1
|
Semin B, Loktyushkin A, Lovyagina E. Current analysis of cations substitution in the oxygen-evolving complex of photosystem II. Biophys Rev 2024; 16:237-247. [PMID: 38737202 PMCID: PMC11078907 DOI: 10.1007/s12551-024-01186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Water oxidation in photosystem II (PSII) is performed by the oxygen-evolving complex Mn4CaO5 which can be extracted from PSII and then reconstructed using exogenous cations Mn(II) and Ca2+. The binding efficiency of other cations to the Mn-binding sites in Mn-depleted PSII was investigated without any positive results. At the same time, a study of the Fe cations interaction with Mn-binding sites showed that it binds at a level comparable with the binding of Mn cations. Binding of Fe(II) cations first requires its light-dependent oxidation. In general, the interaction of Fe(II) with Mn-depleted PSII has a number of features similar to the two-quantum model of photoactivation of the complex with the release of oxygen. Interestingly, incubation of Ca-depleted PSII with Fe(II) cations under certain conditions is accompanied by the formation of a chimeric cluster Mn/Fe in the oxygen-evolving complex. PSII with the cluster 2Mn2Fe was found to be capable of water oxidation, but only to the H2O2 intermediate. However, the cluster 3Mn1Fe can oxidize water to O2 with an efficiency about 25% of the original in the absence of extrinsic proteins PsbQ and PsbP. In the presence of these proteins, the efficiency of O2 evolution can reach 80% of the original when adding exogenous Ca2+. In this review, we summarized information on the formation of chimeric Mn-Fe clusters in the oxygen-evolving complex. The data cited may be useful for detailing the mechanism of water oxidation.
Collapse
Affiliation(s)
- Boris Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| | - Aleksey Loktyushkin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| | - Elena Lovyagina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| |
Collapse
|
2
|
Mandal M, Saito K, Ishikita H. Substitution of Ca 2+ and changes in the H-bond network near the oxygen-evolving complex of photosystem II. Phys Chem Chem Phys 2023; 25:6473-6480. [PMID: 36785919 DOI: 10.1039/d2cp05036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ca2+, which provides binding sites for ligand water molecules W3 and W4 in the Mn4CaO5 cluster, is a prerequisite for O2 evolution in photosystem II (PSII). We report structural changes in the H-bond network and the catalytic cluster itself upon the replacement of Ca2+ with other alkaline earth metals, using a quantum mechanical/molecular mechanical approach. The small radius of Mg2+ makes W3 donate an H-bond to D1-Glu189 in Mg2+-PSII. If an additional water molecule binds at the large surface of Ba2+, it donates H-bonds to D1-Glu189 and the ligand water molecule at the dangling Mn, altering the H-bond network. The potential energy profiles of the H-bond between D1-Tyr161 (TyrZ) and D1-His190 and the interconversion between the open- and closed-cubane S2 conformations remain substantially unaltered upon the replacement of Ca2+. Remarkably, the O5⋯Ca2+ distance is shortest among all O5⋯metal distances irrespective of the radius being larger than that of Mg2+. Furthermore, Ca2+ is the only alkaline earth metal that equalizes the O5⋯metal and O2⋯metal distances and facilitates the formation of the symmetric cubane structure.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India.
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. .,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. .,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
3
|
Capone M, Sirohiwal A, Aschi M, Pantazis DA, Daidone I. Alternative Fast and Slow Primary Charge-Separation Pathways in Photosystem II. Angew Chem Int Ed Engl 2023; 62:e202216276. [PMID: 36791234 DOI: 10.1002/anie.202216276] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Photosystem-II (PSII) is a multi-subunit protein complex that harvests sunlight to perform oxygenic photosynthesis. Initial light-activated charge separation takes place at a reaction centre consisting of four chlorophylls and two pheophytins. Understanding the processes following light excitation remains elusive due to spectral congestion, the ultrafast nature, and multi-component behaviour of the charge-separation process. Here, using advanced computational multiscale approaches which take into account the large-scale configurational flexibility of the system, we identify two possible primary pathways to radical-pair formation that differ by three orders of magnitude in their kinetics. The fast (short-range) pathway is dominant, but the existence of an alternative slow (long-range) charge-separation pathway hints at the evolution of redundancy that may serve other purposes, adaptive or protective, related to formation of the unique oxidative species that drives water oxidation in PSII.
Collapse
Affiliation(s)
- Matteo Capone
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010, L'Aquila, Italy
| | - Abhishek Sirohiwal
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Present Address: Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Massimiliano Aschi
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010, L'Aquila, Italy
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010, L'Aquila, Italy
| |
Collapse
|
4
|
Skjelstad BB, Helgaker T, Maeda S, Balcells D. Oxyl Character and Methane Hydroxylation Mechanism in Heterometallic M( O)Co 3O 4 Cubanes (M = Cr, Mn, Fe, Mo, Tc, Ru, and Rh). ACS Catal 2022. [DOI: 10.1021/acscatal.2c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bastian Bjerkem Skjelstad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
5
|
Zhu Q, Yang Y, Xiao Y, Han W, Li X, Wang W, Kuang T, Shen JR, Han G. Effects of mutations of D1-R323, D1-N322, D1-D319, D1-H304 on the functioning of photosystem II in Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2022; 152:193-206. [PMID: 35503495 DOI: 10.1007/s11120-022-00920-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) has a number of hydrogen-bonding networks connecting the manganese cluster with the lumenal bulk solution. The structure of PSII from Thermosynechococcus vulcanus (T. vulcanus) showed that D1-R323, D1-N322, D1-D319 and D1-H304 are involved in one of these hydrogen-bonding networks located in the interfaces between the D1, CP43 and PsbV subunits. In order to investigate the functions of these residues in PSII, we generated seven site-directed mutants D1-R323A, D1-R323E, D1-N322R, D1-D319L, D1-D319R, D1-D319Y and D1-H304D of T. vulcanus and examined the effects of these mutations on the growth and functions of the oxygen-evolving complex. The photoautotrophic growth rates of these mutants were similar to that of the wild type, whereas the oxygen-evolving activities of the mutant cells were decreased differently to 63-91% of that of the wild type at pH 6.5. The mutant cells showed a higher relative activity at higher pH region than the wild type cells, suggesting that higher pH facilitated proton egress in the mutants. In addition, oxygen evolution of thylakoid membranes isolated from these mutants showed an apparent decrease compared to that of the cells. This is due to the loss of PsbU during purification of the thylakoid membranes. Moreover, PsbV was also lost in the PSII core complexes purified from the mutants. Taken together, D1-R323, D1-N322, D1-D319 and D1-H304 are vital for the optimal function of oxygen evolution and functional binding of extrinsic proteins to PSII core, and may be involved in the proton egress pathway mediated by YZ.
Collapse
Affiliation(s)
- Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, No.1 Beichen West Rd., Beijing, 100101, China.
- Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
6
|
|
7
|
Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic tetranuclear manganese-calcium-oxo cluster in the photosynthetic reaction center, photosystem II, provides an excellent blueprint for light-driven water oxidation in nature. The water oxidation reaction has attracted intense interest due to its potential as a renewable, clean, and environmentally benign source of energy production. Inspired by the oxygen-evolving complex of photosystem II, a large of number of highly innovative synthetic bio-inspired molecular catalysts are being developed that incorporate relatively cheap and abundant metals such as Mn, Fe, Co, Ni, and Cu, as well as Ru and Ir, in their design. In this review, we briefly discuss the historic milestones that have been achieved in the development of transition metal catalysts and focus on a detailed description of recent progress in the field.
Collapse
|
8
|
Saito K, Nakagawa M, Mandal M, Ishikita H. Role of redox-inactive metals in controlling the redox potential of heterometallic manganese-oxido clusters. PHOTOSYNTHESIS RESEARCH 2021; 148:153-159. [PMID: 34047897 PMCID: PMC8292285 DOI: 10.1007/s11120-021-00846-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/11/2021] [Indexed: 05/13/2023]
Abstract
Photosystem II (PSII) contains Ca2+, which is essential to the oxygen-evolving activity of the catalytic Mn4CaO5 complex. Replacement of Ca2+ with other redox-inactive metals results in a loss/decrease of oxygen-evolving activity. To investigate the role of Ca2+ in this catalytic reaction, we investigate artificial Mn3[M]O2 clusters redox-inactive metals [M] ([M] = Mg2+, Ca2+, Zn2+, Sr2+, and Y3+), which were synthesized by Tsui et al. (Nat Chem 5:293, 2013). The experimentally measured redox potentials (Em) of these clusters are best described by the energy of their highest occupied molecular orbitals. Quantum chemical calculations showed that the valence of metals predominantly affects Em(MnIII/IV), whereas the ionic radius of metals affects Em(MnIII/IV) only slightly.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Minesato Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
9
|
Semin BК, Davletshina LN, Goryachev SN, Seibert M. Ca 2+ effects on Fe(II) interactions with Mn-binding sites in Mn-depleted oxygen-evolving complexes of photosystem II and on Fe replacement of Mn in Mn-containing, Ca-depleted complexes. PHOTOSYNTHESIS RESEARCH 2021; 147:229-237. [PMID: 33532973 DOI: 10.1007/s11120-020-00813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Fe(II) cations bind with high efficiency and specificity at the high-affinity (HA), Mn-binding site (termed the "blocking effect" since Fe blocks further electron donation to the site) of the oxygen-evolving complex (OEC) in Mn-depleted, photosystem II (PSII) membrane fragments (Semin et al. in Biochemistry 41:5854, 2002). Furthermore, Fe(II) cations can substitute for 1 or 2Mn cations (pH dependent) in Ca-depleted PSII membranes (Semin et al. in Journal of Bioenergetics and Biomembranes 48:227, 2016; Semin et al. in Journal of Photochemistry and Photobiology B 178:192, 2018). In the current study, we examined the effect of Ca2+ cations on the interaction of Fe(II) ions with Mn-depleted [PSII(-Mn)] and Ca-depleted [PSII(-Ca)] photosystem II membranes. We found that Ca2+ cations (about 50 mM) inhibit the light-dependent oxidation of Fe(II) (5 µM) by about 25% in PSII(-Mn) membranes, whereas inhibition of the blocking process is greater at about 40%. Blocking of the HA site by Fe cations also decreases the rate of charge recombination between QA- and YZ•+ from t1/2 = 30 ms to 46 ms. However, Ca2+ does not affect the rate during the blocking process. An Fe(II) cation (20 µM) replaces 1Mn cation in the Mn4CaO5 catalytic cluster of PSII(-Ca) membranes at pH 5.7 but 2 Mn cations at pH 6.5. In the presence of Ca2+ (10 mM) during the substitution process, Fe(II) is not able to extract Mn at pH 5.7 and extracts only 1Mn at pH 6.5 (instead of two without Ca2+). Measurements of fluorescence induction kinetics support these observations. Inhibition of Mn substitution with Fe(II) cations in the OEC only occurs with Ca2+ and Sr2+ cations, which are also able to restore oxygen evolution in PSII(-Ca) samples. Nonactive cations like La3+, Ni2+, Cd2+, and Mg2+ have no influence on the replacement of Mn with Fe. These results show that the location and/or ligand composition of one Mn cation in the Mn4CaO5 cluster is strongly affected by calcium depletion or rebinding and that bound calcium affects the redox potential of the extractable Mn4 cation in the OEC, making it resistant to reduction.
Collapse
Affiliation(s)
- B К Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
| | - L N Davletshina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - S N Goryachev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - M Seibert
- Laboratory, BioEnergy Sciences and Technology Directorate, National Renewable Energy, Golden, CO, 80401, USA
| |
Collapse
|
10
|
Xiao Y, Zhu Q, Yang Y, Wang W, Kuang T, Shen JR, Han G. Role of PsbV-Tyr137 in photosystem II studied by site-directed mutagenesis in the thermophilic cyanobacterium Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2020; 146:41-54. [PMID: 32342261 DOI: 10.1007/s11120-020-00753-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/19/2020] [Indexed: 05/07/2023]
Abstract
PsbV (cytochrome c550) is one of the three extrinsic proteins of photosystem II (PSII) and functions to maintain the stability and activity of the Mn4CaO5 cluster, the catalytic center for water oxidation. PsbV-Y137 is the C-terminal residue of PsbV and is located at the exit of a hydrogen-bond network mediated by the D1-Y161-H190 residue pair. In order to examine the function of PsbV-Y137, four mutants, PsbV-Y137A, PsbV-Y137F, PsbV-Y137G, and PsbV-Y137W, were generated with Thermosynechococcus vulcanus (T. vulcanus). These mutants showed growth rates similar to that of the wild-type strain (WT); however, their oxygen-evolving activities were different. At pH 6.5, the oxygen evolution rates of Y137F and Y137W were almost identical to that of WT, whereas the oxygen evolution rates of the Y137A, Y137G mutants were 64% and 61% of WT, respectively. However, the oxygen evolution in the latter two mutants decreased less at higher pHs, suggesting that higher pHs facilitated oxygen evolution probably by facilitating proton egress in these two mutants. Furthermore, thylakoid membranes isolated from the PsbV-Y137A, PsbV-Y137G mutants exhibited much lower levels of oxygen-evolving activity than that of WT, which was found to be caused by the release of PsbV. In addition, PSII complexes purified from the PsbV-Y137A and PsbV-Y137G mutants lost all of the three extrinsic proteins but instead bind Psb27, an assembly cofactor of PSII. These results demonstrate that the PsbV-Tyr137 residue is required for the stable binding of PsbV to PSII, and the hydrogen-bond network mediated by D1-Y161-H190 is likely to function in proton egress during water oxidation.
Collapse
Affiliation(s)
- Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, No. 1 Beichen West Rd., Beijing, 100101, China.
- Research Institute of Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
11
|
Yamaguchi K, Yamanaka S, Isobe H, Shoji M, Miyagawa K, Kawakami T. Theory of chemical bonds in metalloenzymes XXIII fundamental principles for the photo-induced water oxidation in oxygen evolving complex of photosystem II. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1725168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K. Yamaguchi
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
- Graduate School of Science, Osaka University, Toyonaka, Japan
- RIKEN Center for Computational Science, Kobe, Japan
- Institute for Nanoscience Design, Osaka University, Toyonaka, Japan
- Division of Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Japan
| | - S. Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Japan
- Division of Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Japan
| | - K. Miyagawa
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - T. Kawakami
- Graduate School of Science, Osaka University, Toyonaka, Japan
- RIKEN Center for Computational Science, Kobe, Japan
| |
Collapse
|
12
|
Wang C, Ou D, Wang C, Lu X, Du J, Li J, Lai J, Zhang S, Yang C. Functional characterization of a chloroplast-localized Mn 2+(Ca 2+)/H + antiporter, ZmmCCHA1 from Zea mays ssp. mexicana L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:396-405. [PMID: 32814276 DOI: 10.1016/j.plaphy.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 08/02/2020] [Indexed: 05/24/2023]
Abstract
The annual Zea mays ssp. mexicana L. is a member of the teosinte group and a close wild relative of maize. Thus, Zea mays ssp. mexicana L. can be effectively used in maize breeding. AtCCHA1 is a Mn2+ and/or Ca2+/H+ antiporter localized in chloroplasts in Arabidopsis. In this study, its homolog from Zea mays ssp. mexicana L., ZmmCCHA1, was isolated and characterized. The transcriptional level of ZmmCCHA1 in Zea mays ssp. mexicana L. was repressed in response to excessive Ca2+ or Mn2+. Heterologous functional complementation assays using yeast mutants showed that ZmmCCHA1 mediates Ca2+ and Mn2+ transport. The ZmmCCHA1 protein was localized in the chloroplasts when expressed in tobacco leaves. Furthermore, ectopic overexpression of ZmmCCHA1 in the Arabidopsis ccha1 mutant rescued the mutant defects on growth and the photosynthetic proteins in the thylakoid membranes. Moreover, the photosynthetic phenotypes of Arabidopsis ccha1 mutant at steady-state were greatly but not completely complemented by the overexpression of ZmmCCHA1. In addition, overexpressing the ZmmCCHA1 rescued the sensitives of PSII in the Arabidopsis ccha1 mutant to Mn2+ deficiency or high Ca2+ condition. These results indicate that the isolated ZmmCCHA1 is the homolog of AtCCHA1 and plays a conserved role in maintaining the Mn2+ and/or Ca2+ homeostasis in chloroplasts which is critical for the function of PSII in photosynthesis.
Collapse
Affiliation(s)
- Caijuan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Dingwen Ou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Xiang Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Jinju Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Jieqiang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China; Dongli Planting and Farming Industrial Co., LTD, Lianzhou, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Shengchun Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
13
|
Rafique M, Mubashar R, Irshad M, Gillani SSA, Tahir MB, Khalid NR, Yasmin A, Shehzad MA. A Comprehensive Study on Methods and Materials for Photocatalytic Water Splitting and Hydrogen Production as a Renewable Energy Resource. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01611-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Water-oxidizing complex in Photosystem II: Its structure and relation to manganese-oxide based catalysts. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
16
|
Misawa-Suzuki T, Watanabe T, Okamura M, Nanbu S, Nagao H. Framework Conversion of Oxido-Bridged Dinuclear Ruthenium Complexes. Inorg Chem 2019; 59:612-622. [DOI: 10.1021/acs.inorgchem.9b02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tomoyo Misawa-Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takashi Watanabe
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Mariko Okamura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Shinkoh Nanbu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hirotaka Nagao
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| |
Collapse
|
17
|
Suga M, Shimada A, Akita F, Shen JR, Tosha T, Sugimoto H. Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim Biophys Acta Gen Subj 2019; 1864:129466. [PMID: 31678142 DOI: 10.1016/j.bbagen.2019.129466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The invention of the X-ray free-electron laser (XFEL) has provided unprecedented new opportunities for structural biology. The advantage of XFEL is an intense pulse of X-rays and a very short pulse duration (<10 fs) promising a damage-free and time-resolved crystallography approach. SCOPE OF REVIEW Recent time-resolved crystallographic analyses in XFEL facility SACLA are reviewed. Specifically, metalloproteins involved in the essential reactions of bioenergy conversion including photosystem II, cytochrome c oxidase and nitric oxide reductase are described. MAJOR CONCLUSIONS XFEL with pump-probe techniques successfully visualized the process of the reaction and the dynamics of a protein. Since the active center of metalloproteins is very sensitive to the X-ray radiation, damage-free structures obtained by XFEL are essential to draw mechanistic conclusions. Methods and tools for sample delivery and reaction initiation are key for successful measurement of the time-resolved data. GENERAL SIGNIFICANCE XFEL is at the center of approaches to gain insight into complex mechanism of structural dynamics and the reactions catalyzed by biological macromolecules. Further development has been carried out to expand the application of time-resolved X-ray crystallography. This article is part of a Special Issue entitled Novel measurement techniques for visualizing 'live' protein molecules.
Collapse
Affiliation(s)
- Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan..
| | - Atsuhiro Shimada
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan..
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Takehiko Tosha
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Sugimoto
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan..
| |
Collapse
|
18
|
The Biochemical Properties of Manganese in Plants. PLANTS 2019; 8:plants8100381. [PMID: 31569811 PMCID: PMC6843630 DOI: 10.3390/plants8100381] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/12/2023]
Abstract
Manganese (Mn) is an essential micronutrient with many functional roles in plant metabolism. Manganese acts as an activator and co-factor of hundreds of metalloenzymes in plants. Because of its ability to readily change oxidation state in biological systems, Mn plays and important role in a broad range of enzyme-catalyzed reactions, including redox reactions, phosphorylation, decarboxylation, and hydrolysis. Manganese(II) is the prevalent oxidation state of Mn in plants and exhibits fast ligand exchange kinetics, which means that Mn can often be substituted by other metal ions, such as Mg(II), which has similar ion characteristics and requirements to the ligand environment of the metal binding sites. Knowledge of the molecular mechanisms catalyzed by Mn and regulation of Mn insertion into the active site of Mn-dependent enzymes, in the presence of other metals, is gradually evolving. This review presents an overview of the chemistry and biochemistry of Mn in plants, including an updated list of known Mn-dependent enzymes, together with enzymes where Mn has been shown to exchange with other metal ions. Furthermore, the current knowledge of the structure and functional role of the three most well characterized Mn-containing metalloenzymes in plants; the oxygen evolving complex of photosystem II, Mn superoxide dismutase, and oxalate oxidase is summarized.
Collapse
|
19
|
Weerawardene KLDM, Aikens CM. Theoretical Investigation of Water Oxidation Mechanism on Pure Manganese and Ca-Doped Bimetal Oxide Complexes. J Phys Chem A 2019; 123:6152-6159. [DOI: 10.1021/acs.jpca.9b02652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Christine M. Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
20
|
Yamaguchi K, Yamanaka S, Isobe H, Shoji M, Miyagawa K, Nakajima T, Kawakami T, Okumura M. Theoretical and computational investigations of geometrical, electronic and spin structures of the CaMn 4 O X (X = 5, 6) cluster in the Kok cycle S i (i = 0-3) of oxygen evolving complex of photosystem II. PHYSIOLOGIA PLANTARUM 2019; 166:44-59. [PMID: 30847925 DOI: 10.1111/ppl.12960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The optimized geometries of the CaMn4 OX (X = 5, 6) cluster in the oxygen evolving complex (OEC) of photosystem II (PSII) by large-scale quantum mechanics (QM) and molecular mechanics (MM) calculations are compared with recent serial femtosecond crystallography (SFX) results for the Si (i = 0-3) states. The valence states of four Mn ions by the QM/MM calculations are also examined in relation to the experimental results by the X-ray emission spectroscopy (XES) for the Si intermediates. Geometrical and valence structures of right-opened Mn-hydroxide, Mn-oxo and Mn-peroxide intermediates in the S3 state are investigated in detail in relation to recent SFX and XES experiments for the S3 state. Interplay between theory and experiment indicates that the Mn-oxo intermediate is a new possible candidate for the S3 state. Implications of the computational results are discussed in relation to possible mechanisms of the oxygenoxygen bond formation for water oxidation in OEC of PSII.
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 567-0047, Japan
- Riken Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Shusuke Yamanaka
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Osaka 560-0043, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Ibaraki 305-8577, Japan
| | - Kouichi Miyagawa
- Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 567-0047, Japan
| | | | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Osaka 560-0043, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Osaka 560-0043, Japan
| |
Collapse
|
21
|
Isobe H, Shoji M, Suzuki T, Shen JR, Yamaguchi K. Spin, Valence, and Structural Isomerism in the S 3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity. J Chem Theory Comput 2019; 15:2375-2391. [PMID: 30855953 DOI: 10.1021/acs.jctc.8b01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photosynthetic water oxidation is catalyzed by a Mn4CaO5-cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state ( Stotal = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 Å) and long MnA···O5 distances (>2.0 Å). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique "distorted chair" topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.
Collapse
Affiliation(s)
- Hiroshi Isobe
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Mitsuo Shoji
- Center for Computational Science , University of Tsukuba , Tsukuba , Ibaraki 305-8577 , Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
22
|
Shoji M, Isobe H, Miyagawa K, Yamaguchi K. Possibility of the right-opened Mn-oxo intermediate (R-oxo(4444)) among all nine intermediates in the S3 state of the oxygen-evolving complex of photosystem II revealed by large-scale QM/MM calculations. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
|
24
|
Chai J, Zheng Z, Pan H, Zhang S, Lakshmi KV, Sun YY. Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective. Phys Chem Chem Phys 2019; 21:8721-8728. [DOI: 10.1039/c9cp00868c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All quantum-mechanical calculations provide insights into the effect of the hydrogen bonding network on the proton-coupled electron transfer at YZ and YD in photosystem II.
Collapse
Affiliation(s)
- Jun Chai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 201899
- China
| | - Zhaoyang Zheng
- National Key Laboratory of Shock Wave and Detonation Physics
- Institute of Fluid Physics
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Hui Pan
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Taipa
- China
| | - Shengbai Zhang
- Department of Physics
- Applied Physics, and Astronomy
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Yi-Yang Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 201899
- China
| |
Collapse
|
25
|
Concerted bond switching mechanism coupled with one-electron transfer for the oxygen-oxygen bond formation in the oxygen-evolving complex of photosystem II. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Tsubaki S, Hayakawa S, Ueda T, Fujii S, Suzuki EI, Zhang J, Bond A, Wada Y. Radio frequency alternating electromagnetic field enhanced tetraruthenium polyoxometalate electrocatalytic water oxidation. Chem Commun (Camb) 2019; 55:1032-1035. [DOI: 10.1039/c8cc07642a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RF-enhanced electrocatalytic water oxidation by protonated tetraruthenium polyoxometalate.
Collapse
Affiliation(s)
- Shuntaro Tsubaki
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo
- Japan
| | - Shogo Hayakawa
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo
- Japan
| | - Tadaharu Ueda
- Department of Marine Resource Science
- Faculty of Agriculture and Marine Science
- Kochi University
- Nankoku
- Japan
| | - Satoshi Fujii
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo
- Japan
- Department of Information and Communication Systems Engineering
| | - Ei-ichi Suzuki
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo
- Japan
| | - Jie Zhang
- School of Chemistry
- Monash University
- Clayton
- Victoria 3800
- Australia
| | - Alan Bond
- School of Chemistry
- Monash University
- Clayton
- Victoria 3800
- Australia
| | - Yuji Wada
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo
- Japan
| |
Collapse
|
27
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Yamaguchi K. Theoretical Elucidation of Geometrical Structures of the CaMn4O5 Cluster in Oxygen Evolving Complex of Photosystem II Scope and Applicability of Estimation Formulae of Structural Deformations via the Mixed-Valence and Jahn–Teller Effects. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Mousazade Y, Najafpour MM, Bagheri R, Jagličić Z, Singh JP, Chae KH, Song Z, Rodionova MV, Voloshin RA, Shen JR, Ramakrishna S, Allakhverdiev SI. A manganese(ii) phthalocyanine under water-oxidation reaction: new findings. Dalton Trans 2019; 48:12147-12158. [DOI: 10.1039/c9dt01790a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The decomposition reaction for a manganese complex under water oxidation was investigated.
Collapse
|
29
|
Yamaguchi K, Shoji M, Isobe H, Miyagawa K, Nakatani K. Theory of chemical bonds in metalloenzymes XXII: a concerted bond-switching mechanism for the oxygen–oxygen bond formation coupled with one electron transfer for water oxidation in the oxygen-evolving complex of photosystem II. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1552799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- K. Yamaguchi
- Institute for Nanoscience Design, Osaka University, Toyonaka, Osaka, Japan
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
- Handairigaku Techno-Research, Toyonaka, Osaka, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Ibaraki, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - K. Miyagawa
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - K. Nakatani
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Jiang J, Gai Z, Wang Y, Fan K, Sun L, Wang H, Ding Z. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition. BMC Genomics 2018; 19:840. [PMID: 30477445 PMCID: PMC6258439 DOI: 10.1186/s12864-018-5250-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023] Open
Abstract
Background Nε-Acetylation of lysine residues, a frequently occurring post-translational modification, plays important functions in regulating physiology and metabolism. However, the information of global overview of protein acetylome under nitrogen-starvation/resupply in tea (Camellia sinensis) leaves was limited. And the full function of lysine acetylated proteins of tea plants in nitrogen absorption and assimilation remains unclear. Results Here, we performed the global review of lysine acetylome in tea leaves under nitrogen (N)-starvation/resupply, using peptide prefractionation, immunoaffinity enrichment, and coupling with high sensitive LC-MS/MS combined with affinity purification analysis. Altogether, 2229 lysine acetylation sites on 1286 proteins were identified, of which 16 conserved motifs in E*KacK, Kac*K, Kac*R, Kac*HK, Kac*N, Kac*S, Kac*T, Kac*D, were extracted from 2180 acetylated peptides. Approximately, 36.76% of the acetylated lysines were located in the regions of ordered secondary structures. The most of the identified lysine acetylation proteins were located in the chloroplast (39%) and cytoplasm (29%). The largest group of acetylated proteins consisted of many enzymes, such as ATP synthase, ribosomal proteins and malate dehydrogenase [NADP], which were related to metabolism (38%) in the biological process. These acetylated proteins were mainly enriched in three primary protein complexes of photosynthesis: photosystem I, photosystem II and the cytochrome b6/f complex. And some acetylated proteins related to glycolysis and secondary metabolite biosynthesis were increased/decreased under N-resupply. Moreover, the PPI (protein-protein interaction) analysis revealed that the diverse interactions of identified acetylated proteins mainly involved in photosynthesis and ribosome. Conclusion The results suggested that lysine acetylated proteins might play regulating roles in metabolic process in tea leaves. The critical regulatory roles mainly involved in diverse aspects of metabolic processes, especially in photosynthesis, glycolysis and secondary metabolism. A lot of proteins related to the photosynthesis and glycolysis were found to be acetylated, including LHCA1, LHCA3, LHCB6, psaE, psaD, psaN, GAPDH, PEPC, ENL and petC. And some proteins related to flavonoids were also found to be acetylated, including PAL, DFR, naringenin 3-dioxygenase and CHI. The provided data may serve as important resources for exploring the physiological, biochemical, and genetic role of lysine acetylation in tea plants. Data are available via ProteomeXchange with identifier PXD008931. Electronic supplementary material The online version of this article (10.1186/s12864-018-5250-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jutang Jiang
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China
| | - Zhongshuai Gai
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China
| | - Litao Sun
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China
| | - Hui Wang
- Rizhao Tea Research Institute of Shandong, Rizhao, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China.
| |
Collapse
|
31
|
Partensky F, Mella-Flores D, Six C, Garczarek L, Czjzek M, Marie D, Kotabová E, Felcmanová K, Prášil O. Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex. PHOTOSYNTHESIS RESEARCH 2018; 138:57-71. [PMID: 29938315 DOI: 10.1007/s11120-018-0539-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.
Collapse
Affiliation(s)
- Frédéric Partensky
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France.
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France.
| | - Daniella Mella-Flores
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christophe Six
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France
| | - Mirjam Czjzek
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 8227, Marine Glycobiology Group, Station Biologique, CS 90074, 29680, Roscoff, France
| | - Dominique Marie
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France
| | - Eva Kotabová
- Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Kristina Felcmanová
- Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, Branišovská, 37005, České Budějovice, Czech Republic
| | - Ondřej Prášil
- Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, Branišovská, 37005, České Budějovice, Czech Republic
| |
Collapse
|
32
|
Haddy A, Lee I, Shin K, Tai H. Characterization of fluoride inhibition in photosystem II lacking extrinsic PsbP and PsbQ subunits. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:1-9. [DOI: 10.1016/j.jphotobiol.2018.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
33
|
Eisenhut M, Hoecker N, Schmidt SB, Basgaran RM, Flachbart S, Jahns P, Eser T, Geimer S, Husted S, Weber APM, Leister D, Schneider A. The Plastid Envelope CHLOROPLAST MANGANESE TRANSPORTER1 Is Essential for Manganese Homeostasis in Arabidopsis. MOLECULAR PLANT 2018; 11:955-969. [PMID: 29734002 DOI: 10.1016/j.molp.2018.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
The transition metal manganese (Mn) is indispensable for photoautotrophic growth since photosystem II (PSII) employs an inorganic Mn4CaO5 cluster for water splitting. Here, we show that the Arabidopsis membrane protein CHLOROPLAST MANGANESE TRANSPORTER1 (CMT1) is involved in chloroplast Mn homeostasis. CMT1 is the closest homolog of the previously characterized thylakoid Mn transporter PHOTOSYNTHESIS-AFFECTED MUTANT71 (PAM71). In contrast to PAM71, CMT1 resides at the chloroplast envelope and is ubiquitously expressed. Nonetheless, like PAM71, the expression of CMT1 can also alleviate the Mn-sensitive phenotype of yeast mutant Δpmr1. The cmt1 mutant is severely suppressed in growth, chloroplast ultrastructure, and PSII activity owing to a decrease in the amounts of pigments and thylakoid membrane proteins. The importance of CMT1 for chloroplast Mn homeostasis is demonstrated by the significant reduction in chloroplast Mn concentrations in cmt1-1, which exhibited reduced Mn binding in PSII complexes. Moreover, CMT1 expression is downregulated in Mn-surplus conditions. The pam71 cmt1-1double mutant resembles the cmt1-1 single mutant rather than pam71 in most respects. Taken together, our results suggest that CMT1 mediates Mn2+ uptake into the chloroplast stroma, and that CMT1 and PAM71 function sequentially in Mn delivery to PSII across the chloroplast envelope and the thylakoid membrane.
Collapse
Affiliation(s)
- Marion Eisenhut
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Natalie Hoecker
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre (CPSC), Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Rubek Merina Basgaran
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Samantha Flachbart
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Peter Jahns
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tabea Eser
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie NW I/B1, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Søren Husted
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre (CPSC), Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Andreas P M Weber
- Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dario Leister
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
34
|
Shoji M, Isobe H, Tanaka A, Fukushima Y, Kawakami K, Umena Y, Kamiya N, Nakajima T, Yamaguchi K. Understanding Two Different Structures in the Dark Stable State of the Oxygen-Evolving Complex of Photosystem II: Applicability of the Jahn-Teller Deformation Formula. CHEMPHOTOCHEM 2018; 2:257-270. [PMID: 29577075 PMCID: PMC5861676 DOI: 10.1002/cptc.201700162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/02/2017] [Indexed: 11/11/2022]
Abstract
Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three-dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X-ray diffraction (XRD) using extremely low X-ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen-bonding interactions in the S1 state of OEC keeping the surrounding polypeptide frameworks of PSII the same. Our Jahn-Teller (JT) deformation formula based on large-scale quantum mechanics/molecular mechanics (QM/MM) was applied for these low-dose XRD structures, elucidating important roles of JT effects of the MnIII ion for subtle geometric distortions of the CaMn4O5 cluster in OEC of PSII. The JT deformation formula revealed the similarity between the low-dose XRD and damage-free serial femtosecond X-ray diffraction (SFX) structures of the CaMn4O5 cluster in the dark stable state. The extremely low-dose XRD structures were not damaged by X-ray irradiation. Implications of the present results are discussed in relation to recent SFX results and a blue print for the design of artificial photocatalysts for water oxidation.
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center of Computational SciencesTsukuba University, TsukubaIbaraki305–8577Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and TechnologyOkayama UniversityOkayama700–8530Japan
| | - Ayako Tanaka
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Yoshimasa Fukushima
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Keisuke Kawakami
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Yasufumi Umena
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Nobuo Kamiya
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA)Osaka City UniversityOsaka558–8585Japan
| | - Takahito Nakajima
- Riken Advanced Institute for Computational Science, Chuo-KuKobe, Hyogo650-0047Japan
| | - Kizashi Yamaguchi
- Riken Advanced Institute for Computational Science, Chuo-KuKobe, Hyogo650-0047Japan
- Institute for Nanoscience DesignOsaka University, ToyonakaOsaka560–8531Japan
- Handairigaku Techno-Research, ToyonakaOsaka560-0043Japan
| |
Collapse
|
35
|
Yamaguchi K, Shoji M, Isobe H, Yamanaka S, Kawakami T, Yamada S, Katouda M, Nakajima T. Theory of chemical bonds in metalloenzymes XXI. Possible mechanisms of water oxidation in oxygen evolving complex of photosystem II. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1428375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kizashi Yamaguchi
- Institute for Nanoscience Design, Osaka University, Osaka, Japan
- Handairigaku Techno-Research, Osaka Univeristy, Osaka, Japan
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Takashi Kawakami
- Graduate School of Science, Osaka University, Osaka, Japan
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Satoru Yamada
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Michio Katouda
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Takahito Nakajima
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| |
Collapse
|
36
|
Lin CY, Zhang D, Zhao Z, Xia Z. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29171919 DOI: 10.1002/adma.201703646] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/14/2017] [Indexed: 05/08/2023]
Abstract
Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76203, USA
| | - Detao Zhang
- College of Energy, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenghang Zhao
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76203, USA
| | - Zhenhai Xia
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76203, USA
- College of Energy, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
37
|
Beal NJ, Corry TA, O’Malley PJ. Comparison between Experimental and Broken Symmetry Density Functional Theory (BS-DFT) Calculated Electron Paramagnetic Resonance (EPR) Parameters of the S2 State of the Oxygen-Evolving Complex of Photosystem II in Its Native (Calcium) and Strontium-Substituted Form. J Phys Chem B 2017; 121:11273-11283. [DOI: 10.1021/acs.jpcb.7b09498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nathan J. Beal
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas A. Corry
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Patrick J. O’Malley
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
38
|
Motomura T, Suga M, Hienerwadel R, Nakagawa A, Lai TL, Nitschke W, Kuma T, Sugiura M, Boussac A, Shen JR. Crystal structure and redox properties of a novel cyanobacterial heme protein with a His/Cys heme axial ligation and a Per-Arnt-Sim (PAS)-like domain. J Biol Chem 2017; 292:9599-9612. [PMID: 28428249 DOI: 10.1074/jbc.m116.746263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/17/2017] [Indexed: 01/05/2023] Open
Abstract
Photosystem II catalyzes light-induced water oxidation leading to the generation of dioxygen indispensable for sustaining aerobic life on Earth. The Photosystem II reaction center is composed of D1 and D2 proteins encoded by psbA and psbD genes, respectively. In cyanobacteria, different psbA genes are present in the genome. The thermophilic cyanobacterium Thermosynechococcus elongatus contains three psbA genes: psbA1, psbA2, and psbA3, and a new c-type heme protein, Tll0287, was found to be expressed in a strain expressing the psbA2 gene only, but the structure and function of Tll0287 are unknown. Here we solved the crystal structure of Tll0287 at a 2.0 Å resolution. The overall structure of Tll0287 was found to be similar to some kinases and sensor proteins with a Per-Arnt-Sim-like domain rather than to other c-type cytochromes. The fifth and sixth axial ligands for the heme were Cys and His, instead of the His/Met or His/His ligand pairs observed for most of the c-type hemes. The redox potential, E½, of Tll0287 was -255 ± 20 mV versus normal hydrogen electrode at pH values above 7.5. Below this pH value, the E½ increased by ≈57 mV/pH unit at 15 °C, suggesting the involvement of a protonatable group with a pKred = 7.2 ± 0.3. Possible functions of Tll0287 as a redox sensor under microaerobic conditions or a cytochrome subunit of an H2S-oxidizing system are discussed in view of the environmental conditions in which psbA2 is expressed, as well as phylogenetic analysis, structural, and sequence homologies.
Collapse
Affiliation(s)
- Taiki Motomura
- From the Department of Picobiology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.,the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Michihiro Suga
- the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Rainer Hienerwadel
- the Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, CNRS-CEA-Aix-Marseille Université, Faculté des Sciences de Luminy, 13288 Marseille, France
| | - Akiko Nakagawa
- the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.,the Proteo-Science Research Center, Ehime University, Ehime 790-8577, Japan
| | - Thanh-Lan Lai
- iBiTec-S, SB2SM, CNRS UMR 9198, CEA Saclay, 91191 Gif-sur-Yvette, France, and
| | - Wolfgang Nitschke
- the Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS UMR 7281, 13402 Marseille Cedex 20, France
| | - Takahiro Kuma
- the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Miwa Sugiura
- the Proteo-Science Research Center, Ehime University, Ehime 790-8577, Japan
| | - Alain Boussac
- iBiTec-S, SB2SM, CNRS UMR 9198, CEA Saclay, 91191 Gif-sur-Yvette, France, and
| | - Jian-Ren Shen
- From the Department of Picobiology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan, .,the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
39
|
Baranov S, Haddy A. An enzyme kinetics study of the pH dependence of chloride activation of oxygen evolution in photosystem II. PHOTOSYNTHESIS RESEARCH 2017; 131:317-332. [PMID: 27896527 DOI: 10.1007/s11120-016-0325-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Oxygen evolution by photosystem II (PSII) involves activation by Cl- ion, which is regulated by extrinsic subunits PsbQ and PsbP. In this study, the kinetics of chloride activation of oxygen evolution was studied in preparations of PSII depleted of the PsbQ and PsbP subunits (NaCl-washed and Na2SO4/pH 7.5-treated) over a pH range from 5.3 to 8.0. At low pH, activation by chloride was followed by inhibition at chloride concentrations >100 mM, whereas at high pH activation continued as the chloride concentration increased above 100 mM. Both activation and inhibition were more pronounced at lower pH, indicating that Cl- binding depended on protonation events in each case. The simplest kinetic model that could account for the complete data set included binding of Cl- at two sites, one for activation and one for inhibition, and four protonation steps. The intrinsic (pH-independent) dissociation constant for Cl- activation, K S, was found to be 0.9 ± 0.2 mM for both preparations, and three of the four pK as were determined, with the fourth falling below the pH range studied. The intrinsic inhibition constant, K I, was found to be 64 ± 2 and 103 ± 7 mM for the NaCl-washed and Na2SO4/pH7.5-treated preparations, respectively, and is considered in terms of the conditions likely to be present in the thylakoid lumen. This enzyme kinetics analysis provides a more complete characterization of chloride and pH dependence of O2 evolution activity than has been previously presented.
Collapse
Affiliation(s)
- Sergei Baranov
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Alice Haddy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
40
|
Yamaguchi K, Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N. On the guiding principles for understanding of geometrical structures of the CaMn4O5 cluster in oxygen-evolving complex of photosystem II. Proposal of estimation formula of structural deformations via the Jahn–Teller effects. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1278476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- K. Yamaguchi
- Institute for Nanoscience Design, Osaka University, Toyonaka, Japan
- Handairigaku Techno-Research , Toyonaka, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University , Tsukuba, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University , Okayama, Japan
| | - S. Yamanaka
- Graduate School of Science, Osaka University , Osaka, Japan
| | - Y. Umena
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| | - K. Kawakami
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| | - N. Kamiya
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| |
Collapse
|
41
|
Najafpour MM, Heidari S, Balaghi SE, Hołyńska M, Sadr MH, Soltani B, Khatamian M, Larkum AW, Allakhverdiev SI. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:156-174. [DOI: 10.1016/j.bbabio.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
|
42
|
Tanaka A, Fukushima Y, Kamiya N. Two Different Structures of the Oxygen-Evolving Complex in the Same Polypeptide Frameworks of Photosystem II. J Am Chem Soc 2017; 139:1718-1721. [PMID: 28102667 DOI: 10.1021/jacs.6b09666] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The oxygen-evolving complex (OEC) forms the heart of photosystem II (PSII) in photosynthesis. The crystal structure of PSII from Thermosynechococcus vulcanus has been reported at a resolution of 1.9 Å and at an averaged X-ray dose of 0.43 MGy. The OEC structure is suggested to be partially reduced to Mn(II) by EXAFS and DFT computational studies. Recently, the "radiation-damage-free" structures have been published at 1.95 Å resolution using XFEL, but reports continued to appear that the OEC is reduced to the S0-state of the Kok cycle. To elucidate much more precise structure of the OEC, in this study two structures were determined at extremely low X-ray doses of 0.03 and 0.12 MGy using conventional synchrotron radiation source. The results indicated that the X-ray reduction effects on the OEC were very small in the low dose region below 0.12 MGy, that is, a threshold existed for the OEC structural changes caused by X-ray exposure. The OEC structures of the two identical monomers in the crystal were clearly different under the threshold of the radiation dose, although the surrounding polypeptide frameworks of PSII were the same. The assumption that the OECs in the crystal were in the dark-stable S1-state of the Kok cycle should be re-evaluated.
Collapse
Affiliation(s)
- Ayako Tanaka
- Department of Chemistry, Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yoshimasa Fukushima
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University , 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University , 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
43
|
Najafpour MM, Moghaddam NJ, Hosseini SM, Madadkhani S, Hołyńska M, Mehrabani S, Bagheri R, Song Z. Nanolayered manganese oxides: insights from inorganic electrochemistry. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00215g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemistry of nanolayered Mn oxides in the presence of LiClO4 at pH = 6.3 under different conditions was studied.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Navid Jameei Moghaddam
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | | | - Sepideh Madadkhani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Somayeh Mehrabani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Robabeh Bagheri
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Zhenlun Song
- Surface Protection Research Group
- Surface Department
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
44
|
Uto S, Kawakami K, Umena Y, Iwai M, Ikeuchi M, Shen JR, Kamiya N. Mutual relationships between structural and functional changes in a PsbM-deletion mutant of photosystem II. Faraday Discuss 2017; 198:107-120. [DOI: 10.1039/c6fd00213g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosystem II (PSII) is a membrane protein complex that performs light-induced electron transfer and oxygen evolution from water. PSII consists of 19 or 20 subunits in its crystal form and binds various cofactors such as chlorophyll a, plastoquinone, carotenoid, and lipids. After initial light excitation, the charge separation produces an electron, which is transferred to a plastoquinone molecule (QA) and then to another plastoquinone (QB). PsbM is a low-molecular-weight subunit with one transmembrane helix, and is located in the monomer–monomer interface of the PSII dimer. The function of PsbM has been reported to be stabilization of the PSII dimer and maintenance of electron transfer efficiency of PSII based on previous X-ray crystal structure analysis at a resolution of 4.2 Å. In order to elucidate the structure–function relationships of PsbM in detail, we improved the quality of PSII crystals from a PsbM-deleted mutant (ΔPsbM-PSII) of Thermosynechococcus elongatus, and succeeded in improving the diffraction quality to a resolution of 2.2 Å. X-ray crystal structure analysis of ΔPsbM-PSII showed that electron densities for the PsbM subunit and neighboring carotenoid and detergent molecules were absent in the monomer–monomer interface. The overall structure of ΔPsbM-PSII was similar to wild-type PSII, but the arrangement of the hydrophobic transmembrane subunits was significantly changed by the deletion of PsbM, resulting in a slight widening of the lipid hole involving QB. The lipid hole-widening further induced structural changes of the bicarbonate ion coordinated to the non-heme Fe(ii) atom and destabilized the polypeptide chains around the QB binding site located far from the position of PsbM. The fluorescence decay measurement indicated that the electron transfer rate from QA to QB was decreased in ΔPsbM-PSII compared with wild-type PSII. The functional change in electron transfer efficiency was fully interpreted based on structural changes caused by the deletion of the PsbM subunit.
Collapse
Affiliation(s)
- S. Uto
- Department of Chemistry
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - K. Kawakami
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA)
- Osaka City University
- Osaka
- Japan
| | - Y. Umena
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA)
- Osaka City University
- Osaka
- Japan
- JST-PRESTO
| | - M. Iwai
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - M. Ikeuchi
- Department of Life Sciences (Biology)
- Graduate School of Arts and Science
- The University of Tokyo
- Tokyo
- Japan
| | - J.-R. Shen
- Research Institute for Interdisciplinary Science
- Okayama University
- Okayama
- Japan
| | - N. Kamiya
- Department of Chemistry
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| |
Collapse
|
45
|
González-González J, Nájera-Lara M, López-Ramírez V, Ramírez-Vázquez JA, Segoviano-Garfias JJ. Spectrophotometric determination of the formation constants of calcium(II) complexes with 2,2'-bipyridyl and 1,10-phenanthroline in acetonitrile. RESOURCE-EFFICIENT TECHNOLOGIES 2016. [DOI: 10.1016/j.reffit.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Bommer M, Bondar AN, Zouni A, Dobbek H, Dau H. Crystallographic and Computational Analysis of the Barrel Part of the PsbO Protein of Photosystem II: Carboxylate–Water Clusters as Putative Proton Transfer Relays and Structural Switches. Biochemistry 2016; 55:4626-35. [DOI: 10.1021/acs.biochem.6b00441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Bommer
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Fachbereich
Physik, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Athina Zouni
- Institut
für Biologie, Biophysik der Photosynthese, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dau
- Fachbereich
Physik, Biophysics and Photosynthesis, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
47
|
Lovyagina ER, Semin BK. Mechanism of inhibition and decoupling of oxygen evolution from electron transfer in photosystem II by fluoride, ammonia and acetate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 158:145-53. [PMID: 26971280 DOI: 10.1016/j.jphotobiol.2016.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 11/25/2022]
Abstract
Ca(2+) extraction from oxygen-evolving complex (OEC) of photosystem II (PSII) is accompanied by decoupling of oxygen evolution/electron transfer processes [Semin et al. Photosynth. Res. 98 (2008) 235] and appearance of a broad EPR signal at g=2 (split "S3" signal) what can imply the relationship between these effects. Split signal have been observed not only in Ca-depleted PSII but also in PSII membranes treated by fluoride anions, sodium acetate, and NH4Cl. Here we investigated the question: can such compounds induce the decoupling effect during treatment of PSII like Ca(2+) extraction does? We found that F(-), sodium acetate, and NH4Cl inhibit O2 evolution in PSII membranes more effectively than the reduction of artificial electron acceptor 2,6-dichlorophenolindophenol, i.e. the action of these compounds is accompanied by decoupling of these processes in OEC. Similarity of effects observed after Ca(2+) extraction and F(-), CH3COO(-) or NH4Cl treatments suggests that these compounds can inactivate function of Ca(2+). Such inactivation could originate from disturbance of the network of functionally active hydrogen bonds around OEC formed with participation of Ca(2+). This inhibition effect is observed in the region of low concentration of inhibitors. Increasing of inhibitor concentration is accompanied by appearance of other sites of inhibition.
Collapse
Affiliation(s)
- E R Lovyagina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - B K Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
48
|
Chuah WY, Stranger R, Pace RJ, Krausz E, Frankcombe TJ. Deprotonation of Water/Hydroxo Ligands in Clusters Mimicking the Water Oxidizing Complex of PSII and Its Effect on the Vibrational Frequencies of Ligated Carboxylate Groups. J Phys Chem B 2016; 120:377-85. [PMID: 26727127 DOI: 10.1021/acs.jpcb.5b09987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The IR absorptions of several first-shell carboxylate ligands of the water oxidizing complex (WOC) have been experimentally shown to be unaffected by oxidation state changes in the WOC during its catalytic cycle. Several model clusters that mimic the Mn4O5Ca core of the WOC in the S1 state, with electronic configurations that correspond to both the so-called "high" and "low" oxidation paradigms, were investigated. Deprotonation at W2, W1, or O3 sites was found to strongly reduce carboxylate ligand frequency shifts on oxidation of the metal cluster. The frequency shifts were smallest in neutrally charged clusters where the initial mean Mn oxidation state was +3, with W2 as an hydroxide and O5 a water. Deprotonation also reduced and balanced the oxidation energy of all clusters in successive oxidations.
Collapse
Affiliation(s)
- Wooi Yee Chuah
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Rob Stranger
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Ron J Pace
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Elmars Krausz
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Terry J Frankcombe
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia.,School of Physical, Environmental and Mathematical Sciences, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
| |
Collapse
|
49
|
Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem Rev 2016; 116:2886-936. [PMID: 26812090 DOI: 10.1021/acs.chemrev.5b00340] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.
Collapse
Affiliation(s)
| | - Gernot Renger
- Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Technical University Berlin , Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg , Hans-Meerwein-Straße, D-35032 Marburg, Germany
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku , 20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières , C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University , Okayama 700-8530, Japan.,Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences , Botanicheskaya Street 35, Moscow 127276, Russia.,Institute of Basic Biological Problems, Russian Academy of Sciences , Pushchino, Moscow Region 142290, Russia.,Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University , Leninskie Gory 1-12, Moscow 119991, Russia
| |
Collapse
|
50
|
Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, Han G, Kuang T, Liu Z, Wang F, Zou H, Enami I, Miyano M, Shen JR. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga. J Biol Chem 2016; 291:5676-5687. [PMID: 26757821 DOI: 10.1074/jbc.m115.711689] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/14/2022] Open
Abstract
Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionary relationships. Here we report the structure of PSII from a red alga Cyanidium caldarium at 2.76 Å resolution, which revealed the structure and interaction sites of PsbQ', a unique, fourth extrinsic protein required for stabilizing the oxygen-evolving complex in the lumenal surface of PSII. The PsbQ' subunit was found to be located underneath CP43 in the vicinity of PsbV, and its structure is characterized by a bundle of four up-down helices arranged in a similar way to those of cyanobacterial and higher plant PsbQ, although helices I and II of PsbQ' were kinked relative to its higher plant counterpart because of its interactions with CP43. Furthermore, two novel transmembrane helices were found in the red algal PSII that are not present in cyanobacterial PSII; one of these helices may correspond to PsbW found only in eukaryotic PSII. The present results represent the first crystal structure of PSII from eukaryotic oxygenic organisms, which were discussed in comparison with the structure of cyanobacterial PSII.
Collapse
Affiliation(s)
- Hideo Ago
- From the RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Hideyuki Adachi
- the Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Yasufumi Umena
- the Osaka City University Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan,; the Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Takayoshi Tashiro
- the Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Keisuke Kawakami
- the Osaka City University Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Nobuo Kamiya
- the Osaka City University Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan,; the Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Lirong Tian
- the Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guangye Han
- the Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tingyun Kuang
- the Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zheyi Liu
- the Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and
| | - Fangjun Wang
- the Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and
| | - Hanfa Zou
- the Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and
| | - Isao Enami
- the Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | | | - Jian-Ren Shen
- the Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan,; the Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,.
| |
Collapse
|