1
|
Gao J, Yang D, Huang Z, Pan X, Cao R, Lian C, Ma J, Li Y, Wang Z, Xia J. Nosip is a potential therapeutic target in hepatocellular carcinoma cells. iScience 2023; 26:107353. [PMID: 37529099 PMCID: PMC10387614 DOI: 10.1016/j.isci.2023.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Nitric oxide synthase-interacting protein (Nosip) interacts with nitric oxide synthase (NOS) and regulates NO synthesis and release, which participates in various critical physiological and pathological processes. However, the role of Nosip in hepatocellular carcinoma (HCC) is unclear. In this study, Nosip expression was found to be elevated in HCC tissues and cells. Nosip siRNA transfection inhibited the proliferation and motility of HCC cells and promoted apoptosis. In contrast, overexpression of Nosip promoted proliferation and migration and invasion, and inhibited apoptosis of HCC cells. As a natural compound, quercetin exerted the effect of inhibiting the proliferation and motility of HCC cells, and this anticancer activity probably via repressing the expression of Nosip. Our results suggest that Nosip could act as an oncogene in the progression of HCC and that quercetin may be a potential natural compound for treating HCC by inhibiting the expression of Nosip.
Collapse
Affiliation(s)
- Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
- Department of Clinical Laboratory, the Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Dandan Yang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zheng Huang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Ruoxue Cao
- Department of Laboratory, Lianyungang Second People’s Hospital, Lianyungang 222000, Jiangsu, China
| | - Chaoqun Lian
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| |
Collapse
|
2
|
Update on the Pathogenesis of the Hirschsprung-Associated Enterocolitis. Int J Mol Sci 2023; 24:ijms24054602. [PMID: 36902033 PMCID: PMC10003052 DOI: 10.3390/ijms24054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Despite the significant progress that has been made in terms of understanding the pathophysiology and risk factors of Hirschsprung-associated enterocolitis (HAEC), the morbidity rate has remained unsatisfactorily stable, and clinical management of the condition continues to be challenging. Therefore, in the present literature review, we summarized the up-to-date advances that have been made regarding basic research on the pathogenesis of HAEC. Original articles published between August 2013 and October 2022 were searched in a number of databases, including PubMed, Web of Science, and Scopus. The keywords "Hirschsprung enterocolitis", "Hirschsprung's enterocolitis", "Hirschsprung's-associated enterocolitis", and "Hirschsprung-associated enterocolitis" were selected and reviewed. A total of 50 eligible articles were obtained. The latest findings of these research articles were grouped into gene, microbiome, barrier function, enteric nervous system, and immune state categories. The present review concludes that HAEC is shown to be a multifactorial clinical syndrome. Only deep insights into this syndrome, with an accrual of knowledge in terms of understanding its pathogenesis, will elicit the necessary changes that are required for managing this disease.
Collapse
|
3
|
Pörschke M, Rodríguez-González I, Parfentev I, Urlaub H, Kehlenbach RH. Transportin 1 is a major nuclear import receptor of the nitric oxide synthase interacting protein. J Biol Chem 2023; 299:102932. [PMID: 36690276 PMCID: PMC9974451 DOI: 10.1016/j.jbc.2023.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/β. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (-β, -7, -β/7, -13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.
Collapse
Affiliation(s)
- Marius Pörschke
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Inés Rodríguez-González
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ralph H. Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany,For correspondence: Ralph H. Kehlenbach
| |
Collapse
|
4
|
Li YR, Li Y, Jin Y, Xu M, Fan HW, Zhang Q, Tan GH, Chen J, Li YQ. Involvement of nitrergic neurons in colonic motility in a rat model of ulcerative colitis. World J Gastroenterol 2022; 28:3854-3868. [PMID: 36157548 PMCID: PMC9367233 DOI: 10.3748/wjg.v28.i29.3854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mechanisms underlying gastrointestinal (GI) dysmotility with ulcerative colitis (UC) have not been fully elucidated. The enteric nervous system (ENS) plays an essential role in the GI motility. As a vital neurotransmitter in the ENS, the gas neurotransmitter nitric oxide (NO) may impact the colonic motility. In this study, dextran sulfate sodium (DSS)-induced UC rat model was used for investigating the effects of NO by examining the effects of rate-limiting enzyme nitric oxide synthase (NOS) changes on the colonic motility as well as the role of the ENS in the colonic motility during UC. AIM To reveal the relationship between the effects of NOS expression changes in NOS-containing nitrergic neurons and the colonic motility in a rat UC model. METHODS Male rats (n = 8/each group) were randomly divided into a control (CG), a UC group (EG1), a UC + thrombin derived polypeptide 508 trifluoroacetic acid (TP508TFA; an NOS agonist) group (EG2), and a UC + NG-monomethyl-L-arginine monoacetate (L-NMMA; an NOS inhibitor) group (EG3). UC was induced by administering 5.5% DSS in drinking water without any other treatment (EG1), while the EG2 and EG3 were gavaged with TP508 TFA and L-NMMA, respectively. The disease activity index (DAI) and histological assessment were recorded for each group, whereas the changes in the proportion of colonic nitrergic neurons were counted using immunofluorescence histochemical staining, Western blot, and enzyme linked immunosorbent assay, respectively. In addition, the contractile tension changes in the circular and longitudinal muscles of the rat colon were investigated in vitro using an organ bath system. RESULTS The proportion of NOS-positive neurons within the colonic myenteric plexus (MP), the relative expression of NOS, and the NOS concentration in serum and colonic tissues were significantly elevated in EG1, EG2, and EG3 compared with CG rats. In UC rats, stimulation with agonists and inhibitors led to variable degrees of increase or decrease for each indicator in the EG2 and EG3. When the rats in EGs developed UC, the mean contraction tension of the colonic smooth muscle detected in vitro was higher in the EG1, EG2, and EG3 than in the CG group. Compared with the EG1, the contraction amplitude and mean contraction tension of the circular and longitudinal muscles of the colon in the EG2 and EG3 were enhanced and attenuated, respectively. Thus, during UC, regulation of the expression of NOS within the MP improved the intestinal motility, thereby favoring the recovery of intestinal functions. CONCLUSION In UC rats, an increased number of nitrergic neurons in the colonic MP leads to the attenuation of colonic motor function. To intervene NOS activity might modulate the function of nitrergic neurons in the colonic MP and prevent colonic motor dysfunction. These results might provide clues for a novel approach to alleviate diarrhea symptoms of UC patients.
Collapse
Affiliation(s)
- Yan-Rong Li
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Yan Li
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Yuan Jin
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Mang Xu
- Department of Anatomy, Basic Medical College, Dali University, Dali 671000, Yunnan Province, China
| | - Hong-Wei Fan
- Department of Anatomy, Histology and Embryology, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Qian Zhang
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Guo-He Tan
- Key Lab of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- School of Basic Medical Sciences and Center for Translational Medicine, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yun-Qing Li
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Human Anatomy, Basic Medical College, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
5
|
Abstract
Alu RNA are implicated in the poor prognosis of several human disease states. These RNA are transcription products of primate specific transposable elements called Alu elements. These elements are extremely abundant, comprising over 10% of the human genome, and 100 to 1000 cytoplasmic copies of Alu RNA per cell. Alu RNA do not have a single universal functional role aside from selfish self-propagation. Despite this, Alu RNA have been found to operate in a diverse set of translational and transcriptional mechanisms. This review will focus on the current knowledge of Alu RNA involved in human disease states and known mechanisms of action. Examples of Alu RNA that are transcribed in a variety of contexts such as introns, mature mRNA, and non-coding transcripts will be discussed. Past and present challenges in studying Alu RNA, and the future directions of Alu RNA in basic and clinical research will also be examined.
Collapse
Affiliation(s)
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Lu Y, Huang J, Zhang Y, Huang Z, Yan W, Zhou T, Wang Z, Liao L, Cao H, Tan B. Therapeutic Effects of Berberine Hydrochloride on Stress-Induced Diarrhea-Predominant Irritable Bowel Syndrome Rats by Inhibiting Neurotransmission in Colonic Smooth Muscle. Front Pharmacol 2021; 12:596686. [PMID: 34594213 PMCID: PMC8476869 DOI: 10.3389/fphar.2021.596686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
The etiology of diarrhea-predominant irritable bowel syndrome (IBS-D) is complicated and closely related to neurotransmission in the gastrointestinal (GI) tract. Developing new strategies for treating this disease is a major challenge for IBS-D research. Berberine hydrochloride (BBH), the derivative of berberine, is a herbal constituent used to treat IBS. Previous studies have shown that BBH has potential anti-inflammatory, antibacterial, analgesic, and antidiarrheal effects and a wide range of biological activities, especially in regulating the release of some neurotransmitters. A modified IBS-D rat model induced by chronic restraint stress was used in all experiments to study the effects of BBH on the GI tract. This study measured the abdominal withdrawal reflex (AWR) response to graded colorectal distention (CRD; 20, 40, 60, and 80 mmHg) and observed the fecal areas of stress-induced IBS-D model. Experiments were conducted using organ bath techniques, which were performed in vitro using strips of colonic longitudinal smooth muscle. Inhibitory and excitatory neurotransmitter agents were added to each organ bath to observe contractile responses on the strips and the treatment effect exerted by BBH. The IBS-D rat model was successfully induced by chronic restraint stress, which resulted in an increased defecation frequency and visceral hypersensitivity similar to that of humans. BBH could reduce 4-h fecal areas and AWR response to CRD in IBS-D. The stress-induced IBS-D model showed upregulated colonic mRNA expression levels of 5-hydroxytryptamine-3A receptor and downregulated expression levels of neuronal nitric oxide synthase. Meanwhile, BBH could reverse this outcome. The responses of substances that regulate the contraction induced by related neurotransmission in the longitudinal smooth muscle of IBS-D colon (including the agonist of acetylcholine, carbachol; NOS inhibitor, L-NAME; and P2Y1 receptor antagonist, MRS2500) can be inhibited by BBH. In summary, BBH promotes defecation frequency and visceral hypersensitivity in IBS-D and exerts inhibitory effects on contractile responses in colonic longitudinal smooth muscle. Thus, BBH may represent a new therapeutic approach for treating IBS-D.
Collapse
Affiliation(s)
- Yulin Lu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zitong Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiming Yan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianran Zhou
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhesheng Wang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liao
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Nakamura H, O'Donnell AM, Tomuschat C, Coyle D, Puri P. Altered expression of caveolin-1 in the colon of patients with Hirschsprung's disease. Pediatr Surg Int 2019; 35:929-934. [PMID: 31256294 DOI: 10.1007/s00383-019-04505-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE The pathogenesis of Hirschsprung's disease-associated enterocolitis (HAEC) is unclear. Caveolin-1 (Cav-1) regulates the functions of different nitric oxide synthase (NOS) isoforms, which play critical roles in inflammation and intestinal epithelial barrier function. We designed this study to investigate the hypothesis that Cav-1 expression is altered in the bowel of patients with Hirschsprung's disease (HSCR). METHODS HSCR tissue specimens (n = 10) were collected at the time of pull-through surgery and control samples were obtained at the time of colostomy closure in patients with imperforate anus (n = 10). qRT-PCR analysis was undertaken to quantify Cav-1 gene expression, and Western blot analysis was undertaken to determine Cav-1 protein quantification. Immunolabelling of Cav-1 proteins was visualized using confocal microscopy. RESULTS qRT-PCR and Western blot analysis revealed that Cav-1 was significantly downregulated in the aganglionic and ganglionic colon of patients with HSCR compared to controls (p < 0.01). Confocal microscopy revealed a markedly decreased expression of Cav-1 in colonic epithelium of aganglionic and ganglionic bowel of patients with HSCR compared to controls. CONCLUSION To our knowledge, this is the first report of significantly decreased Cav-1 expression in patients with HSCR. Decreased expression of Cav-1 in the bowel of HSCR may increase susceptibility to HAEC in HSCR.
Collapse
Affiliation(s)
- Hiroki Nakamura
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland. .,School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Flach H, Krieg J, Hoffmeister M, Dietmann P, Reusch A, Wischmann L, Kernl B, Riegger R, Oess S, Kühl SJ. Nosip functions during vertebrate eye and cranial cartilage development. Dev Dyn 2018; 247:1070-1082. [PMID: 30055071 DOI: 10.1002/dvdy.24659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/01/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nitric oxide synthase interacting protein (Nosip) has been associated with diverse human diseases including psychological disorders. In line, early neurogenesis of mouse and Xenopus is impaired upon Nosip deficiency. Nosip knockout mice show craniofacial defects and the down-regulation of Nosip in the mouse and Xenopus leads to microcephaly. Until now, the exact underlying molecular mechanisms of these malformations were still unknown. RESULTS Here, we show that nosip is expressed in the developing ocular system as well as the anterior neural crest cells of Xenopus laevis. Furthermore, Nosip inhibition causes severe defects in eye formation in the mouse and Xenopus. Retinal lamination as well as dorso-ventral patterning of the retina were affected in Nosip-depleted Xenopus embryos. Marker gene analysis using rax, pax6 and otx2 reveals an interference with the eye field induction and differentiation. A closer look on Nosip-deficient Xenopus embryos furthermore reveals disrupted cranial cartilage structures and an inhibition of anterior neural crest cell induction and migration shown by twist, snai2, and egr2. Moreover, foxc1 as downstream factor of retinoic acid signalling is affected upon Nosip deficiency. CONCLUSIONS Nosip is a crucial factor for the development of anterior neural tissue such the eyes and neural crest cells. Developmental Dynamics 247:1070-1082, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Julia Krieg
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe University, Frankfurt Medical School, Frankfurt/Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Neuruppin, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Adrian Reusch
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Lisa Wischmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Bianka Kernl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ricarda Riegger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Stefanie Oess
- Institute of Biochemistry II, Goethe University, Frankfurt Medical School, Frankfurt/Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Neuruppin, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|