1
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
2
|
Chen Y, Liu Q, Mi S, Yuan S, Yu H, Guo Y, Cheng Y, Qian H, Xie Y, Yao W. The impact of modified polystyrene on lysozyme fibrillation studied by surface-enhanced Raman spectroscopy (SERS). Int J Biol Macromol 2023:124937. [PMID: 37217050 DOI: 10.1016/j.ijbiomac.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Nanoplastics could modulate the fibrillation of amyloid proteins. However, many chemical functional groups are adsorbed to change the interfacial chemistry of nanoplastics in the real world. Herein, this study aimed to investigate the effects of polystyrene (PS), carboxyl modified PS (PS-COOH), and amino modified PS (PS-NH2) on the fibrillation of hen egg-white lysozyme (HEWL). Due to the differences in the interfacial chemistry, concentration was considered an essential factor. PS-NH2 (10 μg/mL) could promote the fibrillation of HEWL similar to PS (50 μg/mL) and PS-COOH (50 μg/mL). Moreover, promoting the primary nucleation step of amyloid fibril formation was the primary reason. The differences in spatial conformation of HEWL were characterized by Fourier transform-infrared spectroscopy and surface enhanced Raman spectroscopy (SERS). Strikingly, a particular signal of SERS of HEWL incubated with PS-NH2 at 1610 cm-1 was found due to the interaction between amino group of PS-NH2 and tryptophan (or tyrosine) of HEWL. Therefore, a new perspective was provided to understand the regulation of interfacial chemistry of nanoplastics on the fibrillation of amyloid proteins. Additionally, this study suggested that SERS could be a powerful method to investigate the interactions between proteins and nanoparticles.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Shuna Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
3
|
Altwaijry N, Almutairi GS, Khan MS, Alokail MS, Alafaleq N, Ali R. The effect of novel antihypertensive drug valsartan on lysozyme aggregation: A combined in situ and in silico study. Heliyon 2023; 9:e15270. [PMID: 37123968 PMCID: PMC10130856 DOI: 10.1016/j.heliyon.2023.e15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Protein misfolding can result in amyloid fiber aggregation, which is associated with various types of diseases. Therefore, preventing or treating abnormally folded proteins may provide therapeutic intervention for these diseases. Valsartan (VAL) is an angiotensin II receptor blocker (ARB) that is used to treat hypertension. In this study, we examine the anti-aggregating effect of VAL against hen egg-white lysozyme (HEWL) amyloid fibrils through spectroscopy, docking, and microscopic analysis. In vitro formation of HEWL amyloid fibrils was indicated by increased turbidity, RLS (Rayleigh light scattering), and ThT fluorescence intensity. 10 μM VAL, amyloid/aggregation was inhibited up to 83% and 72% as measured by ThT and RLS respectively. In contrast, 100 μM VAL significantly increases the fibril aggregation of HEWL. CD spectroscopy results show a stabilization of HEWL α-helical structures in the presence of 10 μM VAL while the increase in β-sheet was detected at 100 μM concentration of VAL. The hydrophobicity of HEWL was increased at 100 μM VAL, suggesting the promotion of aggregation via its self-association. Steady-state quenching revealed that VAL and HEWL interact spontaneously via hydrogen bonds and van der Waals forces. Transmission electron microscopy (TEM) images illustrate that the needle-like fibers of HEWL amyloid were reduced at 10 μM VAL, while at 100 μM the fibrils of amyloid were increased. Additionally, our computational studies showed that VAL could bind to two binding sites within HEWL. In the BS-1 domain of HEWL, VAL binds to ASN59, ILE98, ILE58, TRP108, VAL109, SER50, ASP52, ASN59, ALA107, and TRP108 residues with a binding energy of -9.72 kcal mol-1. Also, it binds to GLU7, ALA10, ALA11, CYS6, ARG128, and ARG14 in the BS-2 domain with a binding energy of -5.89 kcal mol-1. VAL, therefore, appears to have dual effect against HEWL aggregation. We suggest that VAL stabilizes HEWL's aggregation-prone region (APR) at 10 μM, preventing aggregation. Also, we assume that at 100 μM, VAL occupies BS-2 beside BS-1 and destabilizes the folding structure of HEWL, resulting in aggregation. Further studies are needed to investigate the mechanism of action and determine its potential side effects.
Collapse
Affiliation(s)
- Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Ghaliah S. Almutairi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahhnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Majed S. Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medial Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, 11481, Saudi Arabia
| |
Collapse
|
4
|
Chen Y, Liu Q, Yang F, Yu H, Xie Y, Yao W. Lysozyme amyloid fibril: Regulation, application, hazard analysis, and future perspectives. Int J Biol Macromol 2022; 200:151-161. [PMID: 34995654 DOI: 10.1016/j.ijbiomac.2021.12.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Self-assembly of misfolded proteins into ordered fibrillar aggregates known as amyloid results in various human diseases. However, more and more proteins, whether in human body or in food, have been found to be able to form amyloid fibrils with in-depth researches. As a model protein for amyloid research, lysozyme has always been the focus of research in various fields. Firstly, the formation mechanisms of amyloid fibrils are discussed concisely. Researches on the regulation of lysozyme amyloid fibrils are helpful to find suitable therapeutic drugs and unfriendly substances. And this review article summarizes a number of exogenous substances including small molecules, nanoparticles, macromolecules, and polymers. Small molecules are mainly connected to lysozyme through hydrophobic interaction, electrostatic interaction, π-π interaction, van der Waals force and hydrogen bond. Nanoparticles inhibit the formation of amyloid fibers by stabilizing lysozyme and fixing β-sheet. Besides, the applications of lysozyme amyloid fibrils in food-related fields are considered furtherly due to outstanding physical and mechanical properties. Nevertheless, the potential health threats are still worthy of our attention. Finally, we also give suggestions and opinions on the future research direction of lysozyme amyloid fibrils.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
5
|
Ghosh S, Saurabh A, Prabhu NP. Spectroscopic studies on the stability and nucleation-independent fibrillation of partially-unfolded proteins in crowded environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120307. [PMID: 34461523 DOI: 10.1016/j.saa.2021.120307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Fibril formation of globular proteins is driven by attaining an appropriate partially-unfolded conformation. Excluded volume effect exerted by the presence of other macromolecules in the solution, as found in the cellular interior, might affect the conformational state of proteins and alter their fibril formation process. The change in structure, stability and rate of fibril formation of aggregation-prone partially-unfolded states of lysozyme (Lyz) and α-lactalbumin (ALA) in the presence of different sizes of polyethylene glycol (PEG) is examined using spectroscopic methods. Thermal denaturation and far-UV CD studies suggest that Lyz is stabilized by PEGs and the stability increases with increasing concentration of PEGs. However, the stability of ALA depends on the size and concentration of PEG. The change in enthalpy of unfolding indicates the existence of soft-interactions between the proteins and PEG along with excluded volume effect. Fibrillation rate of Lyz is not significantly altered in the presence of lower concentrations of PEGs suggesting that the crowding effect dominates the viscosity-induced retardation of protein association whereas at higher concentrations the rates are reduced. In case of ALA, the rate of fibrillation is drastically reduced; however, there is a marginal increase with the increasing concentration of PEG. The results suggest that the fibril formation is influenced by change in initial conformation of the partially-unfolded states of the proteins and their stability in the presence of the crowding agent. Further, the size and concentration of the crowding agent, and the soft-interaction between the proteins and PEG also affects the fibrillation.
Collapse
Affiliation(s)
- Subhasree Ghosh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Archi Saurabh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
6
|
Pavani P, Kumar K, Rani A, Venkatesu P, Lee MJ. The influence of sodium phosphate buffer on the stability of various proteins: Insights into protein-buffer interactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Zeng HJ, Wang SS, Sun LJ, Miao M, Yang R. Investigation on the effect of three isoflavones on the fibrillation of hen egg-white lysozyme. J Mol Recognit 2021; 34:e2889. [PMID: 33646596 DOI: 10.1002/jmr.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022]
Abstract
In this paper, the effects of three isoflavones including daidzein, genistein, and puerarin on fibrillation of hen egg-white lysozyme were investigated by various analytical methods. The results demonstrated that all isoflavones could effectively inhibit the fibrillogenesis of hen egg-white lysozyme and destabilized the preformed fibrils of hen egg-white lysozyme in a dose-dependent manner. To further understand the inhibition mechanism, molecular modeling was carried out. The docking results demonstrated that the isoflavones could bind to two key fibrogenic sites in hen egg-white lysozyme through van der Waals force, electrostatic forces, and hydrogen bonding, as well as σ-π stacking. By these means, isoflavones could not only obviously enhance the hydrophobicity of the binding sites, but also greatly stabilize the native state of HEWL, which was able to postpone the fibrosis process of hen egg-white lysozyme.
Collapse
Affiliation(s)
- Hua-Jin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sha-Sha Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li-Jun Sun
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| | - Min Miao
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| | - Ran Yang
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
9
|
Roy P, Panda A, Hati S, Dasgupta S. pH-Dependent Nitrotyrosine Formation in Ribonuclease A is Enhanced in the Presence of Polyethylene Glycol (PEG). Chem Asian J 2019; 14:4780-4792. [PMID: 31591811 DOI: 10.1002/asia.201901225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Indexed: 11/08/2022]
Abstract
Protein nitration can occur as a result of peroxynitrite-mediated oxidative stress. Excess production of peroxynitrite (PN) within the cellular medium can cause oxidative damage to biomolecules. The in vitro nitration of Ribonuclease A (RNase A) results in nitrotyrosine (NT) formation with a strong dependence on the pH of the medium. In order to mimic the cellular environment in this study, PN-mediated RNase A nitration has been carried out in a crowded medium. The degree of nitration is higher at pH 7.4 (physiological pH) compared to pH 6.0 (tumor cell pH). The extent of nitration increases significantly when PN is added to RNase A in the presence of crowding agents PEG 400 and PEG 6000. PEG has been found to stabilize PN over a prolonged period, thereby increasing the degree of nitration. NT formation in RNase A also results in a significant loss in enzymatic activity.
Collapse
Affiliation(s)
- Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sumon Hati
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
10
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
11
|
Interaction of catecholamine precursor l-Dopa with lysozyme: A biophysical insight. Int J Biol Macromol 2018; 109:1132-1139. [DOI: 10.1016/j.ijbiomac.2017.11.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
|
12
|
Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme. Int J Biol Macromol 2017; 98:717-722. [DOI: 10.1016/j.ijbiomac.2017.01.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 12/27/2022]
|
13
|
Kong LX, Zeng CM. Effects of Seeding on Lysozyme Amyloid Fibrillation in the Presence of Epigallocatechin and Polyethylene Glycol. BIOCHEMISTRY (MOSCOW) 2017; 82:156-167. [PMID: 28320299 DOI: 10.1134/s0006297917020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Preformed amyloid fibrils can act as seeds for accelerating protein fibrillation. In the present study, we examined the effects of preformed seeds on lysozyme amyloid fibrillation in the presence of two distinct inhibitors - epigallocatechin (EGC) and polyethylene glycol 2000 (PEG). The results demonstrated that the effects of fibrillar seeds on the acceleration of lysozyme fibrillation depended on the aggregation pathway directed by an inhibitor. EGC inhibited lysozyme fibrillation and modified the peptide chains with quinone moieties in a concentration-dependent manner. The resulting aggregates showed amorphous off-pathway morphology. Preformed fibril seeds did not promote lysozyme fibrillation in the presence of EGC. PEG also inhibited lysozyme fibrillation, and the resulting aggregates showed on-pathway protofibrillar morphology. In contrast, the addition of fibril seeds into the mixture of lysozyme and PEG significantly stimulated fibril growth. Assays of cell viability showed that both EGC and PEG inhibited the formation of cytotoxic species. In accordance with thioflavine T data, the seeds failed to alter the cell-damaging potency of the EGC-directed off-pathway aggregates, but increased the cytotoxicity of the PEG-directed on-pathway fibrils. We suggest that the pattern of interaction between lysozyme and an inhibitor determines the pathway of aggregation and therefore the effects of seeding on amyloid formation. EGC covalently modified lysozyme chains with quinones, directing the aggregation to proceed through an off-pathway, whereas PEG affected the protein in a noncovalent manner, and fibril growth could be stimulated under seeding through an on-pathway.
Collapse
Affiliation(s)
- Li-Xiu Kong
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an, 710119, China.
| | | |
Collapse
|
14
|
Nusrat S, Zaidi N, Zaman M, Islam S, Ajmal MR, Siddiqi MK, Santra MK, Khan RH. Repositioning nordihydroguaiaretic acid as a potent inhibitor of systemic amyloidosis and associated cellular toxicity. Arch Biochem Biophys 2016; 612:78-90. [DOI: 10.1016/j.abb.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 10/22/2016] [Indexed: 02/06/2023]
|
15
|
Zaman M, Ehtram A, Chaturvedi SK, Nusrat S, Khan RH. Amyloidogenic behavior of different intermediate state of stem bromelain: A biophysical insight. Int J Biol Macromol 2016; 91:477-85. [DOI: 10.1016/j.ijbiomac.2016.05.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022]
|
16
|
Chaturvedi SK, Alam P, Khan JM, Siddiqui MK, Kalaiarasan P, Subbarao N, Ahmad Z, Khan RH. Biophysical insight into the anti-amyloidogenic behavior of taurine. Int J Biol Macromol 2015; 80:375-84. [DOI: 10.1016/j.ijbiomac.2015.06.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022]
|
17
|
Chaturvedi SK, Zaidi N, Alam P, Khan JM, Qadeer A, Siddique IA, Asmat S, Zaidi Y, Khan RH. Unraveling Comparative Anti-Amyloidogenic Behavior of Pyrazinamide and D-Cycloserine: A Mechanistic Biophysical Insight. PLoS One 2015; 10:e0136528. [PMID: 26312749 PMCID: PMC4552381 DOI: 10.1371/journal.pone.0136528] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022] Open
Abstract
Amyloid fibril formation by proteins leads to variety of degenerative disorders called amyloidosis. While these disorders are topic of extensive research, effective treatments are still unavailable. Thus in present study, two anti-tuberculosis drugs, i.e., pyrazinamide (PYZ) and D-cycloserine (DCS), also known for treatment for Alzheimer's dementia, were checked for the anti-aggregation and anti-amyloidogenic ability on Aβ-42 peptide and hen egg white lysozyme. Results demonstrated that both drugs inhibit the heat induced aggregation; however, PYZ was more potent and decelerated the nucleation phase as observed from various spectroscopic and microscopic techniques. Furthermore, pre-formed amyloid fibrils incubated with these drugs also increased the PC12/SH-SY5Y cell viability as compare to the amyloid fibrils alone; however, the increase was more pronounced for PYZ as confirmed by MTT assay. Additionally, molecular docking study suggested that the greater inhibitory potential of PYZ as compare to DCS may be due to strong binding affinity and more occupancy of hydrophobic patches of HEWL, which is known to form the core of the protein fibrils.
Collapse
Affiliation(s)
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Javed Masood Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Atiyatul Qadeer
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Ibrar Ahmad Siddique
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamoon Asmat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Yusra Zaidi
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
- * E-mail:
| |
Collapse
|