1
|
Patel A, Tiwari S, Prasad SM. Modulation of salt stress in paddy field cyanobacteria with exogenous application of gibberellic acid: growth behavior and antioxidative status. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:51-68. [PMID: 36733835 PMCID: PMC9886751 DOI: 10.1007/s12298-022-01266-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
The present study explores the possible function of gibberellic acid (GA: 20 µM) in reducing salt (NaCl) induced toxicity in two diazo-trophic cyanobacteria i.e. Nostoc muscorum and Phormidium foveolarum. The physiological and biochemical parameters viz. growth, photosynthetic pigments (chlorophyll a, carotenoids, and phycocyanin), photosynthetic and respiratory rates, oxidative stress biomarkers (superoxide radicle, hydrogen peroxide, and malondialdehyde contents) antioxidant activities (superoxide dismutase, peroxidase, catalase, and glutathione-S-transferase) and non-enzymatic antioxidants were studied under both the doses i.e. 40 mM (LC 10) and mM (LC 30) of NaCl. The growth, photosynthetic pigments and photosynthetic rate were found to be declined under concentration-dependent manner of NaCl. Contrastingly, the respiratory rate, oxidative stress biomarkers, and the activity of antioxidant enzymes i.e. superoxide dismutase (SOD), peroxidases (POD), catalase (CAT), and glutathione-S-transferase (GST) together with contents of non-enzymatic antioxidants (proline and cysteine) were found to increase in the test cyanobacteria. PSII photochemistry in both the cyanobacteria was negatively affected showing an inhibitory effect of NaCl on JIP parameters, while an enhancement effect was noticed in the values related to energy flux parameters. Further, the addition of GA to the growth medium caused an alleviating effect as it completely mitigated NaCl toxicity induced by a lower dose i.e. 40 mM of NaCl, while it partially alleviated the growth and photosynthetic parameters of 80 mM NaCl stressed cyanobacteria. Supplementation of GA significantly reduced the contents of oxidative stress tested cyanobacteria due to an improved antioxidant system (increased activities of enzymatic and non-enzymatic antioxidants) as evident from the biochemical analysis. In brief, our findings reflect the possible role of GA as a potential modulator of salt toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01266-5.
Collapse
Affiliation(s)
- Anuradha Patel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 India
- Department of Botany Dayalbagh Educational institute (Deemed University), Agra, 282005 India
| | - Sanjesh Tiwari
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 India
- Department of Botany, Ghatsila College, Jamshedpur, East Singhbhum, Jharkhand India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 India
| |
Collapse
|
2
|
Netshimbupfe MH, Berner J, Gouws C. The interactive effects of drought and heat stress on photosynthetic efficiency and biochemical defense mechanisms of Amaranthus species. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:212-225. [PMID: 37283988 PMCID: PMC10168097 DOI: 10.1002/pei3.10092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 06/08/2023]
Abstract
Drought and heat stress are major abiotic stress factors that limit photosynthesis and other related metabolic processes that hamper plant growth and productivity. Identifying plants that can tolerate abiotic stress conditions is essential for sustainable agriculture. Amaranthus plants can tolerate adverse weather conditions, especially drought and heat, and their leaves and grain are highly nutritious. Because of these traits, amaranth has been identified as a possible crop to be grown in marginal crop production systems. Therefore, this study investigated the photochemical and biochemical responses of Amaranthus caudatus, Amaranthus hypochondriacus, Amaranthus cruentus, and Amaranthus spinosus to drought stress, heat shock treatments, and a combination of both. After the six-leaf stage in a greenhouse, plants were subjected to drought stress, heat shock treatments, and a combination of both. Chlorophyll a fluorescence was used to evaluate the photochemical responses of photosystem II to heat shock while subjected to drought stress. It was found that heat shock and a combination of drought and heat shock damages photosystem II, but the level of damage varies considerably between the species. We concluded that A. cruentus and A. spinosus are more heat and drought-tolerant than Amaranthus caudatus and Amaranthus hypochondriacus.
Collapse
Affiliation(s)
| | - Jacques Berner
- Unit for Environmental Science and ManagementNorth‐West University (Potchefstroom Campus)PotchefstroomSouth Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™)North‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
3
|
Ali F, Wei X, Siddiqui ZS, Chen J, Ansari HH, Wajid D, Shams ZI, Abbasi MW, Zafar U. Scrutinizes the Sustainable Role of Halophilic Microbial Strains on Oxygen-Evolving Complex, Specific Energy Fluxes, Energy Flow and Nitrogen Assimilation of Sunflower Cultivars in a Suboptimal Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:913825. [PMID: 35923873 PMCID: PMC9340225 DOI: 10.3389/fpls.2022.913825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Environmental extremes such as hypersaline conditions are significant threats to agricultural productivity. The sustainable use of halophilic microbial strains was evaluated in plant in a salt stress environment. Oxygen-evolving complex (OEC), energy compartmentalization, harvesting efficiencies (LHE), specific energy fluxes (SEF), and nitrogen assimilation of oilseed crops (Sunflower cultivars) in a suboptimal environment was examined. Plants were grown in a plastic pot (15 ×18 cm2) containing sterilized (autoclaved at 120°C for 1 h) soil. Twenty-five ml suspension (107 CFU/ml) each of Bacillus cereus strain KUB-15 and KUB-27 (accession number NR 074540.1) and Bacillus licheniformis strain AAB9 (accession number MW362506), were applied via drenching method. Month-old plants were subjected to salt stress via gradual increment method. The energy compartmentalization of microbial inoculated plants exposed to salt stress revealed higher photosystem II (PSII) activity at the donor side, lesser photo-inhibition, and increased performance of oxygen-evolving complex compared to control. High potassium (K+) and low sodium (Na+) ions in treated leaves with the activated barricade of the antioxidant system stimulated by Bacillus strains favored enhanced photochemical efficiency, smooth electron transport, and lesser energy dissipation in the stressed plants. Moreover, the results reveal the increased activity of nitrite reductase (NiR) and nitrate reductase (NR) by microbial inoculation that elevated the nitrogen availability in the salt-stressed plant. The current research concludes that the application of bio-inoculants that reside in the hyper-saline environment offers substantial potential to enhance salt tolerance in sunflowers by modulating their water uptake, chlorophyll, nitrogen metabolism, and better photochemical yield.
Collapse
Affiliation(s)
- Fiza Ali
- Department of Botany, Stress Physiology Phenomics Centre, University of Karachi, Karachi, Pakistan
| | - Xiangying Wei
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Zamin Shaheed Siddiqui
- Department of Botany, Stress Physiology Phenomics Centre, University of Karachi, Karachi, Pakistan
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-florida Research and Education Center, IFAS, University of Florida, Apopka, FL, United States
| | - Hafiza Hamna Ansari
- Department of Botany, Stress Physiology Phenomics Centre, University of Karachi, Karachi, Pakistan
| | - Danish Wajid
- Department of Botany, Stress Physiology Phenomics Centre, University of Karachi, Karachi, Pakistan
| | - Zafar Iqbal Shams
- Institute of Environmental Studies, University of Karachi, Karachi, Pakistan
| | | | - Urooj Zafar
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Siddiqui ZS, Oh SD, Kim EJ, Jang YJ, Lee SK, Yun DW, Kwon TR, Wajid D, Ansari HH, Park SC, Cho JI. Physiological and photochemical evaluation of pepper methionine sulfoxide reductase B2 (CaMsrB2) expressing transgenic rice in saline habitat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:198-209. [PMID: 34365290 DOI: 10.1016/j.plaphy.2021.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Two pepper methionine sulfoxide reductase B2 (CaMsrB2) gene expressing transgenic rice lines (L-8 and L-23) were interrogated with respect to their physiological and photochemical attributes along with control (WT, Ilmi) as a standard against varying levels of salt concentration which are 75 mM, 150 mM and 225 mM. Against various levels of salt (NaCl) concentration, recurring detrimental effects of extreme salt stress was observed and more pronounced in the wild type plants as compared to our transgenic lines. As the exacerbated effects of salinity is responsible for pushing the plants to their ecological tolerance, our transgenic lines performed well uplifted in different realms of physiology and photochemistry such as relative water content (RWC = 60-75%), stomatal conductance (gs = 70-190 mmolm-2s-1), performance index (PIABS = 1.0-4.5), maximal photochemical yield of PSII (FV/FM = 0.48-0.72) and chlorophyll content index (CCI = 5-7.2 au) in comparison to the control. Relative gene expression, ion analysis and antioxidants activity were analyzed in all treatments to ensure the hypothesis obtained from data of physiology and photochemistry. Photosynthetic apparatus is known to lose energy in various forms such as NPQ, DIO/CS, damages of reaction center (FV/FO) which are the markers of poor health were clearly decreased in the L-23 line as compared to L-8 and WT. Present study revealed the protruding tolerance of L-23 and L-8 transgenic lines with L-23 line in the lead in comparison to control and L-8 transgenic lines.
Collapse
Affiliation(s)
- Zamin Shaheed Siddiqui
- Stress Physiology and Phenomic Lab., Department of Botany, University of Karachi, Karachi, 75270, Pakistan.
| | - Sung-Dug Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, South Korea
| | - Eun-Ji Kim
- Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, South Korea
| | - Ye-Jin Jang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, South Korea
| | - Seong-Kon Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, South Korea
| | - Doh-Won Yun
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, South Korea
| | - Taek-Ryoun Kwon
- Technology Cooperation Bureau, Rural Development Administration, Jeonju, 54875, South Korea
| | - Danish Wajid
- Stress Physiology and Phenomic Lab., Department of Botany, University of Karachi, Karachi, 75270, Pakistan
| | - Hafiza Hamna Ansari
- Stress Physiology and Phenomic Lab., Department of Botany, University of Karachi, Karachi, 75270, Pakistan
| | - Soo-Chul Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, South Korea.
| | - Jung-Il Cho
- Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, South Korea.
| |
Collapse
|
5
|
Siddiqui ZS, Ali F, Uddin Z. Sustainable effect of a symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti on nodulation and photosynthetic traits of four leguminous plants under low moisture stress environment. Lett Appl Microbiol 2021; 72:714-724. [PMID: 33590939 DOI: 10.1111/lam.13463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023]
Abstract
Sustainable effect of a nitrogen-fixing bacterium Sinorhizobium meliloti on nodulation and photosynthetic traits (phenomenological fluxes) in four leguminous plants species under low moisture stress (20-25% soil moisture content) environment was studied. Sinorhizobium meliloti was isolated from fenugreek (Trigonella foenum-graecum) root nodules, and later, it was cultured and purified. Nodulation and photosynthetic ability in the presence of S. meliloti were tested in four leguminous plant species, that is, kidney bean (cv. lobia-2000), black bean (cv. NM-97), mung bean (cv. NM-2006) and chickpea (cv. Pb-2008). Plants of each species were grown in sterilized soil that was previously treated with 25 ml suspension containing S. meliloti at 41 × 106 CFU ml-1 kg-1 pot. One-month-old plants were subjected to low soil moisture stress conditions for 15 days, and soil moisture contents were maintained to 20-25% throughout the experimental period. The ability to fix nitrogen, nodule formation, and their subsequent effect on phenomenological fluxes in low moisture treated legumes were studied.
Collapse
Affiliation(s)
- Z S Siddiqui
- Stress Physiology and Phenomic Centre, Department of Botany, University of Karachi, Karachi City, Sindh, Pakistan
| | - F Ali
- Stress Physiology and Phenomic Centre, Department of Botany, University of Karachi, Karachi City, Sindh, Pakistan
| | - Z Uddin
- Department of Physics, University of Karachi, Karachi City, Sindh, Pakistan
| |
Collapse
|
6
|
Borbély P, Poór P, Tari I. Changes in physiological and photosynthetic parameters in tomato of different ethylene status under salt stress: Effects of exogenous 1-aminocyclopropane-1-carboxylic acid treatment and the inhibition of ethylene signalling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:345-356. [PMID: 33002713 DOI: 10.1016/j.plaphy.2020.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
Although ethylene (ET) is an important participant in plant responses to salt stress, its role in the early period of acclimation, especially in the case of photosynthesis has not been revealed in detail. In this study, the effects of tolerable (100 mM) or lethal (250 mM) NaCl concentrations were investigated in hydroponically grown tomato (Solanum lycopersicum L. cv. Ailsa Craig) plants of different ET status, in wild type (WT) plants, in WT plants pre-treated with the ET generator 1-aminocyclopropane-1-carboxylic acid (ACC) and in ET insensitive, Never ripe (Nr/Nr) mutants for 1-, 6- and 24 h. In the leaves ACC treatment reduced the osmotic effect of salt stress, while Nr mutation enhanced not only osmotic but ionic component of salt stress at 100 mM NaCl. ET insensitivity caused greater decline in stomatal conductance and photosynthetic CO2 assimilation rate than in the controls under tolerable salt stress, but both ACC treatment and Nr mutation helped to maintain positive carbon assimilation under lethal salt stress after 24 h. Nr mutant leaves showed highly enhanced regulated non-photochemical quenching (NPQ) and therefore lower quantum yield of photosystem II (PSII), due to more intensive cyclic electron flow around photosystem I (CEF-PSI), which was further increased under high salinity. Exogenous ACC treatment lowered CEF-PSI and enhanced PSII photochemistry after 6 h of lethal salt stress. Controlling PSI photoinhibition, ET is suggested to be an important regulator of CEF-PSI and photoprotection under salt stress. Furthermore, the altered ET status could cause contrasting effects under different stress severity.
Collapse
Affiliation(s)
- Péter Borbély
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép fasor 52., Hungary; Biological Doctoral School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép fasor 52., Hungary; Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2., Hungary.
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép fasor 52., Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép fasor 52., Hungary
| |
Collapse
|
7
|
Singh M, Kushwaha BK, Singh S, Kumar V, Singh VP, Prasad SM. Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: Role of sulphur assimilation and sulphur-containing antioxidants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:183-192. [PMID: 28088020 DOI: 10.1016/j.plaphy.2016.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/25/2016] [Accepted: 12/25/2016] [Indexed: 05/12/2023]
Abstract
The present study investigates modulation in hexavalent chromium [Cr(VI) 25 μM] toxicity by sulphur (S; 0.5, 1.0 and 1.5 mM S as low (LS), medium (MS) and high sulphur (HS), respectively) in Solanum melongena (eggplant) seedlings. Biomass accumulation (fresh and dry weights), photosynthetic pigments, photosynthetic oxygen evolution and S content were declined by Cr(VI) toxicity. Furthermore, fluorescence characteristics (JIP-test) were also affected by Cr(VI), but Cr(VI) toxicity on photosystem II photochemistry was ameliorated by HS treatment via reducing damaging effect on PS II reaction centre and its reduction side. Enhanced respiration, Cr content and oxidative biomarkers: superoxide radical, hydrogen peroxide, lipid peroxidation and membrane damage were observed under Cr(VI) stress. Though Cr(VI) enhanced adenosine triphasphate sulfurylase (ATPS) and o-acetylserine(thiol)lyase (OASTL), glutathione-S-transferase (GST), glutathione reductase (GR) and ascorbate peroxidase (APX) activity, and content of total glutathione, cysteine and NP-SH, however, their levels/activity were further enhanced by S being maximum with HS treatment. The results show that Cr(VI) toxicity does increase under LS treatment while HS protected Cr(VI)-induced damaging effects in brinjal seedlings. Under HS treatment, in mitigating Cr(VI) toxicity, S assimilation and its associated metabolites such as cysteine, glutathione and NP-SH play crucial role.
Collapse
Affiliation(s)
- Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Bishwajit Kumar Kushwaha
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, 497335 Koriya, Chhattisgarh, India; Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Vijay Pratap Singh
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, 497335 Koriya, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
8
|
Singh M, Singh VP, Prasad SM. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:72-83. [PMID: 27639963 DOI: 10.1016/j.plaphy.2016.08.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 05/24/2023]
Abstract
In the present study, effect of different levels of nitrogen (N0, deprived; N25, sub-optimum; N75, optimum and N150, supra-optimum) in Solanum lycopersicum L. seedlings under NaCl (NaCl1, 0.3 g kg-1 sand and NaCl2, 0.5 g kg-1sand) stress was investigated. Biomass accumulation, pigments, K+ concentration, nitrate and nitrite contents were declined by NaCl in dose dependent manner. As compared to control (N75 without NaCl), fresh weight declined by 4% and 11%, and dry weight by 7 and 13% when seedlings were grown under N75+NaCl1 and N75+NaCl2 combinations, respectively. Furthermore, fluorescence parameters (JIP-test): the size and number of active reaction centres of photosynthetic apparatus (Fv/F0), efficiency of water splitting complex (F0/Fv), quantum yield of primary photochemistry (φP0 or Phi_P0), yield of electron transport per trapped excitation (Ψ0 or Psi_0), the quantum yield of electron transport (φE0), and performance index of PS II (PIABS) and parameters related to energy fluxes per reaction centre (ABS/RC, TR0/RC, ET0/RC and DI0/RC) were also affected by NaCl. However, toxic effect of NaCl on photosystem II photochemistry was ameliorated by N. The lower dose (NaCl1) of NaCl exerts damaging effect on oxidation side of PS II, while higher dose (NaCl2) damages PS II reaction centre and its reduction side. Moreover, control seedlings (N75 without NaCl) when exposed to NaCl1 and NaCl2 exhibited a significant enhancement in respiration rate by 6 and 16%, Na+ accumulation by 111 and 169% in shoot, and 141 and 223% in root and ammonium contents by 19 and 34% respectively. Nitrate and ammonium assimilating enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS) and glutamate synthase (GOGAT) were adversely affected by NaCl stress while glutamate dehydrogenase (GDH) showed reverse trend. N addition caused further enhancement in free proline, and activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS), while activity of proline dehydrogenase (ProDH) decreased. The results indicate that different levels of N significantly modulated NaCl-induced damaging effects in tomato seedlings. Furthermore, the results suggest that after N addition Na+, nitrite, nitrate, ammonium contents, nitrogen metabolic enzymes, proline content, and activity of P5CS are favourably regulated, which might be associated with mitigation of NaCl stress and effect was more pronounced with supra-optimum level of N (N150).
Collapse
Affiliation(s)
- Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| | - Vijay Pratap Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
9
|
Perales-Vela HV, García RV, Gómez-Juárez EA, Salcedo-Álvarez MO, Cañizares-Villanueva RO. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:311-317. [PMID: 27344399 DOI: 10.1016/j.ecoenv.2016.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment.
Collapse
Affiliation(s)
- Hugo Virgilio Perales-Vela
- Laboratorio de Bioquímica, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Ave. de los Barrios #1, Estado de México C.P. 54090, Mexico.
| | - Roberto Velasco García
- Laboratorio de Osmorregulación, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Ave. de los Barrios #1, Estado de México C.P. 54090, Mexico
| | - Evelyn Alicia Gómez-Juárez
- Laboratorio de Bioquímica, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Ave. de los Barrios #1, Estado de México C.P. 54090, Mexico
| | - Martha Ofelia Salcedo-Álvarez
- Laboratorio de Bioquímica, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Ave. de los Barrios #1, Estado de México C.P. 54090, Mexico
| | - Rosa Olivia Cañizares-Villanueva
- Laboratorio de Biotecnología de Microalgas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ave. IPN 2508, San Pedro Zacatenco, C.P. 07360 México D.F, Mexico
| |
Collapse
|
10
|
NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:221-32. [DOI: 10.1016/j.jphotobiol.2015.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022]
|
11
|
Hasni I, Msilini N, Hamdani S, Tajmir-Riahi HA, Carpentier R. Characterization of the structural changes and photochemical activity of photosystem I under Al(3+) effect. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:292-9. [PMID: 26123191 DOI: 10.1016/j.jphotobiol.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 11/27/2022]
Abstract
The photochemical activity of photosystem I (PSI) as affected by Al(3+) was investigated in thylakoid membranes and PSI submembrane fractions isolated from spinach. Biophysical and biochemical techniques such as oxygen uptake, light induced absorbance changes at 820nm, chlorophyll fluorescence emission, SDS-polyacrylamide gel electrophoresis, and FTIR spectroscopy have been used to analyze the sites and action modes of this cation on the PSI complex. Our results showed that Al(3+) above 3mM induces changes in the redox state of P700 reflected by an increase of P700 photooxidation phase and a delay of the slower rate of P700 re-reduction which reveals that Al(3+) exerted an inhibitory action at the donor side of PSI especially at plastocyanin (PC). Furthermore, results of P700 photooxidation monitored in the presence of DCMU with or without MV suggested that the same range of Al(3+) concentrations impairs the photochemical reaction centers (RC) of PSI, as shown by the decline in the amount of active population of P700, and disrupts the charge separation between P700 and the primary electron acceptor A0 leading to the inhibition of electron transfer at the acceptor side of PSI. These inhibitory actions were also accompanied by an impairment of the energy transfer from light harvesting complex (LHCI) to RC of PSI, following the disconnection of LHCI antenna as illustrated by an enhancement of chlorophyll fluorescence emission spectra at low temperature (77K). The above results coincided with FTIR measurements that indicated a conformational change of the protein secondary structures in PSI complex where 25% of α-helix was converted into β-sheet, β-antiparallel and turn structures. These structural changes in PSI complex proteins are closely related with the alteration photochemical activity of PSI including the inhibition of the electron transport through both acceptor and donor sides of PSI.
Collapse
Affiliation(s)
- Imed Hasni
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada
| | - Najoua Msilini
- Laboratory of Physiology and Biochemistry of Salt Tolerance in Plants, Faculty of Sciences of Tunis, Campus University, 1060, Tunisia
| | - Saber Hamdani
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heidar-Ali Tajmir-Riahi
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada.
| |
Collapse
|
12
|
Hasni I, Hamdani S, Carpentier R. Destabilization of the Oxygen Evolving Complex of Photosystem II by Al3+. Photochem Photobiol 2013; 89:1135-42. [DOI: 10.1111/php.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/11/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Imed Hasni
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| | - Saber Hamdani
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| |
Collapse
|
13
|
Neelam S, Subramanyam R. Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 124:63-70. [DOI: 10.1016/j.jphotobiol.2013.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/13/2013] [Accepted: 04/17/2013] [Indexed: 01/05/2023]
|
14
|
Yadavalli V, Neelam S, Rao ASVC, Reddy AR, Subramanyam R. Differential degradation of photosystem I subunits under iron deficiency in rice. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:753-9. [PMID: 22445751 DOI: 10.1016/j.jplph.2012.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/05/2023]
Abstract
Rice (Oryza sativa) is one of the staple foods of the world. Iron (Fe) deficiency is a major abiotic stress factor that contributes world-wide to losses in crop yield and decline in nutritional quality. As cofactor for many enzymes and proteins, iron is an essential element. It plays a pivotal role in chlorophyll (Chl) biosynthesis, and iron deficiency may result in decreased Chl production and, thus, reduced photosynthetic capacity. Photosystem I (PSI) is a prime target of iron deficiency because of its high iron content (12 Fe per PS). To understand the protein level changes in the light-harvesting complex (LHC) of PSI (LHCI) under iron deficiency, rice seedlings were grown in Hoagland's nutrient medium with and without Fe. Chlorophyll content and photosynthetic efficiency decreased under iron deficiency. Protein gel blots probed with antibodies against the PSI core and Lhca 1-4 proteins revealed that the core subunits PsaA and PsaB remained stable under iron deficiency, whereas PsaC and PsaD decreased by about 50%, and PsaE was completely degraded. Among the LHCI subunits, Lhca1 and Lhca2 decreased by 40 and 50%, respectively, whereas Lhca3 and Lhca4 were completely degraded. We propose that the dissociation of LHCI subunits may be due to increased levels of reactive oxygen species, which is suggested by the increased activity of superoxide dismutase.
Collapse
Affiliation(s)
- Venkateswarlu Yadavalli
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | | | |
Collapse
|
15
|
Singh-Tomar R, Mathur S, Allakhverdiev SI, Jajoo A. Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). J Bioenerg Biomembr 2012; 44:411-9. [DOI: 10.1007/s10863-012-9444-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 04/05/2012] [Indexed: 11/24/2022]
|