1
|
Gholam GM, Mahendra FR, Irsal RAP, Dwicesaria MA, Ariefin M, Kristiadi M, Rizki AFM, Azmi WA, Artika IM, Siregar JE. Computational exploration of compounds in Xylocarpus granatum as a potential inhibitor of Plasmodium berghei using docking, molecular dynamics, and DFT studies. Biochem Biophys Res Commun 2024; 733:150684. [PMID: 39293331 DOI: 10.1016/j.bbrc.2024.150684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Malaria remains a global health concern, with the emergence of resistance to the antimalarial drug atovaquone through cytochrome b (cyt b) being well-documented. This study was prompted by the presence of this mutation in cyt b to enable new drug candidates capable of overcoming drug resistance. Our objective was to identify potential drug candidates from compounds of Xylocarpus granatum by computationally assessing their interactions with Plasmodium berghei cyt b. Using computational methods, we modeled cyt b (GenBank: AF146076.1), identified the binding cavity, and analyzed the Ramachandran plot against cyt b. Additionally, we conducted drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, along with density functional theory (DFT) analysis of the compounds. Molecular docking and molecular dynamics simulation (MDS) were used to evaluate the binding energy and stability of the cyt b-ligand complex. Notably, our investigation highlighted kaempferol as a promising compound due to its high binding energy of 7.67 kcal/mol among all X. granatum compounds, coupled with favorable pharmacological properties (ADMET) and antiprotozoal properties at Pa 0.345 > Pi 0.009 (PASS value). DFT analysis showed that kaempferol has an energy gap of 4.514 eV. MDS indicated that all tested ligands caused changes in bonding and affected the structural conformation of cyt b, as observed before MDS (0 ns) and after MDS (100 ns). The most notable differences were observed in the types of hydrogen bonds between 0 and 100 ns. Nevertheles, MDS results from a 100 ns simulation revealed consistent behavior for kaempferol across various parameters including root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), molecular mechanics-Poisson Boltzmann surface area (MM-PBSA), and hydrogen bonds. The cyt b-kaempferol complex demonstrated favorable energy stability, as supported by the internal energy distribution values observed in principal component analysis (PCA), which closely resembled those of the atovaquone control. Additionally, trajectory stability analysis indicated structural stability, with a cumulative eigenvalue of 24.7 %. Dynamic cross-correlation matrix (DCCM) analysis revealed a positive correlation among catalytic cytochrome residues within the amino acid residues range 119-268. The results of our research indicate that the structure of kaempferol holds promise as a potential candidate against Plasmodium.
Collapse
Affiliation(s)
- Gusnia Meilin Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Fachrur Rizal Mahendra
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Riyan Alifbi Putera Irsal
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Maheswari Alfira Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Mokhamat Ariefin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Indonesia.
| | - Mikael Kristiadi
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
2
|
Schultz DC, Chávez-Riveros A, Goertzen MG, Brummel BR, Paes RA, Santos NM, Tenneti S, Abboud KA, Rocca JR, Seabra G, Li C, Chakrabarti D, Huigens RW. Chloroformate-mediated ring cleavage of indole alkaloids leads to re-engineered antiplasmodial agents. Org Biomol Chem 2024; 22:8423-8436. [PMID: 39113550 DOI: 10.1039/d4ob00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Natural product ring distortion strategies have enabled rapid access to unique libraries of stereochemically complex compounds to explore new chemical space and increase our understanding of biological processes related to human disease. Herein is described the development of a ring-cleavage strategy using the indole alkaloids yohimbine, apovincamine, vinburnine, and reserpine that were reacted with a diversity of chloroformates paired with various alcohol/thiol nucleophiles to enable the rapid synthesis of 47 novel small molecules. Ring cleavage reactions of yohimbine and reserpine produced two diastereomeric products in moderate to excellent yields, whereas apovincamine and vinburnine produced a single diastereomeric product in significantly lower yields. Free energy calculations indicated that diastereoselectivity regarding select ring cleavage reactions from yohimbine and apovincamine is dictated by the geometry and three-dimensional structure of reactive cationic intermediates. These compounds were screened for antiplasmodial activity due to the need for novel antimalarial agents. Reserpine derivative 41 was found to exhibit interesting antiplasmodial activities against Plasmodium falciparum parasites (EC50 = 0.50 μM against Dd2 cultures), while its diastereomer 40 was found to be three-fold less active (EC50 = 1.78 μM). Overall, these studies demonstrate that the ring distortion of available indole alkaloids can lead to unique compound collections with re-engineered biological activities for exploring and potentially treating human disease.
Collapse
Affiliation(s)
- Daniel C Schultz
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Alejandra Chávez-Riveros
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Michael G Goertzen
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Beau R Brummel
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Raphaella A Paes
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Natalia M Santos
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Srinivasarao Tenneti
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | - James R Rocca
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
- McKnight Brain Institute, J H Miller Health Center, University of Florida, Gainesville, Florida 32610, USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
3
|
Kuthe PV, Muzaffar-Ur-Rehman M, Chandu A, Prashant KS, Sankarnarayanan M. Unlocking nitrogen compounds' promise against malaria: A comprehensive review. Arch Pharm (Weinheim) 2024; 357:e2400222. [PMID: 38837417 DOI: 10.1002/ardp.202400222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Plasmodium parasites are the primary cause of malaria, leading to high mortality rates, which require clinical attention. Many of the medications used in the treatment have resulted in resistance over time. Artemisinin combination therapy (ACT) has shown significant results for the treatment. However, mutations in the parasite have resulted in resistance, leading to decreased efficiency of the medications that are currently being used. Therefore, there is a critical need to find novel scaffolds that are safe, effective, and of economic advantage. Literature has reported several potent molecules with diverse scaffolds designed, synthesized, and evaluated against different strains of Plasmodium. With this growing list of compounds, it is essential to collect the data in one place to gain a concise overview of the emerging scaffolds in recent years. For this purpose, nitrogen-containing heterocycles such as β-carboline, imidazole, quinazoline, quinoline, thiazole, and thiophene have been highly explored due to their wide biological applications. Besides these, another scaffold, benzodiazepine, which is majorly used as a central nervous system depressant, is emerging as an anti-malarial agent. Hence, this review centers on the latest medication advancements designed to combat malaria, emphasizing special attention to 1,4-benzodiazepines as a novel scaffold for antimalarial drug discovery.
Collapse
Affiliation(s)
- Pranali Vijaykumar Kuthe
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Mohammad Muzaffar-Ur-Rehman
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Ala Chandu
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Kirad Shivani Prashant
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Murugesan Sankarnarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
4
|
Askarani HK, Tahghighi A, Ahmadpoor M, Zamani Z. In vitro and in vivo antiplasmodial activity of a synthetic dihydroartemisinin-eosin B hybrid. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4013-4024. [PMID: 37999757 DOI: 10.1007/s00210-023-02815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
With the inexorable prevalence and spread of drug-resistant malaria strains, many efforts have been made to find alternative chemotherapeutic agents. In this regard, scientists have developed the concept of hybridization of two or more active pharmacophores into a single chemical compound, resulting in "antimalarial hybrids." The aim of this study was planned based on the highly synergistic effect of the physical hybrid of dihydroartemisinin (DHA) with eosin B (EB). Therefore, a chemical hybrid of the two compounds (DHA-EB) was synthesized, and its antimalarial activity was investigated in vitro and in vivo. The drug hybrid was fabricated through a propionyl ester linker between DHA and EB. The antiplasmodial activity of the new hybrid was tested in vitro on the blood stages of Plasmodium falciparum (chloroquine-sensitive, 3D7 strain) and also evaluated in vivo by Peters' standard test in mice infected with Plasmodium berghei. The hybrid compound was also assessed for in vivo toxicity. Among all the compounds studied, a DHA-EB hybrid showed an appropriate inhibition percentage (53%) was at a very low dose (0.65 nM). The highest in vivo antimalarial activity until the 9th day was related to DHA-EB in a low dose (0.5 mg/kg). Also, the most survival rate was observed in the test group of hybrid compound at a dose of 1.5 mg/kg for 22 days. No external changes were identified in the toxicity assay. The weight of internal organs of treated animals and that of controls indicated nontoxicity of DHA-EB even after 60 days of consumption. In vitro and in vivo studies substantiated that DHA-EB hybrid has the potential for developing as a safe antimalarial drug.
Collapse
Affiliation(s)
- Hajar Karimi Askarani
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Zahra Zamani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Barmade MA, Agrawal P, Rajput SR, Murumkar PR, Rana B, Sahal D, Yadav MR. Novel quinolinepiperazinyl-aryltetrazoles targeting the blood stage of Plasmodium falciparum. RSC Med Chem 2024; 15:572-594. [PMID: 38389888 PMCID: PMC10880932 DOI: 10.1039/d3md00417a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 02/24/2024] Open
Abstract
The emergence of drug resistance against the frontline antimalarials is a major challenge in the treatment of malaria. In view of emerging reports on drug-resistant strains of Plasmodium against artemisinin combination therapy, a dire need is felt for the discovery of novel compounds acting against novel targets in the parasite. In this study, we identified a novel series of quinolinepiperazinyl-aryltetrazoles (QPTs) targeting the blood stage of Plasmodium. In vitro anti-plasmodial activity screening revealed that most of the compounds showed IC50 < 10 μM against chloroquine-resistant PfINDO strain, with the most promising lead compounds 66 and 75 showing IC50 values of 2.25 and 1.79 μM, respectively. Further, compounds 64-66, 68, 75-77 and 84 were found to be selective (selectivity index >50) in their action against Pf over a mammalian cell line, with compounds 66 and 75 offering the highest selectivity indexes of 178 and 223, respectively. Explorations into the action of lead compounds 66 and 75 revealed their selective cidal activity towards trophozoites and schizonts. In a ring-stage survival assay, 75 showed cidal activity against the early rings of artemisinin-resistant PfCam3.1R539T. Further, 66 and 75 in combination with artemisinin and pyrimethamine showed additive to weak synergistic interactions. Of these two in vitro lead molecules, only 66 restricted rise in the percentage of parasitemia to about 10% in P. berghei-infected mice with a median survival time of 28 days as compared to the untreated control, which showed the percentage of parasitemia >30%, and a median survival of 20 days. Promising antimalarial activity, high selectivity, and additive interaction with artemisinin and pyrimethamine indicate the potential of these compounds to be further optimized chemically as future drug candidates against malaria.
Collapse
Affiliation(s)
- Mahesh A Barmade
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Prakhar Agrawal
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Sweta R Rajput
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Bhavika Rana
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
- Research and Development Cell, Parul University Waghodia Road, P. O. Limda Vadodara-391760 Gujarat India
| |
Collapse
|
6
|
Erhunse N, Kumari S, Anmol, Singh P, Omoregie ES, Singh AP, Sharma U, Sahal D. Annickia affinis (Exell) Versteegh & Sosef methanol stem bark extract, potent fractions and isolated Berberine alkaloid target both blood and liver stages of malaria parasites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117269. [PMID: 37813288 DOI: 10.1016/j.jep.2023.117269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Having identified Annickia affinis as the most potent antiplasmodial plant constituent in a hepta-herbal Agbo-iba (HHA) formula commonly used to manage malaria in Benin city, Nigeria, we have in this study attempted to identify the specialized metabolites responsible for antiplasmodial activity of A. affinis through anti-blood stage malaria parasite activity guided isolation of potent molecules from its stem bark methanol extract. After that, phenotypic effects, including stage-specific kill kinetics, were investigated. Further, the crude extract, its potent fractions, and specialized metabolites were also tested against the liver-stage malaria parasite. MATERIALS AND METHODS A. affinis was subjected to molecular PCR-based analysis to confirm its identity. Thereafter, extraction of its stem bark with methanol was carried out. Alkaloid enriched fractions from this stem bark extract were obtained using the acid-base-solvent extraction method. These alkaloid-enriched fractions were subjected to various chromatographic techniques that led to the isolation of two protoberberine alkaloids identified as berberine and palmatine based on NMR and mass spectrometry analysis. The efficacy of crude extract, fractions and purified alkaloids was tested against the malaria parasite's blood and liver stages, respectively. RESULTS AND DISCUSSION Annickia affinis methanol extract, fractions, and the isolated protoberberine alkaloids showed excellent antiplasmodial activity with good selectivity against blood-stage malaria parasite. Thus, their IC50 against various strains of the parasite ranged from 0.95 to 18.65 μg/ml, while CC50 against Human embryonic kidney (HEK) and the human hepatoma (HUH-7) cell lines ranged between 10 and > 100 μg/ml. Interestingly, the crude extract and the alkaloid enriched fractions showed promising activity against the liver-stage malaria parasite. Between berberine and palmatine isolated from the potent fractions, only the former showed ∼100% and 90% inhibitions of liver stage parasite at 5 μg/ml and 1 μg/ml, respectively, while the latter showed no inhibition even at 20 μg/ml. CONCLUSION This study reports that the ethnomedicinal use of HHA to manage malaria can be attributed to the presence of promising antiplasmodial protoberberine alkaloids together with synergistic effects via either enhancement of bioavailability or improved pharmacokinetics by other phytoconstituent(s) coming from other HHA constituent plants. The protoberberine alkaloids isolated have been identified as fast-acting antiplasmodial agents, with activity against all erythrocytic stages of the malaria parasite. Further, A. affinis methanol stembark extract and the protoberberine alkaloid berberine isolated from it also displayed excellent activity (>90% inhibition at 1 μg/ml) against the liver-stage malaria parasite. A. affinis and HHA can thus be useful as both liver-stage prophylactic and blood-stage curative agents.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India; Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin city, Nigeria
| | - Surekha Kumari
- Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anmol
- Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhiz, 110067, India
| | | | - Agam Prasad Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhiz, 110067, India
| | - Upendra Sharma
- Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
7
|
Watson DJ, Laing L, Petzer JP, Wong HN, Parkinson CJ, Wiesner L, Haynes RK. Efficacies and ADME properties of redox active methylene blue and phenoxazine analogues for use in new antimalarial triple drug combinations with amino-artemisinins. Front Pharmacol 2024; 14:1308400. [PMID: 38259296 PMCID: PMC10800708 DOI: 10.3389/fphar.2023.1308400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Efforts to develop new artemisinin triple combination therapies effective against artemisinin-tolerant strains of Plasmodium falciparum based on rational combinations comprising artemisone or other amino-artemisinins, a redox active drug and a third drug with a different mode of action have now been extended to evaluation of three potential redox partners. These are the diethyl analogue AD01 of methylene blue (MB), the benzo [α]phenoxazine PhX6, and the thiosemicarbazone DpNEt. IC50 values in vitro against CQ-sensitive and resistant P. falciparum strains ranged from 11.9 nM for AD01-41.8 nM for PhX6. PhX6 possessed the most favourable pharmacokinetic (PK) profile: intrinsic clearance rate CLint was 21.47 ± 1.76 mL/min/kg, bioavailability was 60% and half-life was 7.96 h. AD01 presented weaker, but manageable pharmacokinetic properties with a rapid CLint of 74.41 ± 6.68 mL/min/kg leading to a half-life of 2.51 ± 0.07 h and bioavailability of 15%. DpNEt exhibited a half-life of 1.12 h and bioavailability of 8%, data which discourage its further examination, despite a low CLint of 10.20 mL/min/kg and a high Cmax of 6.32 µM. Efficacies of AD01 and PhX6 were enhanced synergistically when each was paired with artemisone against asexual blood stages of P. falciparum NF54 in vitro. The favourable pharmacokinetics of PhX6 indicate this is the best partner among the compounds examined thus far for artemisone. Future work will focus on extending the drug combination studies to artemiside in vitro, and conducting efficacy studies in vivo for artemisone with each of PhX6 and the related benzo[α]phenoxazine SSJ-183.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacobus P. Petzer
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Ho Ning Wong
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, Australia
| | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
8
|
Fang J, Song F, Wang F. The antimalarial activity of 1,2,4-trioxolane/trioxane hybrids and dimers: A review. Arch Pharm (Weinheim) 2022; 355:e2200077. [PMID: 35388499 DOI: 10.1002/ardp.202200077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/03/2023]
Abstract
Malaria, a mosquito-borne parasitic infection caused by protozoan parasites belonging to the genus Plasmodium, is a dangerous disease that contributes to millions of hospital visits and hundreds and thousands of deaths across the world, especially in Sub-Saharan Africa. Antimalarial agents are vital for treating malaria and controlling transmission, and 1,2,4-trioxolane/trioxane-containing agents, especially artemisinin and its derivatives, own antimalarial efficacy and low toxicity with unique mechanisms of action. Moreover, artemisinin-based combination therapies were recommended by the World Health Organization as the first-line treatment for uncomplicated malaria infection and have remained as the mainstay of the treatment of malaria, demonstrating that 1,2,4-trioxolane/trioxane derivatives are useful prototypes for the control and eradication of malaria. However, malaria parasites have already developed resistance to almost all of the currently available antimalarial agents, creating an urgent need for the search of novel pharmaceutical interventions for malaria. The purpose of this review article is to provide an emphasis on the current scenario (January 2012 to January 2022) of 1,2,4-trioxolane/trioxane hybrids and dimers with potential antimalarial activity and the structure-activity relationships are also discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Junman Fang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China.,Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
9
|
Jiatsa Mbouna CD, Tchatat Tali BM, Tsouh Fokou PV, Madiesse Kemgne EA, Keumoe R, Toghueo Kouipou RM, Yamthe Tchokouaha LR, Tchuente Tchuenmogne MA, Kenou DK, Sahal D, Boyom FF. Specific sub fractions from Terminalia mantaly (H. Perrier) extracts potently inhibit Plasmodium falciparum rings, merozoite egress and invasion. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114909. [PMID: 34902534 DOI: 10.1016/j.jep.2021.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia mantaly (H. Perrier) and Terminalia superba (Engl. & Diels) are sources of treatment for various diseases, including malaria and/or related symptoms in parts of Southwestern Cameroon. However, there is limited information on the extent of the antiplasmodial potential of their extracts. AIM OF THE STUDY The present study was designed to investigate the antiplasmodial potential of chromatographic sub fractions (SFs) from promising fractions of Terminalia mantaly (Tm) [TmsbwChl, the chloroform fraction from water extract of Tm, IC50 (μg/mL) PfINDO: 0.56, Pf3D7: 1.12; SI > 357 (HEK/PfINDO) & 178 (HEK/Pf3D7)] and Terminalia superba (Ts) [TsrmEA, the ethyl acetate fraction from methanolic extract of Ts, IC50 (μg/mL) PfINDO: 1.82, Pf3D7: 1.65; SI > 109 (HEK/PfINDO) & 121 (HEK/Pf3D7)] obtained from previous studies. The SFs were tested against Plasmodium falciparum 3D7 (Pf3D7-chloroquine sensitive) and INDO (PfINDO-chloroquine resistant) strains in culture. Also, the phytochemical profile of potent SFs was determined and finally, the inhibition of the asexual blood stages of Plasmodium falciparum by the SFs with the highest promise was assessed. MATERIAL AND METHODS Selected SFs were submitted to a second bio-guided fractionation using silica gel column chromatography. The partial phytochemical composition of potent antiplasmodial SFs was determined using gas chromatography coupled to mass spectrometry (GC-MS). The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence or absence of extracts. Microscopy and flow cytometry counting was used to assess the Plasmodium falciparum stage-specific inhibition and post-drug exposure growth suppression by highly potent extracts. RESULTS Twenty-one of the 39 SFs afforded from TmsbwChl showed activity (IC50: 0.29-4.74 μg/mL) against both Pf3D7 and PfINDO strains. Of note, eight SFs namely, Tm25, Tm28-30, Tm34-36 and Tm38, exerted highly potent antiplasmodial activity (IC50 < 1 μg/mL) with IC50PfINDO: 0.41-0.84 μg/mL and IC50Pf3D7: 0.29-0.68 μg/mL. They also displayed very high selectivity (50 < SIPfINDO, SIPf3D7 > 344) on the two Plasmodial strains. On the other hand, 7 SFs (SFs Ts03, Ts04, Ts06, Ts09, Ts10, Ts12 and Ts13) from TsrmEA showed promising inhibitory potential against both parasite strains (IC50: 2.01-5.14 μg/mL). Sub fraction Tm36 (IC50PfINDO: 0.41 μg/mL, SIPfINDO > 243; IC50Pf3D7: 0.29 μg/mL, SIPf3D7 > 344) showed the highest promise. The GC-MS analysis of the 8 selected SFs led to the identification of 99 phytometabolites, with D-limonene (2), benzaldehyde (12), carvone (13), caryophyllene (35), hexadecanoic acid, methyl ester (74) and 9-octadecenoic acid, methyl ester (82) being the main constituents. Sub fractions Tm28, Tm29, Tm30, Tm36 and Tm38 inhibited all the three intraerythrocytic stages of P. falciparum, with strong potency against ring stage development, merozoite egress and invasion processes. CONCLUSIONS This study has identified highly potent antiplasmodial SFs from Terminalia mantaly with significant activity on the intraerythrocytic development of Plasmodium falciparum. These SFs qualify as promising sources of novel antiplasmodial lead compounds. Further purification and characterization studies are expected to unravel molecular targets in rings and merozoites.
Collapse
Affiliation(s)
- Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Brice Mariscal Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Bamenda, PO Box 39, Bambili, Cameroon
| | - Eugenie Aimee Madiesse Kemgne
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Rodrigue Keumoe
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Rufin Marie Toghueo Kouipou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Lauve Rachel Yamthe Tchokouaha
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Institute for Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 6163, Yaoundé, Cameroon
| | - Marthe Aimée Tchuente Tchuenmogne
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry,Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Donald Kagho Kenou
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry,Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, New Delhi -110067, India.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|