1
|
Jiang M, Liao L, Zhang J, Wei X, Yu CY, Wei H. Peptide core spherical nucleic acids circumvent tumor immunosuppression via supplementing methionine for enhanced photodynamic/gene immune/therapy of hepatocellular carcinoma. J Colloid Interface Sci 2025; 682:653-670. [PMID: 39642551 DOI: 10.1016/j.jcis.2024.11.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Spherical nucleic acids (SNAs) with functional peptide cores are an emerging nanoplatform for synergistic cancer therapy but have been rarely reported. We construct herein the first SNA nanoplatform based on a biodegradable binary peptide backbone of methionine (Met) and cysteine (Cys) for codelivery of a photosensitizer, Chlorin e6 (Ce6) and human liver-specific miR122 for synergistic photodynamic-gene therapy of hepatic cell carcinoma (HCC). Met supplementation by the peptide core improves the infiltration of T cells and enhances the effector function of T cells for turning a "cold" tumor into a "hot" one. The resulting SNA(+) shows the most significant inhibitory effect in a Hepa1-6 HCC primary/distal tumor model, with tumor growth inhibition (TGI) values of 98.5 ± 0.5 % and 99.1 ± 0.4 % for the primary and distant tumors, respectively. This SNA nanoplatform achieves superior high TGI values reported thus far to our knowledge with almost complete eradication for both tumors due to the simultaneous adaptive and innate immunity activation via photodynamic therapy (PDT) induced immunogenic cell death (ICD) and Met supplementation-promoted adaptive immunity, and miR122-enhanced innate immunity. Overall, this study not only develops a reliable synthetic strategy toward peptide-backboned multifunctional SNA nanoplatform, but also reports the modulation of amino acid metabolism for enhanced innate immunity for highly efficient HCC immunotherapy.
Collapse
Affiliation(s)
- Mingchao Jiang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Luanfeng Liao
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Jinyan Zhang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Xiaojie Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China; Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Hua Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Shen W, Hong Q, Huo X, Zhou Y, Guo Y, Liu Z. Fluorescent immunoassay for chloramphenicol based on the label-free polyadenine-mediated spherical nucleic acids triggered signal amplification. ANAL SCI 2024; 40:1331-1338. [PMID: 38607597 DOI: 10.1007/s44211-024-00565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
A fluorescent immunosorbent assay incorporating signal amplification away from the surface of spherical nucleic acid (SNA) was developed for the detection of chloramphenicol (CAP). Through the conjugation of antibodies and poly-adenine (polyA) DNA onto the surface of gold nanoparticles (AuNPs), the fabrication of the nano-immunoprobe was achieved in a more straightforward and cost-effective manner. Moreover, a strategy utilizing the hybridization chain reaction (HCR) in the amplification step was devised, with particular attention given to the enzyme inhibition associated with SNA. The results demonstrated good performance on CAP detection with a linear range of 0.01-5 ng/L with a detection limit of 0.005 ng/L. The significance of this work mainly lies in the polyA-SNA-based immunoprobe and the thoughtful design to prevent enzyme inhibition.
Collapse
Affiliation(s)
- Weiwei Shen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd., Shanghai, People's Republic of China
| | - Xiang Huo
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention; Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Yijing Zhou
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention; Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
3
|
Wang H, Liu J, Fang Y, Shen X, Liu H, Yu L, Zeng S, Cai S, Zhou J, Li Z. Design and analysis of self-priming extension DNA hairpin probe for miRNA detection based on a unified dynamic programming framework. Anal Chim Acta 2024; 1303:342530. [PMID: 38609269 DOI: 10.1016/j.aca.2024.342530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
MicroRNAs (miRNAs) are potential biomarkers for cancer diagnosis and prognosis, methods for detecting miRNAs with high sensitivity, selectivity, and stability are urgently needed. Various nucleic acid probes that have traditionally been for this purpose suffer several drawbacks, including inefficient signal-to-noise ratios and intensities, high cost, and time-consuming method establishment. Computing tools used for investigating the thermodynamics of DNA hybridization reactions can accurately predict the secondary structure of DNA and the interactions between DNA molecules. Herein, NUPACK was used to design a series of nucleic acid probes and develop a phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) signal amplification strategy, which enabled the ultrasensitive detection of miR-200a in serum samples. The free and binding energies of the DNA detection probes calculated using NUPACK, as well as the biological experimental results, were considered synthetically to select the best sequence and experimental conditions. A unified dynamic programming framework, NUPACK analysis and the experimental data, were complementary and improved the designed model in all respects. Our study demonstrates the feasibility of using computer technology such as NUPACK to simplify the experimental process and provide intuitive results.
Collapse
Affiliation(s)
- Hecheng Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiatong Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanyan Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xudan Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hui Liu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jingjing Zhou
- Beijing Lab for Cardiovascular Precision Medicine, Echocardiography Medical Center, Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Zheyong Li
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China; Zhejiang University Sir Run Run Shaw Alaer Hospital, Alaer, Xinjiang, 843300, China.
| |
Collapse
|
4
|
Chen H, Zheng S, Zhang Y, Tang Q, Zhang R, Chen Y, Wu M, Liu L. Visual Detection of LPS at the Femtomolar Level Based on Click Chemistry-Induced Gold Nanoparticles Electrokinetic Accumulation. Anal Chem 2024; 96:6995-7004. [PMID: 38666367 DOI: 10.1021/acs.analchem.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Lipopolysaccharide (LPS) presents a significant threat to human health. Herein, a novel method for detecting LPS was developed by coupling hybridization chain reaction (HCR), gold nanoparticles (AuNPs) agglutination (AA) triggered by a Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry (CuAAC), and electrokinetic accumulation (EA) in a microfluidic chip, termed the HCR-AA-EA method. Thereinto, the LPS-binding aptamer (LBA) was coupled with the AuNP-coated Fe3O4 nanoparticle, which was connected with the polymer of H1 capped on CuO (H1-CuO) and H2-CuO. Upon LPS recognition by LBA, the polymers of H1- and H2-CuO were released into the solution, creating a "one LPS-multiple CuO" effect. Under ascorbic acid reduction, CuAAC was initiated between the alkyne and azide groups on the AuNPs' surface; then, the product was observed visually in the microchannel by EA. Finally, LPS was quantified by the integrated density of AuNP aggregates. The limit of detections were 29.9 and 127.2 fM for water samples and serum samples, respectively. The levels of LPS in the injections and serum samples by our method had a good correlation with those from the limulus amebocyte lysate test (r = 0.99), indicating high accuracy. Remarkably, to popularize our method, a low-cost, wall-power-free portable device was developed, enabling point-of-care testing.
Collapse
Affiliation(s)
- Hanren Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiquan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yitong Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Runhui Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Chen
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Meiming Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Wei S, Tang Q, Hu X, Ouyang W, Shao H, Li J, Yan H, Chen Y, Liu L. Rapid, Ultrasensitive, and Visual Detection of Pathogens Based on Cation Dye-Triggered Gold Nanoparticle Electrokinetic Agglutination Analysis. ACS Sens 2024; 9:325-336. [PMID: 38214583 DOI: 10.1021/acssensors.3c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Rapid prescribing of the right antibiotic is the key to treat infectious diseases and decelerate the challenge of bacterial antibiotic resistance. Herein, by targeting the 16S rRNA of bacteria, we developed a cation dye-triggered electrokinetic gold nanoparticle (AuNP) agglutination (CD-TEAA) method, which is rapid, visual, ultrasensitive, culture-independent, and low in cost. The limit of detection (LOD) is as low as 1 CFU mL-1 Escherichia coli. The infection identifications of aseptic fluid samples (n = 11) and urine samples with a clinically suspected urinary tract infection (UTI, n = 78) were accomplished within 50 and 30 min for each sample, respectively. The antimicrobial susceptibility testing (AST) of UTI urine samples was achieved within 2.5 h. In ROC analysis of urine, the sensitivity and specificity were 100 and 96% for infection identification, and 100 and 98% for AST, respectively. Moreover, the overall cost of materials for each test is about US$0.69. Therefore, the CD-TEAA method is a superior approach to existing, time-consuming, and expensive methods, especially in less developed areas.
Collapse
Affiliation(s)
- Siqi Wei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Tang Q, Li Z, Li J, Chen H, Yan H, Deng J, Liu L. PCR-Free, Label-Free, and Centrifugation-Free Diagnosis of Multiplex Antibiotic Resistance Genes by Combining mDNA-Au@Fe 3O 4 from Heating Dry and DNA Concatamers with G-Triplex. Anal Chem 2024; 96:292-300. [PMID: 38141016 DOI: 10.1021/acs.analchem.3c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Accurate identification of antibiotic resistance genes (ARGs) is crucial for improving treatment and controlling the spread of antibiotic-resistant bacteria (ARB). Herein, a novel PCR-free, centrifugation-free, and label-free magnetic fluorescent biosensor (MFB) was developed by combining polyA-medium DNA-polyT (mDNA, which contained a partial sequence of a target DNA), gold nanoparticle (AuNP)-anchored magnetic nanoparticle (Au@Fe3O4), complementary strand DNA (CS) of the target DNA, DNA concatamer with G-triplex (G3), and thioflavin T (ThT). Thereinto, Au@Fe3O4 nanoparticles were first capped by mDNA strands within 20 min using a simple hot drying method, and then CS was added and hybridized with mDNA on Au@Fe3O4. Second, a DNA concatamer was used to bind with CS on Au@Fe3O4. When an ARG was present in the sample, the CS would recognize it and release the DNA concatamer into solution by a toehold-mediated strand displacement reaction. Finally, under magnetic separation, the free DNA concatamers with G3 were taken out easily and bound with ThT, resulting in strong fluorescence signals. The fluorescence intensity of ThT was positively correlated with the concentration of the ARG. The whole analysis was accomplished within 1.5 h using 96-well plates. Remarkably, our MFB was universal; eight ARGs were detected by replacing the corresponding mDNA and CS in this study. To verify the practicability of our method, 12 clinically isolated strains were analyzed. The results of the MFB method were in good agreement with those of the quantitative real-time PCR method with an area under the curve of 0.92 (95% confidence interval: 0.8479 to 0.9932), sensitivity of 92.00%, and specificity of 91.55%. Above all, the MFB assay established here is simple, low-cost, and universal and has great potential for applications in the identification of ARGs.
Collapse
Affiliation(s)
- Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhijie Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanren Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Chen Y, Deng J, Zhang R, Shao H, Xu D, Liu L. Rapid and Nondestructive Evaluation of Platelet Function in Whole Blood by Microfluidic Deterministic Cytometry. Anal Chem 2024; 96:145-153. [PMID: 38146268 DOI: 10.1021/acs.analchem.3c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Platelet size is a determinant of platelet function. Here, a new microfluidic deterministic cytometry packed with S-shaped micropillars (S-MDC) was developed to rapidly and sensitively determine the apparent size (Dapp) of platelets, which was used to evaluate platelet function. The platelet Dapp in the diluted whole blood was rapidly and label-freely measured by S-MDC within 2 min under shear rates (0.4 mm/s) that mimicked physiological conditions. The level of CD62p on platelets scarcely changed before and after platelets went through the whole S-MDC, indicating that the platelet function was nondestructive. Notably, the human platelet Dapp determined before and after thrombin addition by S-MDC was highly coincident with the levels of CD62p on the platelet surface by flow cytometry (r = 0.819), revealing that the human platelet Dapp was available to assess the platelet activation state. In addition, the results of the rat platelet Dapp were consistent with myocardial injury of rats with myocardial ischemia before and after treatment with antiplatelet agents, suggesting that rat platelet Dapp can be used to reflect myocardial injury in vivo outcomes. These findings reveal that S-MDC is a promising technique for screening tests for a bleeding disorder, in addition to monitoring antiplatelet drugs.
Collapse
Affiliation(s)
- Yue Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Runhui Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Zhang Y, Bai H, Zhang W, Gao J, Gao C, Deng T, Liu X, Sun X, Liu Y, Wang N, Wu Y. miR-212/132 attenuates OVA-induced airway inflammation by inhibiting mast cells activation through MRGPRX2 and ASAP1. Exp Cell Res 2023; 433:113828. [PMID: 37875175 DOI: 10.1016/j.yexcr.2023.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Allergic asthma is a chronic inflammatory disease of airways involving complex mechanisms, including MAS-related GPR family member X2 (MRGPRX2) and its orthologue MRGPRB2 on mast cells (MCs). Although miRNAs have been previously shown to related to allergic asthma, the role of miR-212/132 in this process has not been studied. In this study, the predicted pairing of miRNAs and MRGPRX2 (MRGPRB2) mRNAs was carried out by online databases and the function was verify using in vivo and in vitro experiments. Database prediction showed that miR-212/132 interact with MRGPRX2 and MRGPRB2. miR-212/132 mimics alleviated MRGPRB2 mRNA expression as well as pathology changes in lungs and AHR of mice with airway inflammation in vivo. The expression level of MRGPRB2 in the mice lungs after inhaled OVA was also decreased by miR-212/132 mimics. Meanwhile, miR-212/132 inhibited MCs degranulation and cytokines release triggered by C48/80 in vitro. Further, ASAP1 (ARF GTPase-Activating Protein 1) was selected from the junction related pathways using RNAseq and KEGG enrichment. ASAP1 mRNA level was upregulated in airway inflammation and MCs activation and decreased by miR-212/132 mimics. miR-212/132 attenuated OVA-induced airway inflammation by inhibiting MCs activation through MRGPRX2 and ASAP1.
Collapse
Affiliation(s)
- Yongjing Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Chang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Deng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| | - Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Hu R, Liu Y, Wang G, Lv J, Yang J, Xiao H, Liu Y, Zhang B. Amplification-free microRNA profiling with femtomolar sensitivity on a plasmonic enhanced fluorescence nano-chip. Anal Chim Acta 2023; 1280:341870. [PMID: 37858557 DOI: 10.1016/j.aca.2023.341870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules involved in the regulation of gene expression, thus considered as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, etc. However, quantitative analysis of miRNAs faces challenges owing to their high homology, small size & ultra-low abundance, and disease occurrence is often related to abnormal expression of multiple miRNAs where method for parallel miRNAs analysis is required. In this work, multiplexed analysis of miRNAs was established on a plasmonic nano-chip capable of fluorescence enhancement in the near-infrared region. Combined with polyadenylation at the hydroxyl terminate of target miRNA to afford abundant sites for fluorophore labeling, our assay achieved amplification-free detection of miRNAs from nM to fM with the limit of detection down to ca. 5 fM. A miRNA panel was constructed to detect 10 miRNAs differentially expressed in MCF-7 and A549 cell lines and validated with qRT-PCR, demonstrating the practical application of this method. This scalable platform can be customized for different miRNA panels, facilitating multiple miRNA profiling for various diseases.
Collapse
Affiliation(s)
- Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|