1
|
Cao X, Liu Q, Adu-Frimpong M, Shi W, Liu K, Deng T, Yuan H, Weng X, Gao Y, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic Generation of Near-Infrared Photothermal Vitexin/ICG Liposome with Amplified Photodynamic Therapy. AAPS PharmSciTech 2023; 24:82. [PMID: 36949351 DOI: 10.1208/s12249-023-02539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 03/24/2023] Open
Abstract
Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Hui Yuan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Yihong Gao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| | - Gao Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| |
Collapse
|
2
|
Li M, Zhang Y, Ma J, Du J. Albumin-based nanoparticle for dual-modality imaging of the lymphatic system. RSC Adv 2023; 13:2248-2255. [PMID: 36741156 PMCID: PMC9838117 DOI: 10.1039/d2ra07414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
The lymphatic system is a complex network of lymphatic vessels, lymph nodes, and lymphoid organs. The current understanding of the basic mechanism and framework of the lymphatic system is relatively limited and not ideal for exploring the function of the lymphatic system, diagnosing lymphatic system diseases, and controlling tumor metastasis. Imaging modalities for evaluating lymphatic system diseases mainly include lymphatic angiography, reactive dye lymphatic angiography, radionuclide lymphatic angiography, computed tomography, and ultrasonography. However, these are insufficient for clinical diagnosis. Some novel imaging methods, such as magnetic resonance imaging, positron emission computed tomography, single-photon emission computed tomography, contrast-enhanced ultrasonography, and near-infrared imaging with agents such as cyanine dyes, can reveal lymphatic system information more accurately and in detail. We fabricated an albumin-based fluorescent probe for dual-modality imaging of the lymphatic system. A near-infrared cyanine dye, IR-780, was absorbed into bovine serum albumin (BSA), which was covalently linked to a molecule of diethylenetriaminepentaacetic acid to chelate gadolinium Gd3+. The fabricated IR-780@BSA@Gd3+ nanocomposite demonstrates strong fluorescence and high near-infrared absorption and can be used as a T1 contrast agent for magnetic resonance imaging. In vivo dual-modality fluorescence and magnetic resonance imaging showed that IR-780@BSA@Gd3+ rapidly returned to the heart through the lymphatic circulation after it was injected into the toe webs of mice, facilitating good lymphatic imaging. The successful fabrication of the new IR-780@BSA@Gd3+ nanocomposite will facilitate the study of the mechanism and morphological structure of the lymphatic system.
Collapse
Affiliation(s)
- Mingze Li
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Yundong Zhang
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Jinli Ma
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Jianshi Du
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| |
Collapse
|
3
|
Wang Z, Yang X, Mei L, Jiang T, Sun T, Chen H, Wu Y, Ji Y. Indocyanine green for targeted imaging of the gall bladder and fluorescence navigation. JOURNAL OF BIOPHOTONICS 2022; 15:e202200142. [PMID: 35904773 DOI: 10.1002/jbio.202200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Researchers nowadays have devoted extra attention to the different biomedical applications of indocyanine green (ICG), a US Food and Drug Administration-approved fluorescent compound in the fields such as drug delivery, medical imaging and disease diagnosis. In addition, hepatic function evaluation could be conducted by using ICG before surgical procedures and angiographic assessment of blood. Therefore, ICG will be expected to be excellent imaging and targeting agent in various preclinical and clinical model systems. However, whether ICG possesses the potential for the gall bladder's intraoperative imaging guidance needs to be further explored in vivo animal experiments. Herein, near-infrared fluorophores ICG can display the specific uptake by the gall bladder cells and tissues. The dynamic process of biodistribution and the clearance of ICG in vivo in mice are clearly shown in real-time live-body imaging. Furthermore, ICG was rapidly excreted into the bile and lately biodistributed to the stomach after treatment in mice. Meanwhile, the signal-to-background ratio of the gall bladder demonstrated a tremendously higher level compared to other organs (stomach, heart, liver, lung, pancreas, spleen, intestine and duodenum). In conclusion, fluorescence navigation using ICG fluorescence imaging will provide good visualization and detection of the target lesions (gall bladder) in clinics such as diagnostic medical imaging and intraoperative navigation.
Collapse
Affiliation(s)
- Zhidong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiao Yang
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tiantian Jiang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tingkai Sun
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - HaiYan Chen
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - YouShen Wu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Algarawi M, Erkol H, Luk A, Ha S, Unlu MB, Gulsen G, Nouizi F. Multi-Wavelength Photo-Magnetic Imaging System for Photothermal Therapy Guidance. Lasers Surg Med 2021; 53:713-721. [PMID: 33169857 PMCID: PMC8107183 DOI: 10.1002/lsm.23350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES In photothermal therapy, cancerous tissue is treated by the heat generated from absorbed light energy. For effective photothermal therapy, the parameters affecting the induced temperature should be determined before the treatment by modeling the increase in temperature via numerical simulations. However, accurate simulations can only be achieved when utilizing the accurate optical, thermal, and physiological properties of the treated tissue. Here, we propose a multi-wavelength photo-magnetic imaging (PMI) technique that provides quantitative and spatially resolved tissue optical absorption maps at any wavelength within the near-infrared (NIR) window to assist accurate photothermal therapy planning. STUDY DESIGN/MATERIALS AND METHODS The study was conducted using our recently developed multi-wavelength PMI system, which operates at four laser wavelengths (760, 808, 860, and 980 nm). An agar tissue-simulating phantom containing water, lipid, and ink was illuminated using these wavelengths, and the slight internal laser-induced temperature rise was measured using magnetic resonance thermometry (MRT). The phantom optical absorption was recovered at the used wavelengths using our dedicated PMI image reconstruction algorithm. These absorption maps were then used to resolve the concentration of the tissue chromophores, and thus deduce its optical absorption spectrum in the NIR region based on the Beer-Lambert law. RESULTS The optical absorption of the phantom was successfully recovered at the used four wavelengths with an average error of ~1.9%. The recovered absorption coefficient was then used to simulate temperature variations inside the phantom. A comparison between the modeled temperature maps and the MRT measured ones showed that these maps are in a good agreement with an average pseudo R2 statistic of 0.992. These absorption values were used to successfully recover the concentration of the used chromophores. Finally, these concentrations are used to accurately calculate the total absorption spectrum of the phantom in the NIR spectral window with an average error as low as ~2.3%. CONCLUSIONS Multi-wavelength PMI demonstrated a great ability to assess the distribution of tissue chromophores, thus providing its total absorption at any wavelength within the NIR spectral range. Therefore, applications of photothermal therapy applied at NIR wavelengths can benefit from the absorption spectrum recovered by PMI to determine important parameters such as laser power as well as the laser exposure time needed to attain a specific increase in temperature prior to treatment. Lasers Surg. Med. 00:00-00, 2020. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Maha Algarawi
- Center for Functional Onco-Imaging, University of California Irvine, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, USA
| | - Hakan Erkol
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey
| | - Alex Luk
- Center for Functional Onco-Imaging, University of California Irvine, Irvine, California 92697, USA
| | - Seunghoon Ha
- Philips Healthcare, Pewaukee, Wisconsin 53072, USA
| | | | - Gultekin Gulsen
- Center for Functional Onco-Imaging, University of California Irvine, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, USA
- Department of Radiological Sciences, University of California Irvine, Irvine, California 92697, USA
| | - Farouk Nouizi
- Center for Functional Onco-Imaging, University of California Irvine, Irvine, California 92697, USA
- Department of Radiological Sciences, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
5
|
Long S, Xu Y, Zhou F, Wang B, Yang Y, Fu Y, Du N, Li X. Characteristics of temperature changes in photothermal therapy induced by combined application of indocyanine green and laser. Oncol Lett 2019; 17:3952-3959. [PMID: 30930992 DOI: 10.3892/ol.2019.10058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 12/19/2018] [Indexed: 01/27/2023] Open
Abstract
Photothermal therapy, a type of laser application, has the ability to eradicate tumor cells by a local thermal effect and elicit a tumor specific immune response. Indocyanine green (ICG), a photosensitizer, can effectively elevate the local temperature by absorbing energy from the laser. The present study aimed to investigate the characteristics of temperature changes during photothermal therapy with an infrared thermometer in an ICG solution and in tumor-bearing mice treated with a combination of laser and ICG. Additionally, the present study observed the morphological changes of tumor tissue by hematoxylin-eosin staining following photothermal therapy. In the solution experiment, when the laser power density was 1 W/cm2 and the concentration of ICG was 0 or 0.0187 mg/ml, the temperature of the water was elevated by 3 and 28°C, respectively. In the tumor-bearing mice experiment, when the laser power density was 1 W/cm2 and the concentration of ICG was 0 and 0.1 mg/ml, the temperature of the tumor-bearing mice was elevated by 6.9 and 28.5°C, respectively. With an increase in laser power density, including 0.6, 0.8 and 1.0 W/cm2, the temperature was 23.3, 26.7 and 28.5°C, respectively. Pathological tissue sections demonstrated that a large number of tumor cells experienced necrosis, and the envelope of the tumor was destroyed. Numerous inflammatory cells, in particular lymphocytes, infiltrated into the tumor tissue following tumor tissue treatment with a combination of laser and ICG. These results indicated that a combination treatment with laser and ICG may significantly increase the temperature of the water solutions and in the tumor-bearing mice. The concentration of ICG and laser power density contributed to the temperature elevation, in particular to the concentration of ICG.
Collapse
Affiliation(s)
- Shan Long
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Yuanyuan Xu
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Feifan Zhou
- Biophotonics Research Laboratory Center for Interdisciplinary Biomedical Education and Research University of Central Oklahoma, Edmond, OK 73034, USA
| | - Bo Wang
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Yunning Yang
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Yan Fu
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Nan Du
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Xiaosong Li
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| |
Collapse
|