volvuli were reduced and following 2 hours of reperfusion, these segments were removed. In volvulus-I/R group (Group 3) no additional procedure was done. HRSS was administered shortly before reperfusion (reduction of the volvulus) in Treatment I (Group 4) and 1 h before experimental volvulus in Treatment II (Group 5) groups. Blood and intestinal tissue samples were obtained from all rats at the 4th hour. Both tissue and blood total oxidant (TOS) and antioxidant status (TAS) levels were determined and tissue histomorphologies were studied. Oxidative stress indices (TOS ÷ TAS) (OSI) were calculated. RESULTS Tissue TOS and OSI levels and histomorphological injury scores were statistically lower in treatment groups than I/R group, whereas blood TOS and OSI levels were similar between the groups. CONCLUSIONS This study provides biochemical and histomorphological evidence that HRSS prevents intestinal damage in I/R injury caused by volvulus.
Collapse
Affiliation(s)
- Hayrunnisa Oral
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Zafer Türkyılmaz
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ramazan Karabulut
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Cem Kaya
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Duygu Dayanır
- Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Cengiz Karakaya
- Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Kaan Sonmez
- Departments of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Gulburun MA, Karabulut R, Turkyilmaz Z, Eryilmaz S, Kaya C, Arslan B, Gulbahar O, Poyraz A, Sonmez K. Protective effects of hydrogen rich saline solution on ventral penile mathieu type flap with penile tourniquet application in rats. J Pediatr Urol 2021; 17:292.e1-292.e7. [PMID: 33608226 DOI: 10.1016/j.jpurol.2021.01.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Penile tourniquet (Pt) application aims to work in a bloodless field in penile surgery. When the tourniquet is released, reperfusion injury occurs with the resumption of blood flow. Molecular hydrogen can easily attach to biomembranes and enter cytosol, mitochondria and other organelles of the cell and convert the formed OH- to H₂O to prevent cell and tissue damage. AIM We investigated the effects of hydrogen rich saline solution (HRSS) on penile Mathieu type flap tissue with Pt application in rats. STUDY DESIGN Thirty-six Wistar-albino male rats were randomly divided into six groups. No operations were performed in the Sham group. Ventral penile Mathieu type flap was prepared and Pt was applied to the root of the penis with a plastic band in other groups. Pt was applied 10 and 30 min in the PT1⁰ and PT³⁰ groups. HRSS was injected intraperitoneally (ip) 5 ml/kg just before Pt was released in the HRSS1⁰ and HRSS³⁰ groups. In the HRSSB group, HRSS was injected 1 h before 10 min of Pt application. At the 4th hour of experiments the rats were sacrificed and tissue samples were taken for biochemical and histopathological studies. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), myeloperoxidase (MPO), malondialdehyde (MDA) and glutathione (GSH) levels were determined in the penile tissue. The results were analyzed with one-way ANOVA and Pearson's Chi-Squared test. RESULTS Tissue MDA, MPO, IL-6 and TNF-α values were significantly lower in all HRSS groups compared to PT1⁰ and PT³⁰ groups. Tissue GSH levels of HRSS groups were higher compared to PT groups. Histopathologically, inflammation was found to be higher in PT groups compared to HRSS groups. Interestingly, in the HRSSB group with HRSS administration prior to Pt, the damage was less in grade, but not statistically different than the other HRSS groups (p > 0.05). DISCUSSION In previous studies, damage in histopathological examinations after Pt could only be demonstrated long after tourniquet applications such as 24 h and with longer duration of Pt such as 30 min. Structural changes in different Pt application times could be demonstrated at 60 min by electron microscopy and 48 h by light microscopy. In this study, the histopathological effect of Pt application could be demonstrated at the 4th hour after release and HRSS was observed to reduce the damage histopathologically as well as biochemically with its anti-inflammatory and antioxidant effects. It was observed that administration of HRSS either before or following Pt did not cause an alteration statistically. CONCLUSION HRSS reduces tissue oxidative stress and inflammation on the flap tissue and has a protective effect in Pt applied to the hypospadias model created with a penile flap.
Collapse
Affiliation(s)
- Merve Altin Gulburun
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| | - Ramazan Karabulut
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey.
| | - Zafer Turkyilmaz
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| | - Sibel Eryilmaz
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| | - Cem Kaya
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| | | | | | | | - Kaan Sonmez
- Gazi University Faculty of Medicine, Departments of Pediatric Surgery, Biochemistry Pathology, Ankara, Turkey
| |
Collapse
|
6
|
Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen Gas: A Novel Type of Antioxidant in Modulating Sexual Organs Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844346. [PMID: 33510842 PMCID: PMC7826209 DOI: 10.1155/2021/8844346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Li L, Li X, Zhang Z, Liu L, Zhou Y, Liu F. Protective Mechanism and Clinical Application of Hydrogen in Myocardial Ischemia-reperfusion Injury. Pak J Biol Sci 2020; 23:103-112. [PMID: 31944068 DOI: 10.3923/pjbs.2020.103.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiovascular disease accounts for one-third of all deaths, with ischemic heart disease as the main cause of death. Under pathological conditions, ischemia-reperfusion injury (IRI) often occurs in tissues. Ischemic injury is mainly caused by anaerobic cell death and reperfusion which results in a wide range of inflammatory responses. These responses are able to increase tissue damage and even damage to the whole body. IRI can also aggravate the original cardiovascular disease during the treatment of cardiovascular disease. Therefore, it is particularly important to understand the mechanism of myocardial ischemia-reperfusion injury (MIRI) for clinical treatment and application. At the same time, it is necessary to find a safe, reliable and feasible method for treating MIRI to reduce the incidence of complications and mortality as well as improve the prognosis and quality of life of patients. As a selective antioxidant, hydrogen can neutralize excessive free radicals, has certain anti-apoptotic and anti-inflammatory effects and it has gradually become a focus and hotspot of preclinical and clinical research. Hydrogen has been shown to have a certain therapeutic effect on MIRI, which can provide a new therapeutic direction for the clinical treatment of myocardial ischemia-reperfusion injury. In this review, the protective mechanism and clinical application of hydrogen in myocardial ischemia-reperfusion injury is discussed.
Collapse
|
8
|
Hydrogen: A Novel Option in Human Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8384742. [PMID: 32963703 PMCID: PMC7495244 DOI: 10.1155/2020/8384742] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.
Collapse
|
9
|
Eryilmaz S, Turkyilmaz Z, Karabulut R, Gulburun MA, Poyraz A, Gulbahar O, Arslan B, Sonmez K. The effects of hydrogen-rich saline solution on intestinal anastomosis performed after intestinal ischemia reperfusion injury. J Pediatr Surg 2020; 55:1574-1578. [PMID: 31466816 DOI: 10.1016/j.jpedsurg.2019.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 01/31/2023]
Abstract
AIM We investigated the effects of hydrogen-rich saline solution (HRSS) on intestinal anastomosis performed after intestinal ischemia reperfusion injury (IRI). MATERIALS AND METHODS Thirty Wistar albino female rats were randomly divided into five groups. Only laparotomy was performed in the Sham group. In the other four groups, an intestinal IRI was performed for 45 min by clamping the superior mesenteric artery. After intestinal IRI, anastomosis was performed by cutting the intestine from the proximal 15 cm of the ileocecal valve at the first and 24th hours. HRSS was given intraperitoneally 5 ml/kg before reperfusion and for four more days in the HRSS1 and HRSS24groups, while no treatment was given to the I/R1 and I/R24 groups. After 5 days, all groups underwent relaparotomy. The anastomotic bursting pressures were measured in all groups, except the Sham group. The tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), myeloperoxidase (MPO) and malondialdehyde (MDA) levels were measured in the tissues taken from the anastomosis line. The tissue sections were evaluated histopathologically and the apoptosis index was determined by applying the TUNEL method. The results were analyzed one-way analysis of variance (ANOVA) and Pearson's chi-squared test. RESULTS Although the MPO, MDA, IL-6 and TNF-α tissue values were not statistically significant among the groups, the degree of tissue damage and apoptosis levels were lower and the anastomotic bursting pressures values were higher in the HRSS1 and HRSS24 groups compared to the I/R1 and I/R24 groups. CONCLUSION HRSS is effective in reducing the intestinal damage caused by an IRI: HRSS has the potential to reduce the detrimental effects of intestinal anastomosis performed after an intestinal IRI.
Collapse
Affiliation(s)
- Sibel Eryilmaz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Zafer Turkyilmaz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ramazan Karabulut
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Merve Altin Gulburun
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Aylar Poyraz
- Department of Pediatric Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Pediatric Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Burak Arslan
- Department of Pediatric Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Kaan Sonmez
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Smorgick N, Nir O, Pekar-Zlotin M, Maymon S, Pansky M, Maymon R. Long-Term Ultrasound Follow-Up After Pediatric Adnexal Torsion. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2020; 41:404-409. [PMID: 31238383 DOI: 10.1055/a-0858-2240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PURPOSE Conservative surgical management of adnexal torsion in pre- and post-menarchal girls by de-torsion and adnexal conservation is the current standard of care. The aim of this study is to investigate the long-term outcome of adnexal torsion in this population in terms of ultrasound appearance and ovarian volume. METHODS Patients who were surgically treated for adnexal torsion and were < 18 years old at time of surgery were prospectively invited for ultrasound follow-up. The ultrasound exam included measurements of ovarian volume and grayscale appearance including identification of ovarian follicular activity. RESULTS 84 cases of torsion in this population were identified, and 37 of them were included in the study. Of those, the affected ovary could not be demonstrated on follow-up scan in six (16.2 %) cases. A difference of ≥ 2 cm3 in ovarian volume between the affected and non-affected ovaries was diagnosed in 12 (32.4 %) cases, but follicular activity was observed in 10 of those. Thus, possible ovarian injury (including cases of non-demonstrated ovary and volume difference of ≥ 2 cm3 between the affected and non-affected ovaries) was found in 18 (48.6 %) cases. Of the clinical and surgical parameters (including age at time of torsion, duration of pain prior to admission, cystectomy procedure and intraoperative "bluish" appearance of the ovary), only the presence of fever on admission was significantly associated with possible ovarian injury (p = 0.01). CONCLUSION Long-term ultrasound follow-up of pre- and post-menarchal girls with a history of adnexal torsion may identify patients with adversely affected ovarian volume. The significance of this finding in terms of fertility is unknown.
Collapse
Affiliation(s)
- Noam Smorgick
- Obstetrics & Gynecology department affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Asaf Harofe medical center, Zerifin, Israel
| | - Omer Nir
- Obstetrics & Gynecology department affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Asaf Harofe medical center, Zerifin, Israel
| | - Marina Pekar-Zlotin
- Obstetrics & Gynecology department affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Asaf Harofe medical center, Zerifin, Israel
| | - Shlomit Maymon
- Obstetrics & Gynecology department affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Asaf Harofe medical center, Zerifin, Israel
| | - Moty Pansky
- Obstetrics & Gynecology department affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Asaf Harofe medical center, Zerifin, Israel
| | - Ron Maymon
- Obstetrics & Gynecology department affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Asaf Harofe medical center, Zerifin, Israel
| |
Collapse
|
11
|
Jia R, Jia N, Yang F, Liu Z, Li R, Jiang Y, Zhao J, Wang L, Zhang S, Zhang Z, Zhang H, Wu S, Gao F, Jiang W. Hydrogen Alleviates Necroptosis and Cognitive Deficits in Lithium-Pilocarpine Model of Status Epilepticus. Cell Mol Neurobiol 2019; 39:857-869. [PMID: 31089833 DOI: 10.1007/s10571-019-00685-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Status epilepticus without prompt seizure control always leads to neuronal death and long-term cognitive deficits, but effective intervention is still absent. Here, we found that hydrogen could alleviate the hippocampus-dependent spatial learning and memory deficit in lithium-pilocarpine model of status epilepticus in rats, as evidenced by the results in Morris water maze test. Hydrogen treatment downregulated the expression of necroptosis-related proteins, such as MLKL, phosphorylated-MLKL, and RIPK3 in hippocampus, and further protected neurons and astrocytes from necroptosis which was here first verified to occur in status epilepticus. Hydrogen also protected cells from apoptosis, which was indicated by the decreased cleaved-Caspase 3 expression. Meanwhile, Iba1+ microglial activation by status epilepticus was reduced by hydrogen treatment. These findings confirm the utility of hydrogen treatment in averting cell death including necroptosis and alleviating cognitive deficits caused by status epilepticus. Therefore, hydrogen may provide a potential and powerful clinical treatment for status epilepticus-related cognitive deficits.
Collapse
Affiliation(s)
- Ruihua Jia
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
- The Medical College of Yan'an University, 19 Guanghua Street, Yan'an, 716000, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Zihe Liu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Rui Li
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yongli Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jingjing Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Lu Wang
- The Medical College of Yan'an University, 19 Guanghua Street, Yan'an, 716000, Shaanxi, China
| | - Shuo Zhang
- Department of Diagnostic Radiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Zhengping Zhang
- Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, 555 Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Haifeng Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
12
|
Extracorporeal Perfusion in Vascularized Composite Allotransplantation: Current Concepts and Future Prospects. Ann Plast Surg 2019; 80:669-678. [PMID: 29746324 DOI: 10.1097/sap.0000000000001477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe injuries of the face and limbs remain a major challenge in today's reconstructive surgery. Vascularized composite allotransplantation (VCA) has emerged as a promising approach to restore these defects. Yet, there are major obstacles preventing VCA from broad clinical application. Two key restrictions are (1) the graft's limited possible ischemia time, keeping the potential donor radius extremely small, and (2) the graft's immunogenicity, making extensive lifelong monitoring and immunosuppressive treatment mandatory. Machine perfusion systems have demonstrated clinical success addressing these issues in solid organ transplantation by extending possible ischemia times and decreasing immunogenicity. Despite many recent promising preclinical trials, machine perfusion has not yet been utilized in clinical VCA. This review presents latest perfusion strategies in clinical solid organ transplantation and experimental VCA in light of the specific requirements by the vascularized composite allograft's unique tissue composition. It discusses optimal settings for temperature, oxygenation, and flow types, as well as perfusion solutions and the most promising additives. Moreover, it highlights the implications for the utility of VCA as therapeutic measure in plastic surgery, if machine perfusion can be successfully introduced in a clinical setting.
Collapse
|
13
|
Yeral I, Sayan CD, Karaca G, Simsek Y, Sagsoz N, Ozkan ZS, Atasoy P, Sahin Y, Neselioglu S, Erel O. What is the protective effect of krill oil on rat ovary against ischemia-reperfusion injury? J Obstet Gynaecol Res 2018; 45:592-599. [DOI: 10.1111/jog.13876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Ilkin Yeral
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Cemile D. Sayan
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Gökhan Karaca
- Department of General Surgery; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Yavuz Simsek
- Yavuz Simsek Women's Health Center; Kırıkkale Turkey
| | - Nevin Sagsoz
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Zehra S. Ozkan
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Pınar Atasoy
- Department of Pathology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Yasar Sahin
- Kırıkkale University Faculty of Veterinary Medicine; Kırıkkale Turkey
| | - Salim Neselioglu
- Department of Clinical Biochemistry; Yıldırım Beyazıt University Faculty of Medicine; Ankara Turkey
| | - Ozcan Erel
- Department of Clinical Biochemistry; Yıldırım Beyazıt University Faculty of Medicine; Ankara Turkey
| |
Collapse
|