1
|
Alkhalidy H, Al-Nabulsi AA, Al-Taher M, Osaili T, Olaimat AN, Liu D. Date (Phoenix dactylifera L.) seed oil is an agro-industrial waste with biopreservative effects and antimicrobial activity. Sci Rep 2023; 13:17142. [PMID: 37816813 PMCID: PMC10564903 DOI: 10.1038/s41598-023-44251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Antimicrobial resistant (AMR) infections are a leading health threat globally. Previous literature has underscored the farm-to-fork continuum as a potential focal point for the emergence and spread of AMR. In the present study, date (Phoenix dactylifera L.) seed oil was investigated for its chemical composition and antimicrobial activity against common foodborne pathogens including Escherichia coli O157:H7, Salmonella enteritidis, Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus in vitro, and in ultra-high-temperature (UHT) milk as a food model at storage temperatures of 37 °C (24 h) and 10 °C (7 days). GC-MS analysis of the seed oil revealed 20 compounds, with octadecane (52.2-55.4%) as the major constituent, and the fatty acid analysis revealed 17 fatty acids, with oleic acid (42.3-43.1%) as the main constituent, followed by lauric acid (19.8-20.3%). The antimicrobial activity of date seed oil was determined using the microdilution method. A significant inhibition against gram-negative bacteria was noted in microbiological media and UHT milk, with a log reduction ranging from 4.3 to 6.7 (at 37 °C/24 h) and 5.7 to 7.2 (at 10 °C/7 days), respectively, at oil concentrations ranging between 10 and 15 µl/ml. The oil showed a similar significant inhibitory effect against St. aureus in the microbiological media (2.0-6.0 log reduction), whereas the inhibitory effect against L. monocytogenes was not statistically significant, with a maximum log reduction of 0.64 achieved at a concentration of 10 µl/ml. AFM imaging of the bacteria showed that oil treatment led to morphological changes in the bacteria including the formation of distorted shapes, surface blebs, indentations, stiffness, and swelling. Present findings suggest that date seed oil can be a promising by-product with potential antimicrobial activity and a food preservative.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Marah Al-Taher
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Meng S, Xu Z, Wang X, Liu Y, Li B, Zhang J, Zhang X, Liu T. Synthesis and photodynamic antimicrobial chemotherapy against multi-drug resistant Proteus mirabilis of ornithine-porphyrin conjugates in vitro and in vivo. Front Microbiol 2023; 14:1196072. [PMID: 37362917 PMCID: PMC10285166 DOI: 10.3389/fmicb.2023.1196072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
For the treatment of bacterial infections, photodynamic antimicrobial chemotherapy (PACT) has the advantage of circumventing multi-drug resistance. In this work, new cationic photosensitizers against multi-drug resistant Proteus mirabilis (MRPM) were designed and synthesized by the conjugation of amino phenyl porphyrin with basic amino acid L-ornithine. Their photoinactivation efficacies against MRPM in vitro were reported and include the influence of laser energy, uptake, MIC and MBC, dose-dependent photoinactivation effects, membrane integrity, and fluorescence imaging. The PACT in vivo was evaluated using a wound mouse model infected by MRPM. Photosensitizer 4d displayed high photo inactivation efficacy against MRPM at 7.81 μM under illumination, and it could accelerate wound healing via bactericidal effect. These ornithine-porphyrin conjugates are potential photosensitizers for PACT in the treatment of MRPM infection.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zengping Xu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Xueming Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Bole Li
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jie Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiaolong Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
3
|
Awassa J, Soulé S, Cornu D, Ruby C, El-Kirat-Chatel S. Understanding the role of surface interactions in the antibacterial activity of layered double hydroxide nanoparticles by atomic force microscopy. NANOSCALE 2022; 14:10335-10348. [PMID: 35833371 DOI: 10.1039/d2nr02395d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the mechanisms of the interactions between zinc-based layered double hydroxides (LDHs) and bacterial surfaces is of great importance to improve the efficiency of these antibiotic-free antibacterial agents. In fact, the role of surface interactions in the antibacterial activity of zinc-based LDH nanoparticles compared to that of dissolution and generation of reactive oxygen species (ROS) is still not well documented. In this study, we show that ZnAl LDH nanoparticles exhibit a strong antibacterial effect against Staphylococcus aureus by inducing serious cell wall damages as revealed by the antibacterial activity tests and atomic force microscopy (AFM) imaging, respectively. The comparison of the antibacterial properties of ZnAl LDH nanoparticles and micron-sized ZnAl LDHs also demonstrated that the antibacterial activity of Zn-based LDHs goes beyond the simple dissolution into Zn2+ antibacterial ions. Furthermore, we developed an original approach to functionalize AFM tips with LDH films in order to probe their interactions with living S. aureus cells by means of AFM-based force spectroscopy (FS). The force spectroscopy analysis revealed that antibacterial ZnAl LDH nanoparticles show specific recognition of S. aureus cells with high adhesion frequency and remarkable force magnitudes. This finding provides a first insight into the antibacterial mechanism of Zn-based LDHs through direct surface interactions by which they are able to recognize and adhere to bacterial surfaces, thus damaging them and leading to subsequent growth inhibition.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Samantha Soulé
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | | |
Collapse
|
4
|
Synthesis, antibacterial evaluation and in silico study of DOTA-fluoroquinolone derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02869-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Wang M, Li Z, Zhang Y, Li Y, Li N, Huang D, Xu B. Interaction with teichoic acids contributes to highly effective antibacterial activity of graphene oxide on Gram-positive bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125333. [PMID: 33951879 DOI: 10.1016/j.jhazmat.2021.125333] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 05/20/2023]
Abstract
Graphene oxide (GO) has high-efficient antibacterial activity to diverse pathogenic bacteria. However, the detailed antibacterial mechanism of GO is not fully clear. Herein the antibacterial properties of GO against model Gram-positive (Gram+) (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative (Gram-) bacteria (Pseudomonas aeruginosa and Escherichia coli) were compared by plate count method. Results showed that 4 mg/L of GO induced the mortality of Gram+ and Gram- bacteria by > 99% and < 25%, respectively. GO had greater adsorption affinity to teichoic acids, the unique components existing in the cell wall of Gram+ bacteria, mainly via π-π interaction. The adsorption efficiency of teichoic acids was 27 times higher than that of peptidoglycan when they were simultaneously exposed to 100 mg/L GO. The superior adsorption of teichoic acids onto GO increased one order of magnitude of atlA expression, the autolysin related gene. As a result, these accelerated bacterial death by hydrolyzing peptidoglycan in cell walls. Exogenous addition of 50 mg/L teichoic acids could impair 4-5 fold of antibacterial activity of GO against S. aureus. These new findings illuminate the antibacterial mechanism of GO against Gram+ bacteria, which paves the way for the further application of graphene-based materials in water disinfection and pathogen control.
Collapse
Affiliation(s)
- Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Zhangqiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yunyun Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| | - Baile Xu
- Institut für Biologie, Freie Universität Berlin, Berlin D-14195, Germany
| |
Collapse
|
6
|
Induced photo-cytotoxicity on prostate cancer cells with the photodynamic action of toluidine Blue ortho. Photodiagnosis Photodyn Ther 2021; 34:102306. [PMID: 33901692 DOI: 10.1016/j.pdpdt.2021.102306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) has become an advantageous therapeutic approach for the treatment of select cancers and microbial infections. PDT generates toxic reactive oxygen species as an end product of the interaction between the photosensitizer and light with an appropriate wavelength. Toluidine blue ortho is a photosensitizer that is commonly used in the photodynamic treatment of bacterial infection and a promising photosensitizer for cancer treatment. This study aims to evaluate the potential photo-cytotoxicity of toluidine blue ortho-mediated photodynamic therapy on PC-3 prostate cancer cells. METHODS In this study toluidine blue ortho-mediated photodynamic therapy was assessed on PC-3 cancer cells with various photosensitizer concentrations and light energy densities of the 655-nm diode laser. MTT analysis was used for the determination of the cytotoxicity on the cells and viability/cytotoxicity assay was used for live/dead cell staining after the applications. The mechanism of this application was further analyzed with the determination of intracellular reactive oxygen species and nitric oxide release. RESULTS The light applications and the photosensitizer alone did not inhibit the cell viability of PC-3 cells. 20 J/cm2 laser energy density together with 100 μM photosensitizer concentration resulted in maximum cancer cell death with a rate of approximately 89 %. The level of intracellular reactive oxygen species increased with the increasing parameters of the applications that resulted in more cell death. CONCLUSION This study showed the successful anticancer activity of toluidine blue ortho upon irradiation with 655 nm of laser light against PC-3 cancer cells and it was mediated with the production of reactive oxygen species.
Collapse
|
7
|
Photodynamic effect of TPP encapsulated in polystyrene nanoparticles toward multi-resistant pathogenic bacterial strains: AFM evaluation. Sci Rep 2021; 11:6786. [PMID: 33762617 PMCID: PMC7990921 DOI: 10.1038/s41598-021-85828-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Photodynamic inactivation (PDI) is a promising approach for the efficient killing of pathogenic microbes. In this study, the photodynamic effect of sulfonated polystyrene nanoparticles with encapsulated hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP-NP) photosensitizers on Gram-positive (including multi-resistant) and Gram-negative bacterial strains was investigated. The cell viability was determined by the colony forming unit method. The results showed no dark cytotoxicity but high phototoxicity within the tested conditions. Gram-positive bacteria were more sensitive to TPP-NPs than Gram-negative bacteria. Atomic force microscopy was used to detect changes in the morphological properties of bacteria before and after the PDI treatment.
Collapse
|
8
|
Pereira LM, Estevam LR, da Silva MF, Pinheiro SL. Polyacrylic Acid with Methylene Blue Dye as a Sensitizing Agent for Photodynamic Therapy to Reduce Streptococcus mutans in Dentinal Caries. Photobiomodul Photomed Laser Surg 2020; 38:687-693. [PMID: 32758049 DOI: 10.1089/photob.2019.4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Objective: To evaluate 11.5% polyacrylic acid (PA) containing 0.3% methylene blue (MB) dye as a photosensitizer for photodynamic therapy (PDT) of carious dentin. Methods: One hundred twenty molars were selected and the dentin was exposed for cariogenic challenge, where the molars were placed in brain heart infusion medium containing a standard strain of Streptococcus mutans (ATCC). Samples were randomly divided into eight groups (n = 15): S: saline, PA, MB: MB 0.3%, PA+MB: PA containing 0.3% MB + LLL: irradiation with low-level laser, PDT (MB): MB 0.3% + laser, PDT (PA): PA + laser, and PDT (PA+MB): PA containing 0.3% MB + laser. Carious dentin was collected before and after exposure to S. mutans. All samples of carious dentin were homogenized, diluted, and seeded in mitis salivarius bacitracin medium, and the cultures were incubated at 37°C for 15 days in anaerobic jars. The Wilcoxon test was used for analysis. Results: The percent microbial reduction achieved with each treatment was as follows: PDT (MB), 53.62%; PDT (PA+MB), 50.47%; PDT (PA), 46.73%; PA, 38.51%; MB, 19.75%; PA+MB, 17.18%; LLL, 12.83%; S, 5.99%. The greatest reductions in S. mutans growth occurred with PDT (MB), PDT (PA+MB), and PDT (PA) when compared to the S group (p = 0.0002, 0.0023, and 0.0232, respectively). Conclusions: PA containing 0.3% MB can be used as a photosensitizer for PDT to reduce S. mutans burden in carious dentin.
Collapse
Affiliation(s)
- Leticia Martins Pereira
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC Campinas), Campinas, Brazil
| | - Lorena Rodriguez Estevam
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC Campinas), Campinas, Brazil
| | - Mariana Franco da Silva
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC Campinas), Campinas, Brazil
| | - Sérgio Luiz Pinheiro
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC Campinas), Campinas, Brazil
| |
Collapse
|
9
|
Zhao ZJ, Xu ZP, Ma YY, Ma JD, Hong G. Photodynamic antimicrobial chemotherapy in mice with Pseudomonas aeruginosa-infected wounds. PLoS One 2020; 15:e0237851. [PMID: 32877414 PMCID: PMC7467278 DOI: 10.1371/journal.pone.0237851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/04/2020] [Indexed: 12/03/2022] Open
Abstract
This study examined the antibacterial effect of protoporphyrin IX–ethylenediamine derivative (PPIX-ED)–mediated photodynamic antimicrobial chemotherapy (PPIX-ED-PACT) against Pseudomonas aeruginosa in vitro and in vivo. PPIX-ED potently inhibited the growth of Pseudomonas aeruginosa by inducing reactive oxygen species production via photoactivation. Atomic force microscopy revealed that PPIX-ED-PACT induced the leakage of bacterial content by degrading the bacterial membrane and wall. As revealed using acridine orange/ethidium bromide staining, PPIX-ED-PACT altered the permeability of the bacterial membrane. In addition, the antibacterial effect of PPIX-ED-PACT was demonstrated in an in vivo model of P. aeruginosa-infected wounds. PPIX-ED (100 μM) decreased the number of P. aeruginosa colony-forming units by 4.2 log10. Moreover, histological analysis illustrated that the wound healing rate was 98% on day 14 after treatment, which was 10% higher than that in the control group. According to the present findings, PPIX-ED-PACT can effectively inhibit the growth of P. aeruginosa in vitro and in vivo.
Collapse
Affiliation(s)
- Zhan-Juan Zhao
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Zeng-Ping Xu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
| | - Ying-Ying Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
| | - Jin-Duo Ma
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
- * E-mail:
| |
Collapse
|
10
|
Bengtsson T, Selegård R, Musa A, Hultenby K, Utterström J, Sivlér P, Skog M, Nayeri F, Hellmark B, Söderquist B, Aili D, Khalaf H. Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics. Sci Rep 2020; 10:3580. [PMID: 32107445 PMCID: PMC7046733 DOI: 10.1038/s41598-020-60570-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The use of conventional antibiotics has substantial clinical efficacy, however these vital antimicrobial agents are becoming less effective due to the dramatic increase in antibiotic-resistant bacteria. Novel approaches to combat bacterial infections are urgently needed and bacteriocins represent a promising alternative. In this study, the activities of the two-peptide bacteriocin PLNC8 αβ were investigated against different Staphylococcus spp. The peptide sequences of PLNC8 α and β were modified, either through truncation or replacement of all L-amino acids with D-amino acids. Both L- and D-PLNC8 αβ caused rapid disruption of lipid membrane integrity and were effective against both susceptible and antibiotic resistant strains. The D-enantiomer was stable against proteolytic degradation by trypsin compared to the L-enantiomer. Of the truncated peptides, β1–22, β7–34 and β1–20 retained an inhibitory activity. The peptides diffused rapidly (2 min) through the bacterial cell wall and permeabilized the cell membrane, causing swelling with a disorganized peptidoglycan layer. Interestingly, sub-MIC concentrations of PLNC8 αβ substantially enhanced the effects of different antibiotics in an additive or synergistic manner. This study shows that PLNC8 αβ is active against Staphylococcus spp. and may be developed as adjuvant in combination therapy to potentiate the effects of antibiotics and reduce their overall use.
Collapse
Affiliation(s)
- Torbjörn Bengtsson
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden
| | - Robert Selegård
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.,Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Amani Musa
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Division of Clinical Research Centre, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Johanna Utterström
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | | | | | - Fariba Nayeri
- PEAS Research Institute, Department of Infection Control, Linköping, SE-58273, Sweden
| | - Bengt Hellmark
- Department of Clinical Microbiology, Örebro University Hospital, Örebro, SE-70185, Sweden
| | - Bo Söderquist
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.,Department of Clinical Microbiology, Örebro University Hospital, Örebro, SE-70185, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hazem Khalaf
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.
| |
Collapse
|
11
|
Optimization of hydrogel containing toluidine blue O for photodynamic therapy in treating acne. Lasers Med Sci 2019; 34:1535-1545. [PMID: 30825010 DOI: 10.1007/s10103-019-02727-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics and photodynamic therapy (PDT) are widely employed in curing acne. However, antibiotics as an effective treatment would lead to bacterial resistance and severe side effects. In this study, we aimed to develop a novel TBO hydrogel, which could prolong the retention time of photosensitizer (TBO) at the lesion site and improve therapeutic effect. In vitro antibacterial experiments (against Staphylococcus aureus and Escherichia coli), the response surface methodology was used to optimize the formulation of TBO hydrogel. The results indicated that the optimal formulation was 0.5% (v/v) carbomer, 0.01 mg/mL TBO, 0.5% (v/v) ethanol concentration, 0.5% (v/v) Tween 80, the mass ratio of NaOH to carbomer of 0.4 (w/w). The TBO hydrogel formulation showed the strong antibacterial activity for Propionibacterium acnes. The stability, pH, and antibacterial activity of TBO hydrogel did not significantly change under 4 °C, 25 °C, and 40 °C during 6-week storage. Furthermore, TBO combined with carbomer hydrogel showed the 51.28% (4 h) and 69.80% (24 h) release. In summary, the hydrogel TBO might be a vital therapeutic strategy to promote the PDT applied in the topical therapy of acne. Graphical abstract A TBO hydrogel for photodynamic therapy in the treatment of acne.
Collapse
|
12
|
Parasuraman P, Antony AP, B SLS, Sharan A, Siddhardha B, Kasinathan K, Bahkali NA, Dawoud TMS, Syed A. Antimicrobial photodynamic activity of toluidine blue encapsulated in mesoporous silica nanoparticles against Pseudomonas aeruginosa and Staphylococcus aureus. BIOFOULING 2019; 35:89-103. [PMID: 30835535 DOI: 10.1080/08927014.2019.1570501] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the present study, the antimicrobial and antibiofilm efficacy of toluidine blue (TB) encapsulated in mesoporous silica nanoparticles (MSN) was investigated against Pseudomonas aeruginosa and Staphylococcus aureus treated with antimicrobial photodynamic therapy (aPDT) using a red diode laser 670 nm wavelength, 97.65 J cm-2 radiant exposure, 5 min). Physico-chemical techniques (UV-visible (UV-vis) absorption, photoluminescence emission, excitation, and FTIR) and high-resolution transmission electron microscopy (HR-TEM) were employed to characterize the conjugate of TB encapsulated in MSN (TB MSN). TB MSN showed maximum antimicrobial activities corresponding to 5.03 and 5.56 log CFU ml-1 reductions against P. aeruginosa and S. aureus, respectively, whereas samples treated with TB alone showed 2.36 and 2.66 log CFU ml-1 reductions. Anti-biofilm studies confirmed that TB MSN effectively inhibits biofilm formation and production of extracellular polymeric substances by P. aeruginosa and S. aureus.
Collapse
Affiliation(s)
| | - Asha P Antony
- a Department of Microbiology, School of Life Sciences , Pondicherry University , Puducherry , India
| | - Sruthil Lal S B
- b Department of Physics, School of Physical, Chemical and Applied Sciences , Pondicherry University , Puducherry , India
| | - Alok Sharan
- b Department of Physics, School of Physical, Chemical and Applied Sciences , Pondicherry University , Puducherry , India
| | - Busi Siddhardha
- a Department of Microbiology, School of Life Sciences , Pondicherry University , Puducherry , India
| | - Kaviyarasu Kasinathan
- c UNESCO-UNISA Africa Chair in Nanoscience's/Nanotechnology Laboratories, College of Graduate Studies , University of South Africa (UNISA) , Ridge , South Africa
- d Nanosciences African Network (NANOAFNET), Materials Research Group (MRG) , iThemba LABS-National Research Foundation (NRF) , Somerset West , Western Cape Province , South Africa
| | - Needa A Bahkali
- e Biological Sciences Department, Wagner College , Staten Island , NY , USA
| | - Turki M S Dawoud
- f Department of Botany and Microbiology, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Asad Syed
- f Department of Botany and Microbiology, College of Science , King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
13
|
Hu J, Lin S, Tan BK, Hamzah SS, Lin Y, Kong Z, Zhang Y, Zheng B, Zeng S. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res Int 2018; 111:265-271. [DOI: 10.1016/j.foodres.2018.05.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
14
|
Wu D, Gao Y, Tan Y, Liu Y, Wang L, Zhou M, Xi X, Ma C, Bininda-Emonds ORP, Chen T, Shaw C. Discovery of Distinctin-Like-Peptide-PH (DLP-PH) From the Skin Secretion of Phyllomedusa hypochondrialis, a Prototype of a Novel Family of Antimicrobial Peptide. Front Microbiol 2018; 9:541. [PMID: 29628917 PMCID: PMC5876494 DOI: 10.3389/fmicb.2018.00541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Amphibian skin secretions are an important treasure house of bioactive antimicrobial peptides (AMPs). Despite having been the focus of decades of research in this context, investigations of phyllomedusine frogs continue to identify new AMPs from their skin secretions. In this study, the prototype of a novel family of AMP distinctin-like-peptide-PH (DLP-PH) was identified from the skin secretion of the otherwise well-studied Tiger-Legged Tree Frog Phyllomedusa hypochondrialis through cloning of its precursor-encoding cDNA from a skin secretion-derived cDNA library by a 3′-rapid amplification of cDNA ends (RACE) strategy. Subsequently, the mature peptide was isolated and characterized using reverse-phase HPLC and MS/MS fragmentation sequencing. DLP-PH adopted an α-helical conformation in membrane mimetic solution and demonstrated unique structural features with two distinct domains that differed markedly in their physiochemical properties. Chemically synthesized replicates of DLP-PH showed antimicrobial activity against planktonic bacterial and yeast cells, but more potent against Escherichia coli at 32 μg/mL. However, DLP-PH showed much weaker inhibitory activity against the growth of sessile cells in biofilms. In addition, DLP-PH exhibited anti-proliferative activity against human cancer cell lines, H157, and PC3, but with no major toxicity against normal human cell, HMEC-1. These combined properties make DLP-PH deserving further study as an antimicrobial agent and further investigations of its structure-activity relationship could provide valuable new insights into drug lead candidates for antimicrobial and/or anti-cancer purposes.
Collapse
Affiliation(s)
- Di Wu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Yitian Gao
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Yining Tan
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Yuzhang Liu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Olaf R P Bininda-Emonds
- AG Systematik und Evolutionsbiologie, IBU-Faculty V, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
Rout B, Liu CH, Wu WC. Photosensitizer in lipid nanoparticle: a nano-scaled approach to antibacterial function. Sci Rep 2017; 7:7892. [PMID: 28801673 PMCID: PMC5554217 DOI: 10.1038/s41598-017-07444-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Photosensitization-based antimicrobial therapy (PAT) is an alternative therapy aimed at achieving bacterial inactivation. Researchers use various photosensitizers to achieve bacterial inactivation. However, the most widely used approach involves the use of photosensitizers dispersed in aqueous solution, which could limit the effectiveness of photodynamic inactivation. Therefore, the approaches to encapsulate the photosensitizer in appropriate vehicles can enhance the delivery of the photosensitizer. Herein, Toluidine Blue O (TBO) was the photosensitizer, and lipid nanoparticles were used for its encapsulation. The lipid nanoparticle-based delivery system has been tailor-made for decreasing the average size and viscosity and increasing the formulation stability as well as the wettability of skin. Usage of an appropriate vehicle will also increase the cellular uptake of the photosensitizer into the bacterial cells, leading to the damage on cell membrane and genomic DNA. Evidence of effectiveness of the developed PAT on planktonic bacteria and biofilms was examined by fluorescence microscopy and scanning electron microscopy. Lipid nanoparticles protected the photosensitizer from aggregation and made the application easy on the skin as indicated in data of size distribution and contact angle. The use of lipid nanoparticles for encapsulating TBO could enhance photosensitization-based antimicrobial therapy as compared to the aqueous media for delivering photosensitizers.
Collapse
Affiliation(s)
- Bishakh Rout
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan
| | - Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan. .,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan. .,Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City, Taiwan. .,Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| |
Collapse
|
16
|
Liang H, Xu J, Liu Y, Zhang J, Peng W, Yan J, Li Z, Li Q. Optimization of hydrogel containing toluidine blue O for photodynamic therapy by response surface methodology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [DOI: 10.1016/j.jphotobiol.2017.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Romio KB, dos Santos KF, da Silva RJ, Pedro MF, Kalck AS, da Silva Sousa M, Possamai LM, Souto PC, Silva JR, de Souza NC. Incorporation of triclosan and acridine orange into liposomes for evaluating the susceptibility of Candida albicans. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:514-521. [DOI: 10.1016/j.jphotobiol.2017.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 12/17/2022]
|
18
|
Gao Y, Wu D, Wang L, Lin C, Ma C, Xi X, Zhou M, Duan J, Bininda-Emonds ORP, Chen T, Shaw C. Targeted Modification of a Novel Amphibian Antimicrobial Peptide from Phyllomedusa tarsius to Enhance Its Activity against MRSA and Microbial Biofilm. Front Microbiol 2017; 8:628. [PMID: 28469603 PMCID: PMC5395648 DOI: 10.3389/fmicb.2017.00628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/28/2017] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) in the skin secretions of amphibians are fundamental components of a unique defense system that has evolved to protect these hosts from microbial invasion. Medusins constitute a recently-discovered AMP family from phyllomedusine leaf frog skin and exhibit highly-conserved structural characteristics. Here, we report a novel medusin, medusin-PT, from the skin secretion of the Tarsier Leaf Frog, Phyllomedusa tarsius. The mature peptide was initially identified from its cloned biosynthetic precursor-encoding cDNA as obtained by the rapid amplification of cDNA ends (RACE) method. Reverse-phase HPLC and tandem mass spectrometry confirmed both the presence of medusin-PT in the skin secretion and its primary structure. In a range of bioassays, medusin-PT exhibited antimicrobial activity against only the Gram-positive bacterium Staphylococcus aureus at 64 μg/ml. However, after directed changes to enhance the cationicity and amphipathicity of the peptide structure, three analog showed more potent antimicrobial activity against several additional bacteria including the antibiotic-resistant bacterium MRSA. In addition, these analog exhibited activity against microbial biofilm (minimum biofilm inhibitory and eradication concentrations of 32 μg/ml and over 64 μg/ml, respectively). These data provide evidence that medusins might be promising candidates as novel antibiotic leads and that the targeted modification of a natural AMP can both improve its efficacy so as to provide new insights into antibiotic design and development.
Collapse
Affiliation(s)
- Yitian Gao
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK
| | - Di Wu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK
| | - Chen Lin
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK.,College of Basic Medical Science, Zhejiang Chinese Medial UniversityHangzhou, China
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK
| | - Jinao Duan
- Jiangsu Key Laboratory for Traditional Chinese Medicine Formulae Research, Nanjing University of Chinese MedicineNanjing, China
| | - Olaf R P Bininda-Emonds
- AG Systematik und Evolutionsbiologie, IBU-Faculty V, Carl von Ossietzky University OldenburgOldenburg, Germany
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University BelfastBelfast, UK
| |
Collapse
|
19
|
Photodynamic inactivation of fibroblasts and inhibition of Staphylococcus epidermidis adhesion and biofilm formation by toluidine blue O. Mol Med Rep 2017; 15:1816-1822. [PMID: 28259957 DOI: 10.3892/mmr.2017.6184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
Abstract
Treating skin and soft tissue infections of severe limb traumas can be challenging. Crucial concerns focus on inhibiting biofilm formation by antibiotic‑resistant bacteria, and preventing scar formation by fibroblastic hyperproliferation. The local use of toluidine blue O (TBO)‑mediated photodynamic therapy (PDT) may be a promising strategy for treating such lesions. The present study used Staphylococcus epidermidis (strain ATCC 35984) to assess the effects of TBO‑PDT on bacterial adherence and biofilm formation, using confocal laser scanning microscopy (CLSM), tissue culture plating (TCP) and scanning electron microscopy (SEM). Primary human fibroblast cells were used to evaluate the cytotoxicity of TBO‑PDT using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay and CLSM. Six different treatment groups were investigated: Medium only [tryptone soy broth (TSB) or Dulbecco's modified Eagle's medium (DMEM)]; red light control (light dose, 30 J/cm2); TBO group (50 mM TBO); TBO‑PDT1 (TBO irradiated with 10 J/cm2); TBO‑PDT2 (TBO irradiated with 20 J/cm2); and TBO‑PDT3 (TBO irradiated with 30 J/cm2). The results of the S. epidermidis adhesion assay indicated that the TSB, light and TBO groups exhibited significant bacterial adherence, compared with the TBO‑PDT groups. Analysis of biofilm formation revealed significant light dose‑dependent differences between the TBO‑PDT groups and the TSB, light, and TBO groups. Furthermore, SEM indicated fewer colony masses in the TBO‑PDT groups compared with the control groups. The MTT assay for fibroblastic cell toxicity demonstrated ~1.1, 4.6, 14.5, 29.7 and 43.4% reduction in optical density for the light, TBO, TBO‑PDT1, TBO‑PDT2 and TBO‑PDT3 groups, respectively, compared with the DMEM control group. There was no difference in toxicity between the light and control groups, however, there were significant differences among the TBO‑PDT groups. Finally, alterations in fibroblast morphology and cell spreading were revealed by CLSM, following TBO‑PDT treatment. TBO‑PDT inhibited bacterial adhesion and biofilm formation, and exhibited significant cytotoxic effects on human fibroblasts. These results indicate that the local use of TBO‑PDT in limb lesions may be a useful treatment method for inhibiting bacterial biofilm formation and fibroblastic hyperproliferation, which may prevent infectious hypertrophic scar formation.
Collapse
|
20
|
Kossakowska-Zwierucho M, Kaźmierkiewicz R, Bielawski KP, Nakonieczna J. Factors Determining Staphylococcus aureus Susceptibility to Photoantimicrobial Chemotherapy: RsbU Activity, Staphyloxanthin Level, and Membrane Fluidity. Front Microbiol 2016; 7:1141. [PMID: 27486456 PMCID: PMC4949386 DOI: 10.3389/fmicb.2016.01141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022] Open
Abstract
Photoantimicrobial chemotherapy (PACT) constitutes a particular type of stress condition, in which bacterial cells induce a pleiotropic and as yet unexplored effect. In light of this, the key master regulators are of putative significance to the overall phototoxic outcome. In Staphylococcus aureus, the alternative sigma factor σB controls the expression of genes involved in the response to environmental stress. We show that aberration of any sigB operon genes in S. aureus USA300 isogenic mutants causes a pronounced sensitization (>5 log10 reduction in CFU drop) to PACT with selected photosensitizers, namely protoporphyrin diarginate, zinc phthalocyanine and rose bengal. This effect is partly due to aberration-coupled staphyloxanthin synthesis inhibition. We identified frequent mutations in RsbU, a σB activator, in PACT-vulnerable clinical isolates of S. aureus, resulting in σB activity impairment. Locations of significant changes in protein structure (IS256 insertion, early STOP codon occurrence, substitutions A230T and A276D) were shown in a theoretical model of S. aureus RsbU. As a phenotypic hallmark of PACT-vulnerable S. aureus strains, we observed an increased fluidity of bacterial cell membrane, which is a result of staphyloxanthin content and other yet unidentified factors. Our research indicates σB as a promising target of adjunctive antimicrobial therapy and suggests that enhanced cell membrane fluidity may be an adjuvant strategy in PACT.
Collapse
Affiliation(s)
- Monika Kossakowska-Zwierucho
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Rajmund Kaźmierkiewicz
- Laboratory of Biomolecular Systems Simulation, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
21
|
Overall biochemical changes in bacteria photosensitized with cationic porphyrins monitored by infrared spectroscopy. Future Med Chem 2016; 8:613-28. [PMID: 27073984 DOI: 10.4155/fmc-2015-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Photodynamic inactivation of micro-organisms is a promising nonantibiotic multitarget approach to treat localized and superficial infections through oxidative stress. Herein, the changes occurring on major cellular components of Escherichia coli and Staphylococcus warneri, induced by photosensitization with cationic porphyrins (Tri-Py(+)-Me-PF and Tetra-Py(+)-Me) and white light, were monitored by infrared spectroscopy. RESULTS In E. coli, most of the changes occurred on proteins and lipids, suggesting a key effect on lipopolysaccharides in the first irradiation times. In S. warneri, proteins were the major molecular targets of oxidative damage but phospholipids and polysaccharides were also affected. CONCLUSION Infrared spectroscopy is a very interesting tool to monitor biochemical changes induced by photosensitization in bacteria and also to infer on its mechanism of action.
Collapse
|
22
|
Xu Z, Gao Y, Meng S, Yang B, Pang L, Wang C, Liu T. Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate. Front Microbiol 2016; 7:242. [PMID: 26973620 PMCID: PMC4774361 DOI: 10.3389/fmicb.2016.00242] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 01/21/2023] Open
Abstract
Lysine-porphyrin conjugate 4i has potent photosensitive antibacterial effect on clinical isolated bacterial strains such as Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. The mechanism of photodynamic antibacterial chemotherapy of 4i (4i-PACT) in vitro and the treatment effect in vivo was investigated in this paper. Atomic force microscopy (AFM) revealed that 4i-PACT can effectively destroy membrane and wall of bacteria, resulting in leakage of its content. This was confirmed by dual fluorescent staining with acridine orange/ethidium bromide and measuring materials absorption at 260 nm. Agarose gel electrophoresis measurement showed that 4i-PACT can damage genomic DNA. Healing of wound in rat infected by mixed bacteria showed that the efficiency of 4i-PACT is dependent on the dose of light. These results showed that 4i-PACT has promising bactericidal effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Zengping Xu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College - Chinese Academy of Medical Sciences Tianjin, China
| | - Yuxiang Gao
- Department of Materials Chemistry, Nankai University Tianjin, China
| | - Shuai Meng
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College - Chinese Academy of Medical SciencesTianjin, China; Tianjin Medical University Cancer Institute and HospitalTianjin, China
| | - Baochen Yang
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College - Chinese Academy of Medical Sciences Tianjin, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College - Chinese Academy of Medical Sciences Tianjin, China
| | - Chen Wang
- Tianjin Medical University Cancer Institute and Hospital Tianjin, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College - Chinese Academy of Medical Sciences Tianjin, China
| |
Collapse
|
23
|
Rout B, Liu CH, Wu WC. Enhancement of photodynamic inactivation against Pseudomonas aeruginosa by a nano-carrier approach. Colloids Surf B Biointerfaces 2016; 140:472-480. [PMID: 26808214 DOI: 10.1016/j.colsurfb.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/01/2015] [Accepted: 01/01/2016] [Indexed: 12/12/2022]
Abstract
As pathogens steadily develop resistance to widely used antibiotics, new methodologies for their efficient inactivation must be developed. Photodynamic therapy is an upcoming technique that provides an alternative option for treating pathogenic infections. The efficiency of photodynamic therapy has been limited by the use of aqueous mediums for dispersing photosensitising agents. Toluidine Blue O (TBO) was chosen for this study as a cationic photosensitiser to inhibit Gram-negative bacterium Pseudomonas aeruginosa. Enhanced delivery of the photosensitiser was ensured by utilising an essential oil-based microemulsion. The efficiency of photodynamic therapy was further improved by the use of a chemical penetration enhancer to improve permeability of the bacterial outer membrane. TBO accumulation patterns in neonate pig skin were studied using confocal laser scanning microscopy. The physicochemical properties of the TBO loaded microemulsion, including UV-vis absorbance, size distribution and zeta potential, were analysed to understand the enhanced antimicrobial activity. Confocal laser scanning microscopy confirmed the formation of a TBO reservoir in the skin by the TBO-loaded microemulsions. TBO (5 μg/mL) in the vehicles significantly inhibited the growth of P. aeruginosa. All these efforts resulted in inhibition obtained at a drug concentration and light intensity much lower than what is reported by the works of previous investigators.
Collapse
Affiliation(s)
- Bishakh Rout
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan 333, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwand College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwand College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan; College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| |
Collapse
|
24
|
Morphological changes in Salmonella Typhimurium caused by the lantibiotic bovicin HC5 in association with EDTA. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1117-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
López-Jiménez L, Fusté E, Martínez-Garriga B, Arnabat-Domínguez J, Vinuesa T, Viñas M. Effects of photodynamic therapy on Enterococcus faecalis biofilms. Lasers Med Sci 2015; 30:1519-26. [PMID: 25917515 PMCID: PMC4475243 DOI: 10.1007/s10103-015-1749-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/20/2015] [Indexed: 11/30/2022]
Abstract
Microbial biofilms are involved in almost all infectious pathologies of the oral cavity. This has led to the search for novel therapies specifically aimed at biofilm elimination. In this study, we used atomic force microscopy (AFM) to visualize injuries and to determine surface roughness, as well as confocal laser scanning microscopy (CLSM) to enumerate live and dead bacterial cells, to determine the effects of photodynamic therapy (PDT) on Enterococcus faecalis biofilms. The AFM images showed that PDT consisting of methylene blue and a 670-nm diode laser (output power 280 mW during 30 s) or toluidine blue and a 628-nm LED light (output power 1000 mW during 30 s) induced severe damage, including cell lysis, to E. faecalis biofilms, with the former also causing an important increase in surface roughness. These observations were confirmed by the increase in dead cells determined using CLSM. Our results highlight the potential of PDT as a promising method to achieve successful oral disinfection.
Collapse
Affiliation(s)
- L López-Jiménez
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Medical School, IDIBELL-University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Formiga Filho ALN, Carneiro VSM, Souza EA, Santos RL, Catão MHCV, Medeiros ACD. In Vitro Evaluation of Antimicrobial Photodynamic Therapy Associated with Hydroalcoholic Extracts of Schinopsis brasiliensis Engl.: New Therapeutic Perspectives. Photomed Laser Surg 2015; 33:240-5. [PMID: 25866862 DOI: 10.1089/pho.2014.3796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the photodynamic potential of extracts of Schinopsis brasiliensis Engl. on bacteria involved in several human infections. BACKGROUND DATA Photodynamic therapy (PDT) involves the interaction of light with an appropriate and photosensitizer wavelength, and the prospect of existing photosensitive compounds in herbal extracts enhanced by the application of laser diode has been promising. METHODS The antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis was obtained by the disk diffusion method on agar. The laser diode InGaAIP was used with 660 nm wavelength, 100 mW, and 4 J/cm(2), and the application was performed in a timely manner for 34 sec on each disk tested. The groups tested were: Laser and bark extract (B+L+); bark extract only (B+L-); Laser and leaf extract (F+L+); leaf extract only (F+L-); Laser and malachite green (M+L+); malachite green only (M+L-); and laser only (L+). RESULTS There were significant differences between the B+L- and B+L+ groups (p=0.029) and between the L+F- and L+F+ groups (p=0.029) at various concentrations of the nebulized extracts of bark and leaf. Among the tested pathogens, S. aureus showed the highest zone of inhibition, 24.55±0.36 mm in group B+L+, 500 mg.mL(-1). CONCLUSIONS PDT with malachite green was effective, and groups B+L+ and F+L+ showed excellent activity on the bacteria tested, suggesting the presence of photosensitizers in extracts of S. brasiliensis Engl.
Collapse
Affiliation(s)
- Amaro L N Formiga Filho
- 1 Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba , Bairro Universitário, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
López-Jiménez L, Arnabat-Domínguez J, Viñas M, Vinuesa T. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers. Med Oral Patol Oral Cir Bucal 2015; 20:e45-51. [PMID: 25475770 PMCID: PMC4320420 DOI: 10.4317/medoral.19991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/19/2014] [Indexed: 11/05/2022] Open
Abstract
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser.
Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined.
Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations.
Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability.
Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness.
Collapse
Affiliation(s)
- Lidia López-Jiménez
- Department of Dentistry, University of Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet del Llobregat, Barcelona, Spain,
| | | | | | | |
Collapse
|
28
|
Pinheiro SL, Silva JND, Gonçalves RO, Villalpando KT. Manual and Rotary Instrumentation Ability to Reduce Enterococcus faecalis Associated with Photodynamic Therapy in Deciduous Molars. Braz Dent J 2014; 25:502-7. [DOI: 10.1590/0103-6440201302414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 10/23/2014] [Indexed: 11/22/2022] Open
Abstract
This aim of this study was to assess the ability of manual or rotary instrumentation associated with photodynamic therapy (PDT) to reduce Enterococcus faecalis using three combinations of light/photosensitizers: toluidine blue O/laser, fuchsin/halogen light and fuchsin/LED. Twenty deciduous molars were selected and contaminated with Enterococcus faecalis (McFarland 0.5 scale). Working length determination was performed by visual method. The teeth were randomly divided into two groups: G1 (n=10): manual instrumentation (Kerr-type files) and G2 (n=10): rotary instrumentation (ProTaper system). The bacteria were collected three times using sterile paper cones compatible with the anatomic diameter of the root canal for 30 s before and after instrumentation and after PDT. The samples were diluted in peptone water, seeded on blood agar plates and incubated in an oven at 37 °C for colony-forming units counting. The decrease of E. faecalis counts after instrumentation and after PDT was compared using the Wilcoxon test, t-test and Kruskal Wallis test. A significant reduction of E. faecalis occurred after manual and rotary instrumentation and after PDT using the three combinations of light/photosensitizer (p<0.05). It may be concluded that both rotary and manual instrumentation reduced E. faecalis. Fuchsin with halogen light or LED irradiation and toluidine blue O with laser irradiation can be used to reduce E. faecalis in root canals of primary molars. PDT can be used as an adjuvant to conventional endodontic treatment.
Collapse
|
29
|
Abstract
The emergence of microbial resistance is becoming a global problem in clinical and environmental areas. As such, the development of drugs with novel modes of action will be vital to meet the threats created by the rise in microbial resistance. Microbial photodynamic inactivation is receiving considerable attention for its potentialities as a new antimicrobial treatment. This review addresses the interactions between photosensitizers and bacterial cells (binding site and cellular localization), the ultrastructural, morphological and functional changes observed at initial stages and during the course of photodynamic inactivation, the oxidative alterations in specific molecular targets, and a possible development of resistance.
Collapse
|
30
|
Bera R, Mandal S, Raj C. Antimicrobial activity of fluorescent Ag nanoparticles. Lett Appl Microbiol 2014; 58:520-6. [DOI: 10.1111/lam.12222] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 02/06/2023]
Affiliation(s)
- R.K. Bera
- Department of Chemistry; Indian Institute of Technology; Kharagpur India
| | - S.M. Mandal
- Central Research Facility; Indian Institute of Technology; Kharagpur India
| | - C.R. Raj
- Department of Chemistry; Indian Institute of Technology; Kharagpur India
| |
Collapse
|
31
|
Morphological alterations on Citrobacter freundii bacteria induced by erythrosine dye and laser light. Lasers Med Sci 2013; 30:469-73. [DOI: 10.1007/s10103-013-1421-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
|
32
|
Eick S, Markauskaite G, Nietzsche S, Laugisch O, Salvi GE, Sculean A. Effect of photoactivated disinfection with a light-emitting diode on bacterial species and biofilms associated with periodontitis and peri-implantitis. Photodiagnosis Photodyn Ther 2013; 10:156-67. [DOI: 10.1016/j.pdpdt.2012.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
|
33
|
Samanta T, Roymahapatra G, Porto WF, Seth S, Ghorai S, Saha S, Sengupta J, Franco OL, Dinda J, Mandal SM. N, N'-Olefin functionalized bis-imidazolium gold(I) salt is an efficient candidate to control keratitis-associated eye infection. PLoS One 2013; 8:e58346. [PMID: 23554886 PMCID: PMC3598898 DOI: 10.1371/journal.pone.0058346] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 02/03/2013] [Indexed: 01/20/2023] Open
Abstract
Keratitis treatment has become more complicated due to the emergence of bacterial or fungal pathogens with enhanced antibiotic resistance. The pharmaceutical applications of N-heterocyclic carbene complexes have received remarkable attention due to their antimicrobial properties. In this paper, the new precursor, 3,3′-(p-phenylenedimethylene) bis{1-(2- methyl-allyl)imidazolium} bromide (1a) and its analogous PF6 salt (1b) were synthesized. Furthermore, silver(I) and gold(I) -N-heterocyclic carbene (NHC) complexes [Ag2LBr2/Au2LBr2; 2a/3a], [(Ag2L2)(PF6)2/(Au2L2)(PF6)2; 2b/3b] were developed from their corresponding ligands. All compounds were screened for their antimicrobial activities against multiple keratitis-associated human eye pathogens, including bacteria and fungi. Complexes 2a and 3a showed highest activity, and the effectiveness of 3a was also studied, focusing eradication of pathogen biofilm. Furthermore, the structures of 1a, 2a and 3b were determined using single crystal X-ray analysis, 2b and 3a were optimized theoretically. The mechanism of action of 3a was evaluated by scanning electron microscopy and docking experiments, suggesting that its target is the cell membrane. In summary, 3a may be helpful in developing antimicrobial therapies in patients suffering from keratitis-associated eye infections caused by multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Tapastaru Samanta
- School of Applied Sciences, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - William F. Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Brasília-DF, Brazil
| | - Saikat Seth
- Mugberia Gangadhar College, Egra Sarada Sashibhusan Mahavidyalaya, West Bengal, India
| | - Sudipta Ghorai
- Mugberia Gangadhar College, Egra Sarada Sashibhusan Mahavidyalaya, West Bengal, India
| | - Suman Saha
- Priyamvada Birla Aravind Eye Hospital, Kolkata, West Bengal, India
| | | | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Brasília-DF, Brazil
| | - Joydev Dinda
- School of Applied Sciences, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- * E-mail:
| |
Collapse
|
34
|
Cui Y, Kim SH, Kim H, Yeom J, Ko K, Park W, Park S. AFM probing the mechanism of synergistic effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) with cefotaxime against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. PLoS One 2012; 7:e48880. [PMID: 23152812 PMCID: PMC3496731 DOI: 10.1371/journal.pone.0048880] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/01/2012] [Indexed: 11/26/2022] Open
Abstract
Background Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae poses serious challenges to clinicians because of its resistance to many classes of antibiotics. Methods and Findings The mechanism of synergistic activity of a combination of (−)-epigallocatechin-3-gallate (EGCG) and β-lactam antibiotics cefotaxime was studied on Extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC), by visualizing the morphological alteration on the cell wall induced by the combination using atomic force microscopy (AFM). Cells at sub-MICs (sub-minimum inhibitory concentrations) of cefotaxime were initially filamentated but recovered to the normal shape later, whereas cells at sub-MICs of EGCG experienced temporal disturbance on the cell wall such as leakage and release of cellular debris and groove formation, but later recovered to the normal shape. In contrast, the combination of cefotaxime and EGCG at their respective sub-MICs induced permanent cellular damages as well as continuous elongation in cells and eventually killed them. Flow cytometry showed that intracellular oxidative stress levels in the cell treated with a combination of EGCG and cefotaxime at sub-MICs were higher than those in the cells treated with either cefotaxime or EGCG at sub-MICs. Conclusions These results suggest that the synergistic effect of EGCG between EGCG and cefotaxime against ESBL-EC is related to cooperative activity of exogenous and endogenous reactive oxygen species (ROS) generated by EGCG and cefotaxime, respectively.
Collapse
Affiliation(s)
- Yidan Cui
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Korea
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - So Hyun Kim
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Korea
| | - Hyunseok Kim
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Korea
| | - Jinki Yeom
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Woojun Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea
| | - Sungsu Park
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Korea
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
35
|
Vilela SFG, Junqueira JC, Barbosa JO, Majewski M, Munin E, Jorge AOC. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: An in vitro study. Arch Oral Biol 2012; 57:704-10. [DOI: 10.1016/j.archoralbio.2011.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
|
36
|
Lin SL, Hu JM, Tang SS, Wu XY, Chen ZQ, Tang SZ. Photodynamic inactivation of methylene blue and tungsten-halogen lamp light against food pathogen Listeria monocytogenes. Photochem Photobiol 2012; 88:985-91. [PMID: 22469298 DOI: 10.1111/j.1751-1097.2012.01154.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to verify the bactericidal effect and the damage of photodynamic inactivation (PDI) using methylene blue (MB) and tungsten-halogen lamp over Listeria monocytogenes via atomic force microscopy, absorption spectrophotometry, agarose gel electrophoresis, real-time PCR and SDS-PAGE. The obtained data indicated that the viability of L. monocytogenes was ca 7-log reduced by illumination with 10 min tungsten-halogen lamp light under the presence of 0.5 μg mL(-1) MB, and this bactericidal activity against L. monocytogenes of PDI increased proportionally to the concentration of MB and the duration of irradiation. Moreover, after irradiation with MB and visible light, the leakage of intracellular contents was estimated by spectrophotometer at OD(260) and OD(280), which correlated with morphological alterations. Furthermore, genomic DNA cleavage and protein degradation were also detected after PDI treatment. Consequently, breakage of the membrane, damage of the genomic DNA and degradation of bacterial proteins may play an important role in the mechanisms involved in PDI-MB bactericidal activity on L. monocytogenes.
Collapse
Affiliation(s)
- Shao-ling Lin
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
37
|
Asok A, Arshad E, Jasmin C, Pai SS, Singh ISB, Mohandas A, Anas A. Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture. Microb Biotechnol 2011; 5:59-68. [PMID: 21951316 PMCID: PMC3815272 DOI: 10.1111/j.1751-7915.2011.00297.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We propose antimicrobial photodynamic therapy (aPDT) as an alternative strategy to reduce the use of antibiotics in shrimp larviculture systems. The growth of a multiple antibiotic resistant Vibrio harveyi strain was effectively controlled by treating the cells with Rose Bengal and photosensitizing for 30 min using a halogen lamp. This resulted in the death of > 50% of the cells within the first 10 min of exposure and the 50% reduction in the cell wall integrity after 30 min could be attributed to the destruction of outer membrane protein of V. harveyi by reactive oxygen intermediates produced during the photosensitization. Further, mesocosm experiments with V. harveyi and Artemia nauplii demonstrated that in 30 min, the aPDT could kill 78.9% and 91.2% of heterotrophic bacterial and Vibrio population respectively. In conclusion, the study demonstrated that aPDT with its rapid action and as yet unreported resistance development possibilities could be a propitious strategy to reduce the use of antibiotics in shrimp larviculture systems and thereby, avoid their hazardous effects on human health and the ecosystem at large.
Collapse
Affiliation(s)
- Aparna Asok
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi 682016, India
| | | | | | | | | | | | | |
Collapse
|
38
|
Cui Y, Oh YJ, Lim J, Youn M, Lee I, Pak HK, Park W, Jo W, Park S. AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiol 2011; 29:80-7. [PMID: 22029921 DOI: 10.1016/j.fm.2011.08.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), a main constituent of tea catechins, affects Gram-positive and Gram-negative bacteria differently; however, the underlying mechanisms are not clearly understood. Atomic force microscopy (AFM) was used to compare morphological alterations in Gram-positive and Gram-negative bacteria induced by EGCG and by H(2)O(2) at sub-minimum inhibitory concentrations (MICs). EGCG initially induced aggregates in the cell envelopes of Staphylococcus aureus and eventually caused cell lysis, which was not observed in cells treated with H(2)O(2). It initially induced nanoscale perforations or microscale grooves in the cell envelopes of Escherichia coli O157:H7 which eventually disappeared, similar to E. coli cells treated with H(2)O(2). An E. coli O157:H7 tpx mutant, with a defect in thioredoxin-dependent thiol peroxidase (Tpx), was more severely damaged by EGCG when compared with its wild type. Similar differing effects were observed in other Gram-positive and Gram-negative bacteria when exposed to EGCG; it caused aggregated in Streptococcus mutans, while it caused grooves in Pseudomonas aeruginosa. AFM results suggest that the major morphological changes of Gram-negative bacterial cell walls induced by EGCG depend on H(2)O(2) release. This is not the case for Gram-positive bacteria. Oxidative stress in Gram-negative bacteria induced by EGCG was confirmed by flow cytometry.
Collapse
Affiliation(s)
- Y Cui
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chao Y, Zhang T. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl Microbiol Biotechnol 2011; 92:381-92. [PMID: 21881891 PMCID: PMC3181414 DOI: 10.1007/s00253-011-3551-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/06/2011] [Accepted: 08/13/2011] [Indexed: 11/14/2022]
Abstract
Fixation ability of five common fixation solutions, including 2.5% glutaraldehyde, 10% formalin, 4% paraformaldehyde, methanol/acetone (1:1), and ethanol/acetic acid (3:1) were evaluated by using atomic force microscopy in the present study. Three model bacteria, i.e., Escherichia coli, Pseudomonas putida, and Bacillus subtilis were applied to observe the above fixation methods for the morphology preservation of bacterial cells and surface ultrastructures. All the fixation methods could effectively preserve cell morphology. However, for preserving bacterial surface ultrastructures, the methods applying aldehyde fixations performed much better than those using alcohols, since the alcohols could detach the surface filaments (i.e., flagella and pili) significantly. Based on the quantitative and qualitative assessments, the 2.5% glutaraldehyde was proposed as a promising fixation solution both for observing morphology of both bacterial cell and surface ultrastructures, while the methonal/acetone mixture was the worst fixation solution which may obtain unreliable results.
Collapse
Affiliation(s)
- Yuanqing Chao
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| | | |
Collapse
|
40
|
Physico-mechanical characterisation of cells using atomic force microscopy — Current research and methodologies. J Microbiol Methods 2011; 86:131-9. [DOI: 10.1016/j.mimet.2011.05.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/18/2011] [Accepted: 05/26/2011] [Indexed: 11/21/2022]
|
41
|
Kranz S, Guellmar A, Völpel A, Gitter B, Albrecht V, Sigusch BW. Photodynamic suppression of Enterococcus faecalis
using the photosensitizer mTHPC. Lasers Surg Med 2011; 43:241-8. [DOI: 10.1002/lsm.21046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Wright CJ, Shah MK, Powell LC, Armstrong I. Application of AFM from microbial cell to biofilm. SCANNING 2010; 32:134-49. [PMID: 20648545 DOI: 10.1002/sca.20193] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Atomic Force Microscopy (AFM) has proven itself over recent years as an essential tool for the analysis of microbial systems. This article will review how AFM has been used to study microbial systems to provide unique insight into their behavior and relationship with their environment. Immobilization of live cells has enabled AFM imaging and force measurement to provide understanding of the structure and function of numerous microbial cells. At the macromolecular level AFM investigation into the properties of surface macromolecules and the energies associated with their mechanical conformation and functionality has helped unravel the complex interactions of microbial cells. At the level of the whole cell AFM has provided an integrated analysis of how the microbial cell exploits its environment through its selective, adaptable interface, the cell surface. In addition to these areas of study the AFM investigation of microbial biofilms has been vital for industrial and medical process analysis. There exists a tremendous potential for the future application of AFM to microbial systems and this has been strengthened by the trend to use AFM in combination with other characterization methods, such as confocal microscopy and Raman spectroscopy, to elucidate dynamic cellular processes.
Collapse
Affiliation(s)
- Chris J Wright
- Multidisciplinary Nanotechnology Centre, School of Engineering, Swansea University, Swansea, United Kingdom.
| | | | | | | |
Collapse
|
43
|
Brovko L. Photodynamic treatment: a new efficient alternative for surface sanitation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2010; 61:119-47. [PMID: 21092903 DOI: 10.1016/b978-0-12-374468-5.00003-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and promising technology-photodynamic treatment (PDT), aimed for surface cleaning and sanitation in food industry-is presented. It is based on the treatment of surfaces with nontoxic dyes (photosensitizers), followed by illumination of the surface with regular white light. The method is currently used in the medical field and was proved to have wide specificity against a variety of bacterial and viral pathogens as well as against yeasts and protozoa. An additional advantage of this approach is that development of resistance of microorganisms to PDT was shown to be unlikely. The theoretical basis of light-induced antimicrobial treatment is described, followed by examples of its application for the cleaning and disinfection of surfaces. All available information supports the idea that PDT could offer a very efficient and cost-effective way to combat microbial contamination of foods. The advantages and pitfalls of the technique are discussed. Directions of future research needed for bringing the technology to commercial reality are identified.
Collapse
Affiliation(s)
- Lubov Brovko
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|