1
|
Khairy GM, Goda RM, Anwar ZM, Aboelnga MM, Duerkop A. Luminescent and time-resolved determination of gemifloxacin mesylate in pharmaceutical formulations and spiked blood plasma samples using a lanthanide complex as a probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2556-2568. [PMID: 38592494 DOI: 10.1039/d4ay00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A novel luminescence-based analytical methodology was established employing a europium(III) complex with 3-allyl-2-hydroxybenzohydrazide (HAZ) as the coordinating ligand for the quantification of gemifloxacin mesylate (GMF) in pharmaceutical preparations and human plasma samples spiked with the compound. The stoichiometry of the europium complex with HAZ was determined via the Job plot and exhibited a metal-to-ligand ratio of 1 : 2. The analytical procedure relies on a rapid and significant enhancement of luminescence by the Eu(AZ)2 complex when it interacts with gemifloxacin mesylate, which allowed for the rapid detection of 96 samples within approximately 2 minutes. The thermodynamic parameters of the complexation of GMF with Eu(AZ)2 were evaluated and showed that the complexation of GMF was spontaneous with a negative ΔG. The binding constant K was 4.27 × 105 L mol-1 and DFT calculations supported GMF binding and the formation of Eu(AZ)2-GMF without further ligand exchange. The calibration graph for the luminescence quantitation of GMF was linear over a wide concentration range of 0.11-16 μg mL-1 (2.26 × 10-7 to 3.30 × 10-5 mol L-1), with a limit of quantification (LOQ) of 110 ng mL-1 (230 nmol L-1) and a detection limit (LOD) of 40 ng mL-1 (82 nmol L-1). The proposed method showed good accuracy with an average recovery of 99% with relative standard deviations of less than 5% in spiking experiments, even in complex pharmaceutical dosage forms such as tablets and in human blood plasma. Herein, the ability of the suppression of the luminescence background by using the long lag times of the lanthanide probe in a time-resolved detection scheme provided reliable and precise results, which suggests its potential for use in further real or patient samples.
Collapse
Affiliation(s)
- Gasser M Khairy
- Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt.
| | - Rania M Goda
- Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt.
| | - Zeinab M Anwar
- Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt.
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Axel Duerkop
- Institute of Analytical Chemistry, Chemo and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
2
|
Mostafa GAE, Ali EA, Alsalahi RA, Alrabiah H. Fabrication and Applications of Potentiometric Membrane Sensors Based on Specific Recognition Sites for the Measurement of the Quinolone Antibacterial Drug Gemifloxacin. Molecules 2023; 28:5144. [PMID: 37446807 DOI: 10.3390/molecules28135144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Supramolecular gemifloxacin (GF) sensors have been developed. Supramolecular chemistry is primarily concerned with noncovalent intermolecular and intramolecular interactions, which are far weaker than covalent connections, but they can be exploited to develop sensors with remarkable affinity for a target analyte. In order to determine the dose form of the quinolone antibacterial drug gemifloxacin, the current study's goal is to adapt three polyvinylchloride (PVC) membrane sensors into an electrochemical technique. Three new potentiometric membrane sensors with cylindric form and responsive to gemifloxacin (GF) were developed. The sensors' setup is based on the usage of o-nitrophenyl octyl ether (o-NPOE) as a plasticizer in a PVC matrix, β-cyclodextrin (β-CD) (sensor 1), γ-cyclodextrin (γ-CD) (sensor 2), and 4-tert-butylcalix[8]arene (calixarene) (sensor 3) as an ionophore, potassium tetrakis (4-chlorophenyl) borate (KTpClPB) as an ion additive for determination of GF. The developed method was verified according to IUPAC guidelines. The sensors under examination have good selectivity for GF, according to their selectivity coefficients. The constructed sensors demonstrated a significant response towards to GF over a concentration range of 2.4 × 10-6, 2.7 × 10-6, and 2.42 × 10-6 mol L-1 for sensors 1, 2, and 3, respectively. The sensors showed near-Nernstian cationic response for GF at 55 mV, 56 mV, and 60 mV per decade for sensors 1, 2, and 3, respectively. Good recovery and relative standard deviations during the day and between days are displayed by the sensors. They demonstrated good stability, quick response times, long lives, rapid recovery, and precision while also exhibiting good selectivity for GF in various matrices. To determine GF in bulk and dose form, the developed sensors have been successfully deployed. The sensors were also employed as end-point indicators for titrating GF with sodium tetraphenyl borate.
Collapse
Affiliation(s)
- Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rashad A Alsalahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Haitham Alrabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Foroughipour M, Nezamzadeh-Ejhieh A. CaTiO 3/g-C 3N 4 heterojunction-based composite photocatalyst: Part I: Experimental design, kinetics, and scavenging agents' effects in photocatalytic degradation of gemifloxacin. CHEMOSPHERE 2023; 334:139019. [PMID: 37236274 DOI: 10.1016/j.chemosphere.2023.139019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
A critical, challenging environmental issue is explored pollution of water supplies by discharging industrial/pharmaceutical/hospital/urban wastewaters into the aquatic environment. These needs introducing/developing novel photocatalysts/adsorbents/procedures for removing or mineralizing various pollutants in wastewater before discharging them into marine environments. Further, optimizing conditions to achieve the highest removal efficiency is an important issue. In this study, CaTiO3/g-C3N4 (CTCN) heterostructure was synthesized and characterized by some identification techniques. The simultaneous interaction effects of the experimental variables on the boosted photocatalytic activity of CTCN in the degradation of gemifloxcacin (GMF) were studied in RSM design. The optimal values for four parameters were: catalyst dosage: 0.63 g L-1, pH: 6.7, CGMF: 1 mg L-1, and irradiation time: 27.5 min, with approximately 78.2% of degradation efficiency. The quenching effects of the scavenging agents were studied to show the reactive species' relative importance in GMF photodegradation. The results illustrate that the reactive •OH plays a significant role, and the electron plays a minor role in the degradation process. The direct Z-scheme mechanism better described the photodegradation mechanism due to the great oxidative and reductive abilities of prepared composite photocatalysts. This mechanism is an approach to efficiently separating photogenerated charge carriers and improving the CaTiO3/g-C3N4 composite photocatalyst activity. The COD has been performed to study the details of the mineralization of GMF. The pseudo-first-order rat (from the Hinshelwood model) constants of 0.046 min-1 (t1/2 = 15.1 min) and 0.048 min-1 (t1/2 = 14.4 min) were respectively obtained from the GMF photodegradation data and COD results. The prepared photocatalyst retained its activity after five reusing runs.
Collapse
Affiliation(s)
- Mehnoosh Foroughipour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| |
Collapse
|
4
|
Grint I, Crea F, Vasiliadou R. The Combination of Electrochemistry and Microfluidic Technology in Drug Metabolism Studies. ChemistryOpen 2022; 11:e202200100. [PMID: 36166688 PMCID: PMC9716038 DOI: 10.1002/open.202200100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
Drugs are metabolized within the liver (pH 7.4) by phase I and phase II metabolism. During the process, reactive metabolites can be formed that react covalently with biomolecules and induce toxicity. Identifying and detecting reactive metabolites is an important part of drug development. Preclinical and clinical investigations are conducted to assess the toxicity and safety of a new drug candidate. Electrochemistry coupled to mass spectrometry is an ideal complementary technique to the current preclinical studies, a pure instrumental approach without any purification steps and tedious protocols. The combination of microfluidics with electrochemistry towards the mimicry of drug metabolism offers portability, low volume of reagents and faster reaction times. This review explores the development of microfluidic electrochemical cells for mimicking drug metabolism.
Collapse
Affiliation(s)
- Isobel Grint
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Francesco Crea
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Rafaela Vasiliadou
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| |
Collapse
|
5
|
Potentiometric Carbon Quantum Dots-Based Screen-Printed Arrays for Nano-Tracing Gemifloxacin as a Model Fluoroquinolone Implicated in Antimicrobial Resistance. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors9010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial resistance (AMR) is a neglected issue that poses a serious global threat to public health, causing long-term negative consequences at both humanitarian and economic levels. Herein, we report an unprecedented economic fabrication method of seven potentiometric screen-printed sensors for the ultra-trace determination of gemifloxacin (GEMI) as a model of the fluoroquinolones antibiotics deeply involved in the growing AMR problem. Sensors were constructed by depositing homemade carbon ink on a recycled X-ray sheet, patterned using stencils printed with an office printer in simple, cost-effective steps requiring no sophisticated equipment. Four sensors were modified using carbon quantum dots (CQDs) synthesized from dextrose through a single-step method. Sensors exhibited a linear response in the concentration ranges 10−5–10−2 M (sensors 1, 3 and 4), 10−6–10−3 M (sensor 2) and 10−6–10−2 M (sensors 5, 6 and 7). LOD allowed tracing of the target drug at a nano-molar level down to 210 nM. GEMI was successfully determined in pharmaceutical formulations and different water samples without any pretreatment steps with satisfactory recovery (96.93–105.28% with SD values < 3). All sensors revealed a long lifetime of up to several months and are considered promising tools for monitoring water quality and efficiency of water treatment measures.
Collapse
|
6
|
Omran NH, Wagdy HA, Abdel-Halim M, Nashar RME. Validation and Application of Molecularly Imprinted Polymers for SPE/UPLC–MS/MS Detection of Gemifloxacin Mesylate. Chromatographia 2019. [DOI: 10.1007/s10337-019-03782-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Munteanu FD, Titoiu AM, Marty JL, Vasilescu A. Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes. SENSORS 2018; 18:s18030901. [PMID: 29562637 PMCID: PMC5877114 DOI: 10.3390/s18030901] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
This review provides a brief overview of the fabrication and properties of screen-printed electrodes and details the different opportunities to apply them for the detection of antibiotics, detection of bacteria and antibiotic susceptibility. Among the alternative approaches to costly chromatographic or ELISA methods for antibiotics detection and to lengthy culture methods for bacteria detection, electrochemical biosensors based on screen-printed electrodes present some distinctive advantages. Chemical and (bio)sensors for the detection of antibiotics and assays coupling detection with screen-printed electrodes with immunomagnetic separation are described. With regards to detection of bacteria, the emphasis is placed on applications targeting viable bacterial cells. While the electrochemical sensors and biosensors face many challenges before replacing standard analysis methods, the potential of screen-printed electrodes is increasingly exploited and more applications are anticipated to advance towards commercial analytical tools.
Collapse
Affiliation(s)
- Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, Elena Dragoi, No. 2, Arad 310330, Romania.
| | - Ana Maria Titoiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, Bucharest 060101, Romania.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, Bucharest 060101, Romania.
| |
Collapse
|
8
|
Vasiliadou R, Welham KJ. Simulating the phase II metabolism of raloxifene on a screen-printed electrode. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raloxifene (RLX) is a selective estrogen receptor modulator widely used for the treatment of osteoporosis in post-menopause women. Toxicological in vitro studies suggested the reactivity of RLX through phase I metabolism. Herein, we describe a simple and inexpensive method for monitoring the reactive metabolism and detoxification of RLX by electrochemistry (EC) and mass spectrometry (MS). The phase I metabolite was synthesized electrochemically on a screen-printed electrode (SPE) and subsequently reacted with glutathione (GSH). The resulted GSH-adducts and GSH disulfides were characterized off-line by electrospray ionization (ESI)–MS.
Collapse
Affiliation(s)
- Rafaela Vasiliadou
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, UK
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, UK
| | - Kevin J. Welham
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, UK
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, UK
| |
Collapse
|
9
|
|
10
|
Mohamed HM. Screen-printed disposable electrodes: Pharmaceutical applications and recent developments. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Bilibio U, de Oliveira LH, Ferreira VS, Trindade MAG. Enhanced simultaneous electroanalytical determination of two fluoroquinolones by using surfactant media and a peak deconvolution procedure. Microchem J 2014. [DOI: 10.1016/j.microc.2014.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Taleat Z, Khoshroo A, Mazloum-Ardakani M. Screen-printed electrodes for biosensing: a review (2008–2013). Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1181-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Gouda AA, Amin AS, El-Sheikh R, Yousef AG. Spectrophotometric determination of gemifloxacin mesylate, moxifloxacin hydrochloride, and enrofloxacin in pharmaceutical formulations using Acid dyes. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:286379. [PMID: 24587941 PMCID: PMC3920608 DOI: 10.1155/2014/286379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 05/23/2023]
Abstract
SIMPLE, RAPID, AND EXTRACTIVE SPECTROPHOTOMETRIC METHODS WERE DEVELOPED FOR THE DETERMINATION OF SOME FLUOROQUINOLONES ANTIBIOTICS: gemifloxacin mesylate (GMF), moxifloxacin hydrochloride (MXF), and enrofloxacin (ENF) in pure forms and pharmaceutical formulations. These methods are based on the formation of ion-pair complexes between the basic drugs and acid dyes, namely, bromocresol green (BCG), bromocresol purple (BCP), bromophenol blue (BPB), bromothymol blue (BTB), and methyl orange (MO) in acidic buffer solutions. The formed complexes were extracted with chloroform and measured at 420, 408, 416, 415, and 422 nm for BCG, BCP, BPB, BTB, and MO, respectively, for GMF; at 410, 415, 416, and 420 nm for BCP, BTB, BPB, and MO, respectively, for MXF; and at 419 and 414 nm for BCG and BTB, respectively, in case of ENF. The analytical parameters and their effects are investigated. Beer's law was obeyed in the ranges 1.0-30, 1.0-20, and 2.0-24 μ g mL(-1) for GMF, MXF, and ENF, respectively. The proposed methods have been applied successfully for the analysis of the studied drugs in pure forms and pharmaceutical formulations. Statistical comparison of the results with the reference methods showed excellent agreement and indicated no significant difference in accuracy and precision.
Collapse
Affiliation(s)
- Ayman A. Gouda
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Alaa S. Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ragaa El-Sheikh
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Amira G. Yousef
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|