1
|
Arregui-Almeida D, Coronel M, Analuisa K, Bastidas-Caldes C, Guerrero S, Torres M, Aluisa A, Debut A, Brämer-Escamilla W, Pilaquinga F. Banana fruit (Musa sp.) DNA-magnetite nanoparticles: Synthesis, characterization, and biocompatibility assays on normal and cancerous cells. PLoS One 2024; 19:e0311927. [PMID: 39401205 PMCID: PMC11472939 DOI: 10.1371/journal.pone.0311927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/17/2024] Open
Abstract
Magnet-mediated gene therapy has gained considerable interest from researchers as a novel alternative for treating genetic disorders, particularly through the use of superparamagnetic iron oxide nanoparticles (NPs)-such as magnetite NPs (Fe3O4NPs)-as non-viral genetic vectors. Despite their commercial availability for specific genetic transfection, such as in microglia cell lines, many potential uses remain unexplored. Still, ethical concerns surrounding the use of human DNA often impede genetic research. Hence, this study examined DNA-coated Fe3O4NPs (DNA-Fe₃O₄NPs) as potential transfection vectors for human foreskin fibroblasts (HFFs) and A549 (lung cancer) cell lines, using banana (Musa sp.) as a low-cost, and bioethically unproblematic DNA source. Following coprecipitation synthesis, DNA-Fe₃O₄NP characterization revealed a ζ-potential of 40.65 ± 4.10 mV, indicating good colloidal stability in aqueous media, as well as a superparamagnetic regime, evidenced by the absence of hysteresis in their magnetization curves. Successful DNA coating on the NPs was confirmed through infrared spectra and surface analysis results, while magnetite content was verified via characteristic X-ray diffraction peaks. Transmission electron microscopy (TEM) determined the average size of the DNA-Fe3O4NPs to be 14.69 ± 5.22 nm. TEM micrographs also showed no morphological changes in the DNA-Fe3O4NPs over a 30-day period. Confocal microscopy of HFF and A549 lung cancer cell lines incubated with fluoresceinamine-labeled DNA-Fe3O4NPs demonstrated their internalization into both the cytoplasm and nucleus. Neither uncoated Fe3O4NPs nor DNA-Fe3O4NPs showed cytotoxicity to A549 lung cancer cells at 1-50 μg/mL and 25-100 μg/mL, respectively, after 24 h. HFFs also maintained viability at 1-10 μg/mL for both NP types. In conclusion, DNA-Fe3O4NPs were successfully internalized into cells and exhibited no cytotoxicity in both healthy and cancerous cells across a range of concentrations. These NPs, capable of binding to various types of DNA and RNA, hold promise for applications in gene therapy.
Collapse
Affiliation(s)
- David Arregui-Almeida
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Martín Coronel
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Karina Analuisa
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | | | - Santiago Guerrero
- Laboratorio de Ciencia de Datos Biomédicos, Universidad Internacional del Ecuador, Quito, Pichincha, Ecuador
| | - Marbel Torres
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Pichincha, Ecuador
| | - Andrea Aluisa
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Pichincha, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Pichincha, Ecuador
| | - Werner Brämer-Escamilla
- Escuela de Ciencias Físicas y Nanotecnología, Universidad Yachay Tech, Urcuquí, Imbabura, Ecuador
| | - Fernanda Pilaquinga
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| |
Collapse
|
2
|
Infrared nanospectroscopic imaging of DNA molecules on mica surface. Sci Rep 2022; 12:18972. [PMID: 36348038 PMCID: PMC9643503 DOI: 10.1038/s41598-022-23637-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Significant efforts have been done in last two decades to develop nanoscale spectroscopy techniques owning to their great potential for single-molecule structural detection and in addition, to resolve open questions in heterogeneous biological systems, such as protein-DNA complexes. Applying IR-AFM technique has become a powerful leverage for obtaining simultaneous absorption spectra with a nanoscale spatial resolution for studied proteins, however the AFM-IR investigation of DNA molecules on surface, as a benchmark for a nucleoprotein complexes nanocharacterization, has remained elusive. Herein, we demonstrate methodological approach for acquisition of AFM-IR mapping modalities with corresponding absorption spectra based on two different DNA deposition protocols on spermidine and Ni2+ pretreated mica surface. The nanoscale IR absorbance of distinctly formed DNA morphologies on mica are demonstrated through series of AFM-IR absorption maps with corresponding IR spectrum. Our results thus demonstrate the sensitivity of AFM-IR nanospectroscopy for a nucleic acid research with an open potential to be employed in further investigation of nucleoprotein complexes.
Collapse
|
3
|
Muntean CM, Ştefan R, Tǎbǎran A, Tripon C, Bende A, Fǎlǎmaş A, Colobǎţiu LM, Olar LE. The Influence of UV Femtosecond Laser Pulses on Bacterial DNA Structure, as Proved by Fourier Transform Infrared (FT‐IR) Spectroscopy. ChemistrySelect 2021. [DOI: 10.1002/slct.202102097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cristina M. Muntean
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donat Str. 400293 Cluj-Napoca Romania
| | - Rǎzvan Ştefan
- University of Agricultural Sciences and Veterinary Medicine Faculty of Veterinary Medicine 3–5 Calea Manastur Str. 400372 Cluj-Napoca Romania
| | - Alexandra Tǎbǎran
- University of Agricultural Sciences and Veterinary Medicine Faculty of Veterinary Medicine 3–5 Calea Manastur Str. 400372 Cluj-Napoca Romania
| | - Carmen Tripon
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donat Str. 400293 Cluj-Napoca Romania
| | - Attila Bende
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donat Str. 400293 Cluj-Napoca Romania
| | - Alexandra Fǎlǎmaş
- National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donat Str. 400293 Cluj-Napoca Romania
| | - Liora M. Colobǎţiu
- Iuliu Haţieganu University of Medicine and Pharmacy Faculty of Pharmacy 8 Victor Babeş Str. 400012 Cluj-Napoca Romania
| | - Loredana E. Olar
- University of Agricultural Sciences and Veterinary Medicine Faculty of Veterinary Medicine 3–5 Calea Manastur Str. 400372 Cluj-Napoca Romania
| |
Collapse
|
4
|
Zong L, Li C, Zhong Y, Shi J, Yuan Z, Wang X. FTIR microspectroscopic investigation of Lactobacillus paracasei apoptosis induced by cisplatin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119542. [PMID: 33581574 DOI: 10.1016/j.saa.2021.119542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have shown that bacteria can also undergo apoptosis, which has gradually attracted researchers' attention. Cisplatin is a first-line drug to treat several cancers, but it can damage beneficial bacteria. Hence it is very important to explore the damage mechanism of cisplatin on beneficial bacteria. In this study, Lactobacillus paracasei, one kind of beneficial bacteria, was used as the model to investigate cisplatin damage. Conventional detection showed that cisplatin induced the apoptosis of Lactobacillus paracasei. Then Fourier transform infrared (FTIR) microspectroscopy was used to detect biomacromolecular changes in Lactobacillus paracasei apoptosis, and the following results were obtained: ① Second derivative IR spectra showed the changes of DNA, proteins, polysaccharides and lipids; ② Peak-area ratios suggested the changes of the protein and lipid structure and the decrease of DNA content; ③ Principal component analysis (PCA) further revealed significant changes in the DNA and protein content/structure. This study may have a new insight into the adverse reaction mechanism of cisplatin on Lactobacillus, moreover, it suggests that FTIR microspectroscopy may be a useful supplementary tool for investigating bacterial apoptosis.
Collapse
Affiliation(s)
- Ling Zong
- Department of Chemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Li
- Department of Oncology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yang Zhong
- Department of Radiotherapy, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, China
| | - Jie Shi
- Department of Chemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhanyuan Yuan
- The Second Clinical College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Wang
- Department of Chemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
5
|
Muntean CM, Dina NE, Tǎbǎran A, Gherman AMR, Fǎlǎmaş A, Olar LE, Colobǎţiu LM, Ştefan R. Identification of Salmonella Serovars before and after Ultraviolet Light Irradiation by Fourier Transform Infrared (FT-IR) Spectroscopy and Chemometrics. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1731524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Cristina M. Muntean
- National Institute for Research & Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Nicoleta E. Dina
- National Institute for Research & Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Alexandra Tǎbǎran
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ana M. R. Gherman
- National Institute for Research & Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Alexandra Fǎlǎmaş
- National Institute for Research & Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Loredana E. Olar
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Liora M. Colobǎţiu
- Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rǎzvan Ştefan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Wang Y, Wang X, Yu L, Tian Y, Li S, Leng F, Ma J, Chen J. Effects of Sr 2 + on the preparation of Escherchia coli DH5α competent cells and plasmid transformation. PeerJ 2020. [DOI: 10.7717/peerj.9480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial gene transformation used with Escherichia coli as a desired microorganism is one of the important techniques in genetic engineering. In this study, the preparation of E. coli DH5α competent cells treated with SrCl2 and transformation by heat-shock with pUC19 plasmid was optimized by Response Surface Methodology (RSM). Other five E. coli strains including BL21 (DE3), HB-101, JM109, TOP10 and TG1, three different sizes plasmids (pUC19, pET32a, pPIC9k) were used to verify the protocol, respectively. The transformation mechanism was explored by scanning electron microscope combined with energy dispersive spectrometer (SEM-EDS), atomic absorption spectroscopy (AAS) and Fourier-transform infrared spectroscopy (FT-IR). An equation of regression model was obtained, and the ideal parameters were Sr2 + ions of 90 mM, heat-shock time of 90 s and 9 ng of plasmid. Under this conditions, the transformation efficiency could almost reach to 106 CFU/µg DNA. A small change of the cell surface structure has been observed between E. coli DH5α strain and competent cells by abovementioned spectrum technologies, which implied that a strict regulation mechanism involved in the formation of competent cells and transformation of plasmids. An equation of regression model for the competent cells preparation and plasmid transformation could be applied in gene cloning technology
Collapse
Affiliation(s)
- Yonggang Wang
- School of Energy and Power Engineering, Lanzhou University of Technology, Lan Zhou, Gansu, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Xinjian Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Linmiao Yu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Yuan Tian
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shaowei Li
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Jixiang Chen
- School of Energy and Power Engineering, Lanzhou University of Technology, Lan Zhou, Gansu, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Hamad AM, Fahmy HM, Elshemey WM. FT-IR spectral features of DNA as markers for the detection of liver preservation using irradiation. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Lee J, Ahn M, Lee YL, Jie E, Kim SG, Kim S. Rapid tool for identification of bacterial strains using Fourier transform infrared spectroscopy on genomic DNA. J Appl Microbiol 2019; 126:864-871. [DOI: 10.1111/jam.14171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/18/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022]
Affiliation(s)
- J. Lee
- Biological Resource Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup The Republic of Korea
| | - M.S. Ahn
- Biological Resource Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup The Republic of Korea
| | - Y.-L. Lee
- Biological Resource Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup The Republic of Korea
| | - E.Y. Jie
- Biological Resource Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup The Republic of Korea
| | - S.-G. Kim
- Biological Resource Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup The Republic of Korea
| | - S.W. Kim
- Biological Resource Center; Korea Research Institute of Bioscience and Biotechnology; Jeongeup The Republic of Korea
| |
Collapse
|
9
|
UV degradation of genomic DNA from in vitro grown plant species: A Fourier transform infrared spectroscopic assessment. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|