1
|
Andrin B, Marques Cordeiro Junior PJ, Provost D, Diring S, Pellegrin Y, Robert M, Odobel F. Carbon nanotube heterogenization improves cobalt pyridyldiimine complex CO 2 reduction activity in aqueous carbonate buffer. Chem Commun (Camb) 2024; 60:5022-5025. [PMID: 38629464 DOI: 10.1039/d4cc00629a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We present two novel cobalt pyridyldiimine complexes functionalized with pyrene. Initially modest in homogeneous acetonitrile solution, their electrocatalytic CO2 reduction performance significantly improves upon immobilization on MWCNTs in an aqueous carbonate buffer. The complexes exhibit outstanding stability, with CO selectivity exceeding 97%, and TON and TOF values reaching up to 104 and above 1.2 s-1, respectively.
Collapse
Affiliation(s)
- Baptiste Andrin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | | | - David Provost
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | - Stéphane Diring
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | - Yann Pellegrin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | - Marc Robert
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75013 Paris, France.
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Fabrice Odobel
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
2
|
Bagnall A, Eliasson N, Hansson S, Chavarot-Kerlidou M, Artero V, Tian H, Hammarström L. Ultrafast Electron Transfer from CuInS 2 Quantum Dots to a Molecular Catalyst for Hydrogen Production: Challenging Diffusion Limitations. ACS Catal 2024; 14:4186-4201. [PMID: 38510668 PMCID: PMC10949191 DOI: 10.1021/acscatal.3c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Systems integrating quantum dots with molecular catalysts are attracting ever more attention, primarily owing to their tunability and notable photocatalytic activity in the context of the hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). CuInS2 (CIS) quantum dots (QDs) are effective photoreductants, having relatively high-energy conduction bands, but their electronic structure and defect states often lead to poor performance, prompting many researchers to employ them with a core-shell structure. Molecular cobalt HER catalysts, on the other hand, often suffer from poor stability. Here, we have combined CIS QDs, surface-passivated with l-cysteine and iodide from a water-based synthesis, with two tetraazamacrocyclic cobalt complexes to realize systems which demonstrate high turnover numbers for the HER (up to >8000 per catalyst), using ascorbate as the sacrificial electron donor at pH = 4.5. Photoluminescence intensity and lifetime quenching data indicated a large degree of binding of the catalysts to the QDs, even with only ca. 1 μM each of QDs and catalysts, linked to an entirely static quenching mechanism. The data was fitted with a Poissonian distribution of catalyst molecules over the QDs, from which the concentration of QDs could be evaluated. No important difference in either quenching or photocatalysis was observed between catalysts with and without the carboxylate as a potential anchoring group. Femtosecond transient absorption spectroscopy confirmed ultrafast interfacial electron transfer from the QDs and the formation of the singly reduced catalyst (CoII state) for both complexes, with an average electron transfer rate constant of ≈ (10 ps)-1. These favorable results confirm that the core tetraazamacrocyclic cobalt complex is remarkably stable under photocatalytic conditions and that CIS QDs without inorganic shell structures for passivation can act as effective photosensitizers, while their smaller size makes them suitable for application in the sensitization of, inter alia, mesoporous electrodes.
Collapse
Affiliation(s)
- Andrew
J. Bagnall
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Nora Eliasson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Sofie Hansson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Murielle Chavarot-Kerlidou
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Vincent Artero
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Haining Tian
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Leif Hammarström
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
3
|
Velasco L, Liu C, Zhang X, Grau S, Gil-Sepulcre M, Gimbert-Suriñach C, Picón A, Llobet A, DeBeer S, Moonshiram D. Mapping the Ultrafast Mechanistic Pathways of Co Photocatalysts in Pure Water through Time-Resolved X-ray Spectroscopy. CHEMSUSCHEM 2023; 16:e202300719. [PMID: 37548998 DOI: 10.1002/cssc.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
Nanosecond time-resolved X-ray (tr-XAS) and optical transient absorption spectroscopy (OTA) are applied to study 3 multimolecular photocatalytic systems with [Ru(bpy)3 ]2+ photoabsorber, ascorbic acid electron donor and Co catalysts with methylene (1), hydroxomethylene (2) and methyl (3) amine substituents in pure water. OTA and tr-XAS of 1 and 2 show that the favored catalytic pathway involves reductive quenching of the excited photosensitizer and electron transfer to the catalyst to form a CoII square pyramidal intermediate with a bonded aqua molecule followed by a CoI square planar derivative that decays within ≈8 μs. By contrast, a CoI square pyramidal intermediate with a longer decay lifetime of ≈35 μs is formed from an analogous CoII geometry for 3 in H2 O. These results highlight the protonation of CoI to form the elusive hydride species to be the rate limiting step and show that the catalytic rate can be enhanced through hydrogen containing pendant amines that act as H-H bond formation proton relays.
Collapse
Grants
- RYC2020-029863-I Ramon y Cajal grant
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC-ICMM)
- PIE grant
- 20226AT001 CSIC-ICMM
- PID2019-111086RA-I00 Spanish Ministerio de Ciencia, Innovación y Universidades grants
- TED2021-132757B-I00 Spanish Ministerio de Ciencia, Innovación y Universidades grants
- PID2022-143013OB-I00 Spanish Ministerio de Ciencia, Innovación y Universidades grants
- DE-AC02-06CH11357 DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division
- PID2021-126560NB-I00 DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division
- 2017-T1/IND-5432 MCIU/AEI/FEDER, UE
- 2021-5A/IND-20959 MCIU/AEI/FEDER, UE
- Comunidad de Madrid through TALENTO program
- Max Planck Society
- RYC2019-027423-I Ramon y Cajal grant
- PID2019-111617RB-I00 Ministerio de Ciencia e Innovación
- MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- SO-CEX2019-000925-S Ministerio de Ciencia e Innovación
- MCIN/AEI/10.13039/5011000110 Ministerio de Ciencia e Innovación
- Advanced Photon Source (APS); a U.S. Department of Energy (DOE) Office of Science User Facility
- DE-AC02-06CH11357 Argonne National Laboratory
Collapse
Affiliation(s)
- Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont IL, 60439, U.S.A
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont IL, 60439, U.S.A
| | - Sergi Grau
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Antonio Picón
- Departamento de Química, Universidad Autonoma de Madrid, 28049, Madrid, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
| |
Collapse
|
4
|
Camara F, Gavaggio T, Dautreppe B, Chauvin J, Pécaut J, Aldakov D, Collomb MN, Fortage J. Electrochemical Properties of a Rhodium(III) Mono-Terpyridyl Complex and Use as a Catalyst for Light-Driven Hydrogen Evolution in Water. Molecules 2022; 27:molecules27196614. [PMID: 36235152 PMCID: PMC9571878 DOI: 10.3390/molecules27196614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular hydrogen (H2) is considered one of the most promising fuels to decarbonize the industrial and transportation sectors, and its photocatalytic production from molecular catalysts is a research field that is still abounding. The search for new molecular catalysts for H2 production with simple and easily synthesized ligands is still ongoing, and the terpyridine ligand with its particular electronic and coordination properties, is a good candidate to design new catalysts meeting these requirements. Herein, we have isolated the new mono-terpyridyl rhodium complex, [RhIII(tpy)(CH3CN)Cl2](CF3SO3) (Rh-tpy), and shown that it can act as a catalyst for the light-induced proton reduction into H2 in water in the presence of the [Ru(bpy)3]Cl2 (Ru) photosensitizer and ascorbate as sacrificial electron donor. Under photocatalytic conditions, in acetate buffer at pH 4.5 with 0.1 M of ascorbate and 530 μM of Ru, the Rh-tpy catalyst produces H2 with turnover number versus catalyst (TONCat*) of 300 at a Rh concentration of 10 μM, and up to 1000 at a concentration of 1 μM. The photocatalytic performance of Ru/Rh-tpy/HA-/H2A has been also compared with that obtained with the bis-dimethyl-bipyridyl complex [RhIII(dmbpy)2Cl2]+ (Rh2) as a catalyst in the same experimental conditions. The investigation of the electrochemical properties of Rh-tpy in DMF solvent reveals that the two-electrons reduced state of the complex, the square-planar [RhI(tpy)Cl] (RhI-tpy), is quantitatively electrogenerated by bulk electrolysis. This complex is stable for hours under an inert atmosphere owing to the π-acceptor property of the terpyridine ligand that stabilizes the low oxidation states of the rhodium, making this catalyst less prone to degrade during photocatalysis. The π-acceptor property of terpyridine also confers to the Rh-tpy catalyst a moderately negative reduction potential (Epc(RhIII/RhI) = -0.83 V vs. SCE in DMF), making possible its reduction by the reduced state of Ru, [RuII(bpy)(bpy•-)]+ (Ru-) (E1/2(RuII/Ru-) = -1.50 V vs. SCE) generated by a reductive quenching of the Ru excited state (*Ru) by ascorbate during photocatalysis. A Stern-Volmer plot and transient absorption spectroscopy confirmed that the first step of the photocatalytic process is the reductive quenching of *Ru by ascorbate. The resulting reduced Ru species (Ru-) were then able to activate the RhIII-tpy H2-evolving catalyst by reduction generating RhI-tpy, which can react with a proton on a sub-nanosecond time scale to form a RhIII(H)-tpy hydride, the key intermediate for H2 evolution.
Collapse
Affiliation(s)
- Fakourou Camara
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
- SyMMES, IRIG, CEA, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Gavaggio
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Jérôme Chauvin
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Jacques Pécaut
- SyMMES, IRIG, CEA, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Dmitry Aldakov
- SyMMES, IRIG, CEA, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Marie-Noëlle Collomb
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
- Correspondence: (M.-N.C.); (J.F.)
| | - Jérôme Fortage
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
- Correspondence: (M.-N.C.); (J.F.)
| |
Collapse
|
5
|
Costentin C, Camara F, Fortage J, Collomb MN. Photoinduced Catalysis of Redox Reactions. Turnover Numbers, Turnover Frequency, and Limiting Processes: Kinetic Analysis and Application to Light-Driven Hydrogen Production. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cyrille Costentin
- Univ Grenoble Alpes, DCM, CNRS, 38000 Grenoble, France
- Université Paris Cité, 75013 Paris, France
| | | | | | | |
Collapse
|
6
|
Li CB, Bagnall AJ, Sun D, Rendon J, Koepf M, Gambarelli S, Mouesca JM, Chavarot-Kerlidou M, Artero V. Electrocatalytic reduction of protons to dihydrogen by the cobalt tetraazamacrocyclic complex [Co(N 4H)Cl 2] +: mechanism and benchmarking of performances. SUSTAINABLE ENERGY & FUELS 2021; 6:143-149. [PMID: 35028421 PMCID: PMC8691182 DOI: 10.1039/d1se01267c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
The cobalt tetraazamacrocyclic [Co(N4H)Cl2]+ complex is becoming a popular and versatile catalyst for the electrocatalytic evolution of hydrogen, because of its stability and superior activity in aqueous conditions. We present here a benchmarking of its performances based on the thorough analysis of cyclic voltammograms recorded under various catalytic regimes in non-aqueous conditions allowing control of the proton concentration. This allowed a detailed mechanism to be proposed with quantitative determination of the rate-constants for the various protonation steps, as well as identification of the amine function of the tetraazamacrocyclic ligand to act as a proton relay during H2 evolution.
Collapse
Affiliation(s)
- Cheng-Bo Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, The Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Andrew J Bagnall
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
- Ångström Laboratory, Department of Chemistry, Uppsala University SE75120 Uppsala Sweden
| | - Dongyue Sun
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Julia Rendon
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
- Univ. Grenoble Alpes, CNRS, CEA/IRIG-SyMMES 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Matthieu Koepf
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Serge Gambarelli
- Univ. Grenoble Alpes, CNRS, CEA/IRIG-SyMMES 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Jean-Marie Mouesca
- Univ. Grenoble Alpes, CNRS, CEA/IRIG-SyMMES 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble, Cedex France
| |
Collapse
|
7
|
Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Gueret R, Castillo CE, Rebarz M, Thomas F, Sliwa M, Chauvin J, Dautreppe B, Pécaut J, Fortage J, Collomb MN. Cobalt(II) Pentaaza-Macrocyclic Schiff Base Complex as Catalyst for Light-Driven Hydrogen Evolution in Water: Electrochemical Generation and Theoretical Investigation of the One-Electron Reduced Species. Inorg Chem 2019; 58:9043-9056. [DOI: 10.1021/acs.inorgchem.9b00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robin Gueret
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Mateusz Rebarz
- Université de Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | | | - Michel Sliwa
- Université de Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | | | - Baptiste Dautreppe
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, IRI, SYMMES 38000 Grenoble, France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRI, SYMMES 38000 Grenoble, France
| | | | | |
Collapse
|
9
|
Castillo CE, Stoll T, Sandroni M, Gueret R, Fortage J, Kayanuma M, Daniel C, Odobel F, Deronzier A, Collomb MN. Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H2-Evolving Catalysts. Inorg Chem 2018; 57:11225-11239. [PMID: 30129361 DOI: 10.1021/acs.inorgchem.8b01811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Thibaut Stoll
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Martina Sandroni
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES 38000 Grenoble, France
| | - Robin Gueret
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Jérôme Fortage
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Megumi Kayanuma
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, UMR 7177 CNRS/UdS, 1-4 Rue Blaise pascal, 67037 Strasbourg, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, UMR 7177 CNRS/UdS, 1-4 Rue Blaise pascal, 67037 Strasbourg, France
| | - Fabrice Odobel
- CEISAM, Université de Nantes, CNRS, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | | | | |
Collapse
|
10
|
Cobalt(II)–Salen Complexes for Photocatalytic Hydrogen Production in Noble Metal-Free Molecular Systems. Catal Letters 2018. [DOI: 10.1007/s10562-018-2509-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Gueret R, Poulard L, Oshinowo M, Chauvin J, Dahmane M, Dupeyre G, Lainé PP, Fortage J, Collomb MN. Challenging the [Ru(bpy)3]2+ Photosensitizer with a Triazatriangulenium Robust Organic Dye for Visible-Light-Driven Hydrogen Production in Water. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04000] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robin Gueret
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Laurélie Poulard
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75013 Paris, France
| | | | - Jérôme Chauvin
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Mustapha Dahmane
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75013 Paris, France
| | - Grégory Dupeyre
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75013 Paris, France
| | - Philippe P. Lainé
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75013 Paris, France
| | - Jérôme Fortage
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | | |
Collapse
|
12
|
Zhang YQ, Liao RZ. Reaction mechanism of hydrogen evolution catalysed by Co and Fe complexes containing a tetra-dentate phosphine ligand - a DFT study. Phys Chem Chem Phys 2018; 19:32589-32596. [PMID: 29192296 DOI: 10.1039/c7cp06222b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism of the electro-catalytic proton reduction in neutral phosphate buffer enabled by mononuclear cobalt and iron complexes containing a tetra-dentate phosphine ligand (MP4N2, M = Fe, Co) has been elucidated by density functional calculations. The phosphate from the buffer was found to play a crucial role by coordinating to the metal and delivering a proton to the metal hydride in the H-H bond formation. For the more efficient cobalt catalyst, the starting species is a CoII complex with a hydrogen phosphate and a water molecule ligated at the two vacant coordination sites. Two sequential proton-coupled electron transfer reductions lead to the formation of a CoII-H intermediate with a dihydrogen phosphate ligand, and the reduction potentials for these two steps were calculated to be -0.58 V and -0.72 V, respectively. Subsequently, the H-H bond formation takes place via coupling of the CoII-H and the proton from the dihydrogen phosphate ligand. The total barrier was calculated to be 18.2 kcal mol-1 with an applied potential of -0.5 V, which can further decrease to only 11.2 kcal mol-1 with an applied potential of -0.8 V. When the phosphate is displaced by a water molecule, the total barrier for the dihydrogen formation increases by 7.3 kcal mol-1. For the iron catalyst, the overall mechanism is essentially the same; however, the first reduction (FeII/FeI, potential of -1.13 V) is likely the rate-limiting step. The calculated results are in good agreement with the experimental data, which showed an onset potential of -0.50 V for the cobalt complex and -1.03 V for the iron complex.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medic Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | |
Collapse
|
13
|
Schnidrig S, Bachmann C, Müller P, Weder N, Spingler B, Joliat-Wick E, Mosberger M, Windisch J, Alberto R, Probst B. Structure-Activity and Stability Relationships for Cobalt Polypyridyl-Based Hydrogen-Evolving Catalysts in Water. CHEMSUSCHEM 2017; 10:4570-4580. [PMID: 29052339 DOI: 10.1002/cssc.201701511] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/14/2017] [Indexed: 06/07/2023]
Abstract
A series of eight new and three known cobalt polypyridyl-based hydrogen-evolving catalysts (HECs) with distinct electronic and structural differences are benchmarked in photocatalytic runs in water. Methylene-bridged bis-bipyridyl is the preferred scaffold, both in terms of stability and rate. For a cobalt complex of the tetradentate methanol-bridged bispyridyl-bipyridyl complex [CoII Br(tpy)]Br, a detailed mechanistic picture is obtained by combining electrochemistry, spectroscopy, and photocatalysis. In the acidic branch, a proton-coupled electron transfer, assigned to formation of CoIII -H, is found upon reduction of CoII , in line with a pKa (CoIII -H) of approximately 7.25. Subsequent reduction (-0.94 V vs. NHE) and protonation close the catalytic cycle. Methoxy substitution on the bipyridyl scaffold results in the expected cathodic shift of the reduction, but fails to change the pKa (CoIII -H). An analysis of the outcome of the benchmarking in view of this postulated mechanism is given along with an outlook for design criteria for new generations of catalysts.
Collapse
Affiliation(s)
- Stephan Schnidrig
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Cyril Bachmann
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Peter Müller
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Nicola Weder
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Evelyne Joliat-Wick
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Mathias Mosberger
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Johannes Windisch
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Benjamin Probst
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| |
Collapse
|
14
|
Moutet J, Philouze C, du Moulinet d'Hardemare A, Leconte N, Thomas F. Ni(II) Complexes of the Redox-Active Bis(2-aminophenyl)dipyrrin: Structural, Spectroscopic, and Theoretical Characterization of Three Members of an Electron Transfer Series. Inorg Chem 2017; 56:6380-6392. [PMID: 28513171 DOI: 10.1021/acs.inorgchem.7b00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sterically hindered bis(2-aminophenyl)dipyrrin ligand H3NL was prepared. X-ray diffraction discloses a bifurcated hydrogen bonding network involving the dipyrrin and one aniline ring. The reaction of H3NL with one equivalent of nickel(II) in the air produces a paramagnetic neutral complex, which absorbs intensively in the Vis-NIR region. Its electron paramagnetic resonance spectrum displays resonances at g1 = 2.033, g2 = 2.008, and g3 = 1.962 that are reminiscent of an (S = 1/2) system having a predominant organic radical character. Both the structural investigation (X-ray diffraction) and density functional theory calculations on [NiII(NL•)] points to an unprecedented mixed "pyrrolyl-anilinyl" radical character. The neutral complex [NiII(NL•)] exhibits both a reversible oxidation wave at -0.28 V vs Fc+/Fc and a reversible reduction wave at -0.91 V. The anion was found to be highly air-sensitive, but could be prepared by reduction with cobaltocene and structurally characterized. It comprises a Ni(II) ion coordinated to a closed-shell trianionic ligand and hence can be formulated as [NiII(NL)]-. The cation was generated by reacting [NiII(NL•)] with one equivalent of silver hexafluoroantimonate. By X-ray diffraction we established that it contains an oxidized, closed-shell ligand coordinated to a nickel(II) ion. We found that a reliable hallmark for both the oxidation state of the ligand and the extent of delocalization within the series is the bond connecting the dipyrrin and the aniline, which ranges between 1.391 Å (cation) and 1.449 Å (anion). The cation and anion exhibit a rich Vis-NIR spectrum, despite their nonradical nature. The low energy bands correspond to ligand-based electronic excitations. Hence, the HOMO-LUMO gap is small, and the redox processes in the electron transfer series are exclusively ligand-centered.
Collapse
Affiliation(s)
- Jules Moutet
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| | - Christian Philouze
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| | - Amaury du Moulinet d'Hardemare
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| | - Nicolas Leconte
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| | - Fabrice Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes , B. P. 53, 38041 Grenoble cedex 9, France
| |
Collapse
|
15
|
Moonshiram D, Gimbert-Suriñach C, Guda A, Picon A, Lehmann CS, Zhang X, Doumy G, March AM, Benet-Buchholz J, Soldatov A, Llobet A, Southworth SH. Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water. J Am Chem Soc 2016; 138:10586-96. [PMID: 27452370 DOI: 10.1021/jacs.6b05680] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray transient absorption spectroscopy (X-TAS) has been used to study the light-induced hydrogen evolution reaction catalyzed by a tetradentate macrocyclic cobalt complex with the formula [LCo(III)Cl2](+) (L = macrocyclic ligand), [Ru(bpy)3](2+) photosensitizer, and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of a binary mixture of the octahedral Co(III) precatalyst and [Ru(bpy)3](2+) after illumination revealed in situ formation of a Co(II) intermediate with significantly distorted geometry and electron-transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds, followed by its decay in the microsecond time scale. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and finite difference method (FDM). These findings allowed us to assign the full mechanistic pathway, followed by the catalyst as well as to determine the rate-limiting step of the process, which consists in the protonation of the Co(I) species. This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.
Collapse
Affiliation(s)
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Alexander Guda
- International Research Center "Smart Materials", Southern Federal University , 344090 Rostov-on-Don, Russia
| | | | | | | | | | | | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Alexander Soldatov
- International Research Center "Smart Materials", Southern Federal University , 344090 Rostov-on-Don, Russia
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | |
Collapse
|
16
|
Windisch J, Orazietti M, Hamm P, Alberto R, Probst B. General Scheme for Oxidative Quenching of a Copper Bis-Phenanthroline Photosensitizer for Light-Driven Hydrogen Production. CHEMSUSCHEM 2016; 9:1719-1726. [PMID: 27226427 DOI: 10.1002/cssc.201600422] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 06/05/2023]
Abstract
A new, general reaction scheme for photocatalytic hydrogen production is presented based on oxidative quenching of a homoleptic copper(I) bis-1,10-phenanthroline photosensitizer (PS) by 1-methyl-4-phenyl-pyridinium (MPP(+) ) as the electron relay and subsequent regeneration of the so formed copper(II) complex by a sacrificial electron donor. Electron transfer from the relay to various cobalt based water reduction catalysts and subsequent H2 production was shown to close the catalytic cycle. Transient absorption experiments unambiguously confirmed the proposed pathway, both the oxidative quenching and subsequent regeneration of oxidized PS. Photocatalytic test runs further confirmed the role of MPP(+) and up to 10 turnovers were achieved in the relay. The performance limiting factor of the system was shown to be the decomplexation of the copper PS. Quantum yields of the system were 0.03 for H2 production, but 0.6 for MPP(.) formation, clearly indicating that unproductive pathways still prevail.
Collapse
Affiliation(s)
- J Windisch
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8049, Zurich, Switzerland
| | - M Orazietti
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8049, Zurich, Switzerland
| | - P Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8049, Zurich, Switzerland
| | - R Alberto
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8049, Zurich, Switzerland
| | - B Probst
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8049, Zurich, Switzerland.
| |
Collapse
|
17
|
Lo WKC, Castillo CE, Gueret R, Fortage J, Rebarz M, Sliwa M, Thomas F, McAdam CJ, Jameson GB, McMorran DA, Crowley JD, Collomb MN, Blackman AG. Synthesis, Characterization, and Photocatalytic H2-Evolving Activity of a Family of [Co(N4Py)(X)](n+) Complexes in Aqueous Solution. Inorg Chem 2016; 55:4564-81. [PMID: 27064169 DOI: 10.1021/acs.inorgchem.6b00391] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of [Co(III)(N4Py)(X)](ClO4)n (X = Cl(-), Br(-), OH(-), N3(-), NCS(-)-κN, n = 2: X = OH2, NCMe, DMSO-κO, n = 3) complexes containing the tetrapyridyl N5 ligand N4Py (N4Py = 1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) has been prepared and fully characterized by infrared (IR), UV-visible, and NMR spectroscopies, high-resolution electrospray ionization mass spectrometry (HRESI-MS), elemental analysis, X-ray crystallography, and electrochemistry. The reduced Co(II) and Co(I) species of these complexes have been also generated by bulk electrolyses in MeCN and characterized by UV-visible and EPR spectroscopies. All tested complexes are catalysts for the photocatalytic production of H2 from water at pH 4.0 in the presence of ascorbic acid/ascorbate, using [Ru(bpy)3](2+) as a photosensitizer, and all display similar H2-evolving activities. Detailed mechanistic studies show that while the complexes retain the monodentate X ligand upon electrochemical reduction to Co(II) species in MeCN solution, in aqueous solution, upon reduction by ascorbate (photocatalytic conditions), [Co(II)(N4Py)(HA)](+) is formed in all cases and is the precursor to the Co(I) species which presumably reacts with a proton. These results are in accordance with the fact that the H2-evolving activity does not depend on the chemical nature of the monodentate ligand and differ from those previously reported for similar complexes. The catalytic activity of this series of complexes in terms of turnover number versus catalyst (TONCat) was also found to be dependent on the catalyst concentration, with the highest value of 230 TONCat at 5 × 10(-6) M. As revealed by nanosecond transient absorption spectroscopy measurements, the first electron-transfer steps of the photocatalytic mechanism involve a reductive quenching of the excited state of [Ru(bpy)3](2+) by ascorbate followed by an electron transfer from [Ru(II)(bpy)2(bpy(•-))](+) to the [Co(II)(N4Py)(HA)](+) catalyst. The reduced catalyst then enters into the H2-evolution cycle.
Collapse
Affiliation(s)
- Warrick K C Lo
- Department of Chemistry, University of Otago , P. O. Box 56, Dunedin 9054, New Zealand
| | - Carmen E Castillo
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Robin Gueret
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Jérôme Fortage
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Mateusz Rebarz
- Laboratoire de Spectrochimie Infrarouge et Raman, UMR 8516 CNRS-Université Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Michel Sliwa
- Laboratoire de Spectrochimie Infrarouge et Raman, UMR 8516 CNRS-Université Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Fabrice Thomas
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - C John McAdam
- Department of Chemistry, University of Otago , P. O. Box 56, Dunedin 9054, New Zealand
| | - Geoffrey B Jameson
- Institute of Fundamental Sciences, Massey University , P. O. Box 11-222, Palmerston North 4442, New Zealand
| | - David A McMorran
- Department of Chemistry, University of Otago , P. O. Box 56, Dunedin 9054, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago , P. O. Box 56, Dunedin 9054, New Zealand
| | - Marie-Noëlle Collomb
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Allan G Blackman
- School of Applied Sciences, Auckland University of Technology , Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Colletier JP, Sliwa M, Gallat FX, Sugahara M, Guillon V, Schirò G, Coquelle N, Woodhouse J, Roux L, Gotthard G, Royant A, Uriarte LM, Ruckebusch C, Joti Y, Byrdin M, Mizohata E, Nango E, Tanaka T, Tono K, Yabashi M, Adam V, Cammarata M, Schlichting I, Bourgeois D, Weik M. Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP. J Phys Chem Lett 2016; 7:882-887. [PMID: 26866390 DOI: 10.1021/acs.jpclett.5b02789] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.
Collapse
Affiliation(s)
| | - Michel Sliwa
- Université de Lille , CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | - François-Xavier Gallat
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Michihiro Sugahara
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Virginia Guillon
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Giorgio Schirò
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Nicolas Coquelle
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Joyce Woodhouse
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Laure Roux
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Guillaume Gotthard
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
- The European Synchrotron Radiation Facility (ESRF) , 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France
| | - Antoine Royant
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
- The European Synchrotron Radiation Facility (ESRF) , 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France
| | - Lucas Martinez Uriarte
- Université de Lille , CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | - Cyril Ruckebusch
- Université de Lille , CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Martin Byrdin
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Osaka 565-0871, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Virgile Adam
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1 , Rennes, France
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung , Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Dominique Bourgeois
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| |
Collapse
|
19
|
Natali M, Badetti E, Deponti E, Gamberoni M, Scaramuzzo FA, Sartorel A, Zonta C. Photoinduced hydrogen evolution with new tetradentate cobalt(ii) complexes based on the TPMA ligand. Dalton Trans 2016; 45:14764-73. [DOI: 10.1039/c6dt01705c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New cobalt(ii) complexes based on the TPMA ligand have been synthesized and characterized as molecular catalysts for photoinduced hydrogen evolution.
Collapse
Affiliation(s)
- Mirco Natali
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
- Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem)
| | - Elena Badetti
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Elisa Deponti
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
- Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem)
| | - Marta Gamberoni
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
- Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem)
| | | | - Andrea Sartorel
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Cristiano Zonta
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|