1
|
Pousty D, Ma B, Mathews C, Halanur M, Mamane H, Linden KG. Biofilm inactivation using LED systems emitting germicidal UV and antimicrobial blue light. WATER RESEARCH 2024; 267:122449. [PMID: 39316962 DOI: 10.1016/j.watres.2024.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Biofilms have been widely detected in water distribution and water storage systems posing potential risks to drinking water safety by harboring and shedding pathogens. Light-based disinfection methods, such as germicidal ultraviolet (UV) and antimicrobial blue light (aBL), could serve as non-chemical alternatives for biofilm control. This study investigated the inactivation of pure-culture Pseudomonas aeruginosa biofilms and mixed-culture biofilms using three distinct light-based disinfection methods: a low-pressure (LP) UV lamp emitting at 254 nm, a UV light emitting diode (LED) at 270 nm, and an aBL LED at 405 nm. The biofilms were developed on three commonly used materials including polycarbonate (PC), polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC), to assess the impact of surface characteristics on light-based biofilm inactivation. Our findings show that all selected devices can effectively inactivate pure-culture and mixed-culture biofilms. While both UV devices (LP UV lamp and UV LED) provided significant inactivation at lower fluences (>1 log reduction at 20 mJ/cm2), aBL LED achieved significant inactivation at higher fluences for pure culture (maximum log reduction of 3.8 ± 0.5 at > 200,000 mJ/cm2). Inactivation performance also varied with surface materials, likely attributed to different surface properties including roughness, hydrophobicity, and surface charge. This study provides important information on using light-based technologies for biofilm control and highlights the effect of surface materials on their inactivation performance.
Collapse
Affiliation(s)
- Dana Pousty
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States; Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia St. Reno, NV 89557, United States
| | - Christian Mathews
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States
| | - Manohara Halanur
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States.
| |
Collapse
|
2
|
Wang Y, Li X, Chen H, Yang X, Guo L, Ju R, Dai T, Li G. Antimicrobial blue light inactivation of Pseudomonas aeruginosa: Unraveling the multifaceted impact of wavelength, growth stage, and medium composition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113023. [PMID: 39241393 PMCID: PMC11390306 DOI: 10.1016/j.jphotobiol.2024.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, MA General Hospital, Harvard Medical School, United States.
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China.
| |
Collapse
|
3
|
El-Gendy AO, Ezzat S, Samad FA, Dabbous OA, Dahm J, Hamblin MR, Mohamed T. Studying the viability and growth kinetics of vancomycin-resistant Enterococcus faecalis V583 following femtosecond laser irradiation (420-465 nm). Lasers Med Sci 2024; 39:144. [PMID: 38809462 PMCID: PMC11136855 DOI: 10.1007/s10103-024-04080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Enterococcus faecalis is among the most resistant bacteria found in infected root canals. The demand for cutting-edge disinfection methods has rekindled research on photoinactivation with visible light. This study investigated the bactericidal activity of femtosecond laser irradiation against vancomycin-resistant Enterococcus faecalis V583 (VRE). The effect of parameters such as wavelength and energy density on the viability and growth kinetics of VRE was studied to design an optimized laser-based antimicrobial photoinactivation approach without any prior addition of exogenous photosensitizers. The most effective wavelengths were 430 nm and 435 nm at a fluence of 1000 J/cm2, causing a nearly 2-log reduction (98.6% and 98.3% inhibition, respectively) in viable bacterial counts. The colony-forming units and growth rate of the laser-treated cultures were progressively decreased as energy density or light dose increased at 445 nm but reached a limit at 1250 J/cm2. At a higher fluence of 2000 J/cm2, the efficacy was reduced due to a photobleaching phenomenon. Our results highlight the importance of optimizing laser exposure parameters, such as wavelength and fluence, in bacterial photoinactivation experiments. To our knowledge, this is the first study to report an optimized wavelength for the inactivation of VRE using visible femtosecond laser light.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sarah Ezzat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Fatma Abdel Samad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ola Ali Dabbous
- Department of Medical Applications of Lasers, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, 12611, Egypt
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
4
|
Sinclair LG, Anderson JG, MacGregor SJ, Maclean M. Enhanced antimicrobial efficacy and energy efficiency of low irradiance 405-nm light for bacterial decontamination. Arch Microbiol 2024; 206:276. [PMID: 38777923 PMCID: PMC11111507 DOI: 10.1007/s00203-024-03999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Due to its increased safety over ultraviolet light, there is interest in the development of antimicrobial violet-blue light technologies for infection control applications. To ensure compatibility with exposed materials and tissue, the light irradiances and dose regimes used must be suitable for the target application. This study investigates the antimicrobial dose responses and germicidal efficiency of 405 nm violet-blue light when applied at a range of irradiance levels, for inactivation of surface-seeded and suspended bacteria. Bacteria were seeded onto agar surfaces (101-108 CFUplate-1) or suspended in PBS (103-109 CFUmL-1) and exposed to increasing doses of 405-nm light (≤ 288 Jcm-2) using various irradiances (0.5-150 mWcm-2), with susceptibility at equivalent light doses compared. Bacterial reductions ≥ 96% were demonstrated in all cases for lower irradiance (≤ 5 mWcm-2) exposures. Comparisons indicated, on a per unit dose basis, that significantly lower doses were required for significant reductions of all species when exposed at lower irradiances: 3-30 Jcm-2/0.5 mWcm-2 compared to 9-75 Jcm-2/50 mWcm-2 for low cell density (102 CFUplate-1) surface exposures and 22.5 Jcm-2/5 mWcm-2 compared to 67.5 Jcm-2/150 mWcm-2 for low density (103 CFUmL-1) liquid exposures (P ≤ 0.05). Similar patterns were observed at higher densities, excluding S. aureus exposed at 109 CFUmL-1, suggesting bacterial density at predictable levels has minimal influence on decontamination efficacy. This study provides fundamental evidence of the greater energy efficacy of 405-nm light for inactivation of clinically-significant pathogens when lower irradiances are employed, further supporting its relevance for practical decontamination applications.
Collapse
Affiliation(s)
- Lucy G Sinclair
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK.
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
5
|
Santinon C, Borges A, Simões M, Gonçalves ASC, Beppu MM, Vieira MGA. Visible-light photoactivated proanthocyanidin and kappa-carrageenan coating with anti-adhesive properties against clinically relevant bacteria. Int J Biol Macromol 2024; 263:130611. [PMID: 38447837 DOI: 10.1016/j.ijbiomac.2024.130611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The increase of bacterial resistance to antibiotics is a growing concern worldwide and the search for new therapies could cost billions of dollars and countless lives. Inert surfaces are major sources of contamination due to easier adhesion and formation of bacterial biofilms, hindering the disinfection process. Therefore, the objective of this study was to develop a photoactivatable and anti-adhesive kappa-carrageenan coating using proanthocyanidin as a photosensitizer. The complete reduction (>5-log10 CFU/cm3) of culturable cells of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa pathogens was achieved after 30 min of exposure to visible light (420 nm; 30 mW/cm2) with 5 % (w/v) of the photosensitizer. Cell membrane damage was confirmed by measuring potassium leakage, epifluorescence microscopy and bacterial motility analysis. Overall, visible light irradiation on coated solid surfaces mediated by proanthocyanidin showed no cytotoxicity and inactivated clinically important pathogens through the generation of reactive oxygen species, inhibiting bacterial initial adhesion. The developed coating is a promising alternative for a wide range of applications related to surface disinfection and food biopreservation.
Collapse
Affiliation(s)
- Caroline Santinon
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Marisa Masumi Beppu
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Melissa Gurgel Adeodato Vieira
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
6
|
Chong L, Ghate V, Seah C, Zhou W. Photosensitization can be an effective risk-reduction strategy against the post-baking mold spoilage of bread. Food Microbiol 2024; 117:104390. [PMID: 37919002 DOI: 10.1016/j.fm.2023.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023]
Abstract
Photosensitization was developed as a risk-reduction strategy against the contamination by environmental mold spores during the bread cooling phase. Two food-grade photosensitizers -chlorophyllin (CHL) and riboflavin (RBF), were used to evaluate the effect of visible (blue) LED illumination against three common bread spoilage molds. Aided by CHL, 405 nm LEDs inactivated Rhizopus stolonifer and Penicillium expansum by 77.4 ± 3.3% and 52.1 ± 7.3% respectively in 30 min on dichloran rose bengal chloramphenicol agar. These reductions were much higher than the corresponding reductions observed with food-grade RBF and 445 nm LEDs - 22.8 ± 3.2% and 45.5 ± 5.9%, indicating that CHL-based photosensitization was more effective as an intervention than RBF-based photosensitization. When the three molds were illuminated on bread after spraying CHL and spot-inoculation, their populations were reduced by 51-58%. CHL-based photosensitization was observed to retain the texture and moisture of the bread samples, but had a statistically significant impact on their colour. The results of this study suggest that CHL-based photosensitization can be developed as a risk reduction method to prevent the spoilage of bread.
Collapse
Affiliation(s)
- Leonard Chong
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Vinayak Ghate
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| | - Cassandra Seah
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
7
|
Prasad A, Wynands E, Roche SM, Romo-Bernal C, Allan N, Olson M, Levengood S, Andersen R, Loebel N, Sabino CP, Ross JA. Photodynamic Inactivation of Foodborne Bacteria: Screening of 32 Potential Photosensitizers. Foods 2024; 13:453. [PMID: 38338588 PMCID: PMC10855769 DOI: 10.3390/foods13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The development of novel antimicrobial technologies for the food industry represents an important strategy to improve food safety. Antimicrobial photodynamic disinfection (aPDD) is a method that can inactivate microbes without the use of harsh chemicals. aPDD involves the administration of a non-toxic, light-sensitive substance, known as a photosensitizer, followed by exposure to visible light at a specific wavelength. The objective of this study was to screen the antimicrobial photodynamic efficacy of 32 food-safe pigments tested as candidate photosensitizers (PSs) against pathogenic and food-spoilage bacterial suspensions as well as biofilms grown on relevant food contact surfaces. This screening evaluated the minimum bactericidal concentration (MBC), minimum biofilm eradication concentration (MBEC), and colony forming unit (CFU) reduction against Salmonella enterica, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas fragi, and Brochothrix thermosphacta. Based on multiple characteristics, including solubility and the ability to reduce the biofilms by at least 3 log10 CFU/sample, 4 out of the 32 PSs were selected for further optimization against S. enterica and MRSA, including sunset yellow, curcumin, riboflavin-5'-phosphate (R-5-P), and erythrosin B. Optimized factors included the PS concentration, irradiance, and time of light exposure. Finally, 0.1% w/v R-5-P, irradiated with a 445 nm LED at 55.5 J/cm2, yielded a "max kill" (upwards of 3 to 7 log10 CFU/sample) against S. enterica and MRSA biofilms grown on metallic food contact surfaces, proving its potential for industrial applications. Overall, the aPDD method shows substantial promise as an alternative to existing disinfection technologies used in the food processing industry.
Collapse
Affiliation(s)
- Amritha Prasad
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Erin Wynands
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Steven M. Roche
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Cristina Romo-Bernal
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicholas Allan
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Merle Olson
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Sheeny Levengood
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Roger Andersen
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicolas Loebel
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Caetano P. Sabino
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo 05508-000, SP, Brazil
| | - Joseph A. Ross
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| |
Collapse
|
8
|
Uppinakudru AP, Martín-Sómer M, Reynolds K, Stanley S, Bautista LF, Pablos C, Marugán J. Wavelength synergistic effects in continuous flow-through water disinfection systems. WATER RESEARCH X 2023; 21:100208. [PMID: 38098879 PMCID: PMC10719571 DOI: 10.1016/j.wroa.2023.100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
The past decade's development of UV LEDs has fueled significant research in water disinfection, with widespread debate surrounding the potential synergies of multiple UV wavelengths. This study analyses the use of three UV sources (265, 275, and 310 nm) on the inactivation of Escherichia coli bacteria in two water matrixes. At maximum intensity in wastewater, individual inactivation experiments in a single pass set-up (Flow rate = 2 L min-1, Residence time = 0.75 s) confirmed the 265 nm light source to be the most effective (2.2 ± 0.2 log units), while the 310 nm led to the lowest inactivation rate (0.0003 ± 7.03× 10-5 log units). When a combination of the three wavelengths was used, an average log reduction of 4.4 ± 0.2 was observed in wastewater. For combinations of 265 and 275 nm, the average log reductions were similar to the sum of individual log reductions. For combinations involving the use of 310 nm, a potential synergistic effect was investigated by the use of robust statistical analysis techniques. It is concluded that combinations of 310 nm with 265 nm or 275 nm devices, in sequential and simultaneous mode, present a significant synergy at both intensities due to the emission spectra of the selected LEDs, ensuring the possibility of two inactivation mechanisms. Finally, the electrical energy per order of inactivation found the three-wavelength combination to be the most energy efficient (0.39 ± 0.05, 0.36 ± 0.01 kWh m-3, at 50% and 100% dose, respectively, in wastewater) among the synergistic combinations.
Collapse
Affiliation(s)
- Adithya Pai Uppinakudru
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
- ProPhotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork, T45×211, Ireland
| | - Miguel Martín-Sómer
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
| | - Ken Reynolds
- ProPhotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork, T45×211, Ireland
| | - Simon Stanley
- ProPhotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork, T45×211, Ireland
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
| | - Cristina Pablos
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
| |
Collapse
|
9
|
Ribeiro RS, Mencalha AL, de Souza da Fonseca A. Could violet-blue lights increase the bacteria resistance against ultraviolet radiation mediated by photolyases? Lasers Med Sci 2023; 38:253. [PMID: 37930459 DOI: 10.1007/s10103-023-03924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Studies have demonstrated bacterial inactivation by radiations at wavelengths between 400 and 500 nm emitted by low-power light sources. The phototoxic activity of these radiations could occur by oxidative damage in DNA and membrane proteins/lipids. However, some cellular mechanisms can reverse these damages in DNA, allowing the maintenance of genetic stability. Photoreactivation is among such mechanisms able to repair DNA damages induced by ultraviolet radiation, ranging from ultraviolet A to blue radiations. In this review, studies on the effects of violet and blue lights emitted by low-power LEDs on bacteria were accessed by PubMed, and discussed the repair of ultraviolet-induced DNA damage by photoreactivation mechanisms. Data from such studies suggested bacterial inactivation after exposure to violet (405 nm) and blue (425-460 nm) radiations emitted from LEDs. However, other studies showed bacterial photoreactivation induced by radiations at 348-440 nm. This process occurs by photolyase enzymes, which absorb photons at wavelengths and repair DNA damage. Although authors have reported bacterial inactivation after exposure to violet and blue radiations emitted from LEDs, pre-exposure to such radiations at low fluences could activate the photolyases, increasing resistance to DNA damage induced by ultraviolet radiation.
Collapse
Affiliation(s)
- Rickson Souza Ribeiro
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, Teresópolis, Rio de Janeiro, 11125964004, Brazil.
| |
Collapse
|
10
|
Huang S, Qin H, Liu M. Photoinactivation of Escherichia coli by 405 nm and 450 nm light-emitting diodes: Comparison of continuous wave and pulsed light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112799. [PMID: 37832394 DOI: 10.1016/j.jphotobiol.2023.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Antimicrobial blue light (ABL) therapy is one of the novel non-antibiotic approaches and recent studies showed the potential of pulsed ABL. PURPOSE Comparing photoinactivation effect of continuous wave (CW) and pulsed blue light and investigating the impact of varying light parameters. METHODS E. coli cells in planktonic were treated with CW and pulsed light (405 nm and 450 nm) at 60 mW/cm2, and the samples were taken to assess survival, reactive oxygen species (ROS) level, damage of cell membrane and metabolic activity. Further, a ROS scavenger was used to find the role of ROS played in ABL therapy. RESULTS E. coli was more sensitive to 405 nm light and the photoinactivation was dose-dependent. Pulsed 405 nm light showed the better antimicrobial effect on E. coli and caused increasing damage of cell membrane. It might be attributed to the ROS production in bacteria. CONCLUSION Pulsed light has a potential of improving the efficacy of ABL therapy and is worth to be explored deeply further.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Rd, Zhongshan City 528403, China.
| |
Collapse
|
11
|
Chen H, Cheng Y, Moraru CI. Blue 405 nm LED light effectively inactivates bacterial pathogens on substrates and packaging materials used in food processing. Sci Rep 2023; 13:15472. [PMID: 37726297 PMCID: PMC10509141 DOI: 10.1038/s41598-023-42347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
This study investigates the antimicrobial effectiveness of 405 nm light emitting diodes (LEDs) against pathogenic Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus, in thin liquid films (TLF) and on solid surfaces. Stainless steel (SS), high density polyethylene (HDPE), low density polyethylene (LDPE), and borosilicate glass were used as materials typically encountered in food processing, food service, and clinical environments. Anodic aluminum oxide (AAO) coupons with nanoscale topography were used, to evaluate the effect of topography on inactivation. The impact of surface roughness, hydrophobicity, and reflectivity on inactivation was assessed. A 48 h exposure to 405 nm led to reductions ranging from 1.3 (E. coli) to 5.7 (S. aureus) log CFU in TLF and 3.1 to 6.3 log CFU on different solid contact surfaces and packaging materials. All inactivation curves were nonlinear and followed Weibull kinetics, with better inactivation predictions on surfaces (0.89 ≤ R2 ≤ 1.0) compared to TLF (0.76 ≤ R2 ≤ 0.99). The fastest inactivation rate was observed on small nanopore AAO coupons inoculated with L. monocytogenes and S. aureus, indicating inactivation enhancing potential of these surfaces. These results demonstrate significant promise of 405 nm LEDs for antimicrobial applications in food processing and handling and the healthcare industry.
Collapse
Affiliation(s)
- Hanyu Chen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yifan Cheng
- Department of Food Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Zhang W, Su P, Ma J, Tan Y, Gong M, Ma L. An Approach to Improve Energy Efficiency during Antimicrobial Blue Light Inactivation: Application of Pulse-Width Modulation Dimming to Balance Irradiance and Irradiation Time. Antibiotics (Basel) 2023; 12:1431. [PMID: 37760727 PMCID: PMC10525104 DOI: 10.3390/antibiotics12091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial blue light (aBL) is an effective non-destructive inactivation technique and has received increasing attention. Despite its significance, the existing research has not thoroughly delved into the impacts of irradiance and irradiation time on enhancing energy efficiency during aBL inactivation and the explanation of the enhancement effect of pulse exposure. In this paper, a series of Escherichia coli inactivation experiments with different duty cycles, pulse frequencies, and irradiation times were conducted, and the relative concentrations of reactive oxygen species (ROS) were measured under corresponding conditions. A two-dimensional (2-D) Hom model was proposed to evaluate the effect of irradiance and irradiation time. The results show that, compared to continuous exposure, pulsed aBL (duty cycle = 25%) can save ~37% of the energy to achieve the same inactivation effect and generate a 1.95 times higher ROS concentration. The 2-D Hom model obtains the optimal combination of average irradiance and time according to the desired reduction and shows that the irradiation time has a higher weight than the irradiance (1.677 and 1.083, respectively). Therefore, using pulse exposure with a lower average irradiance for a longer period of time can achieve a better inactivation effect when consuming equivalent energy. The proposed pulse-width modulation dimming approach helps promote the application of the aBL technique.
Collapse
Affiliation(s)
- Wanqing Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
| | - Ping Su
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
| | - Jianshe Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
| | - Ying Tan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
| | - Mali Gong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (W.Z.); (P.S.); (M.G.)
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liya Ma
- Shenzhen Baoan Women and Children’s Hospital, Jinan University, Shenzhen 518100, China;
| |
Collapse
|
13
|
Gayathiri E, Prakash P, Pratheep T, Ramasubburayan R, Thirumalaivasan N, Gaur A, Govindasamy R, Rengasamy KRR. Bio surfactants from lactic acid bacteria: an in-depth analysis of therapeutic properties and food formulation. Crit Rev Food Sci Nutr 2023; 64:10925-10949. [PMID: 37401803 DOI: 10.1080/10408398.2023.2230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Healthy humans and animals commonly harbor lactic acid bacteria (LAB) on their mucosal surfaces, which are often associated with food fermentation. These microorganisms can produce amphiphilic compounds, known as microbial surface-active agents, that exhibit remarkable emulsifying activity. However, the exact functions of these microbial surfactants within the producer cells remain unclear. Consequently, there is a growing urgency to develop biosurfactant production from nonpathogenic microbes, particularly those derived from LAB. This approach aims to harness the benefits of biosurfactants while ensuring their safety and applicability. This review encompasses a comprehensive analysis of native and genetically modified LAB biosurfactants, shedding light on microbial interactions, cell signaling, pathogenicity, and biofilm development. It aims to provide valuable insights into the applications of these active substances in therapeutic use and food formulation as well as their potential biological and other benefits. By synthesizing the latest knowledge and advancements, this review contributes to the understanding and utilization of LAB biosurfactants in the food and nutritional areas.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, Tamil Nadu, India
| | | | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arti Gaur
- Department of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Thery T, Beney L, Grangeteau C, Dupont S. Sporicidal efficiency of an ultra-high irradiance (UHI) near UV/visible light treatment: An example of application to infected mandarins. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Huang S, Lin S, Qin H, Jiang H, Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines 2023; 11:biomedicines11041197. [PMID: 37189815 DOI: 10.3390/biomedicines11041197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial blue light (aBL) therapy is a novel non-antibiotic antimicrobial approach which works by generating reactive oxygen species. It has shown excellent antimicrobial ability to various microbial pathogens in many studies. However, due to the variability of aBL parameters (e.g., wavelength, dose), there are differences in the antimicrobial effect across different studies, which makes it difficult to form treatment plans for clinical and industrial application. In this review, we summarize research on aBL from the last six years to provide suggestions for clinical and industrial settings. Furthermore, we discuss the damage mechanism and protection mechanism of aBL therapy, and provide a prospect about valuable research fields related to aBL therapy.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| |
Collapse
|
16
|
Zhang W, Su P, Ma J, Gong M, Ma L, Wang J. A singlet state oxygen generation model based on the Monte Carlo method of visible antibacterial blue light inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112628. [PMID: 36610348 DOI: 10.1016/j.jphotobiol.2022.112628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Visible antibacterial blue light (VABL) has received much attention recently as a nondestructive inactivation approach. However, due to the sparse distribution of bacteria, the light energy evaluation method used in existing studies is inaccurate. Thus, the sensitivity of microorganisms to VABL in different experiments cannot be compared. In this paper, a Monte Carlo-based photon transport model with the optimized scattering phase function was constructed. The model calculated the spatial light energy distribution and the temporal distribution of cumulative singlet state oxygen (CSO) under various cell and medium parameters. The simulation results show that when the cells are sparsely distributed, <30% of light energy from the light source is absorbed by microbes and participates in photochemical reactions. The CSO produced increases with cell density and cell size. Little light energy is available, and thus, the concentration of CSO produced is insufficient to inactivate microbes at deeper depths. As the light intensity and inactivation time increased, the production of singlet state oxygen tended to level off. The model proposed here can quantify the generation of singlet state oxygen and provide a more accurate light energy guide for the VABL inactivation process.
Collapse
Affiliation(s)
- Wanqing Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ping Su
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianshe Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mali Gong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liya Ma
- Shenzhen Baoan Women and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Jing Wang
- College of Water Conservancy, Yunnan Agricultural University, Kunming 650000, China
| |
Collapse
|
17
|
Amodeo D, Lucarelli V, De Palma I, Puccio A, Nante N, Cevenini G, Messina G. Efficacy of violet-blue light to inactive microbial growth. Sci Rep 2022; 12:20179. [PMID: 36424450 PMCID: PMC9691702 DOI: 10.1038/s41598-022-24563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022] Open
Abstract
The increase in health care-associated infections and antibiotic resistance has led to a growing interest in the search for innovative technologies to solve these problems. In recent years, the interest of the scientific community has focused on violet-blue light at 405 nm (VBL405). This study aimed to assess the VBL405 efficiency in reducing microbial growth on surfaces and air. This descriptive study run between July and October 2020. Petri dishes were contaminated with P. aeruginosa, E. coli, S. aureus, S. typhimurium, K. pneumoniae and were placed at 2 and 3 m from a LED light source having a wavelength peak at 405 nm and an irradiance respectively of 967 and 497 µW/cm2. Simultaneously, the air in the room was sampled for 5 days with two air samplers (SAS) before and after the exposition to the VBL405 source. The highest microbial reduction was reached 2 m directly under the light source: S. typhimurium (2.93 log10), K. pneumoniae (2.30 log10), S. aureus (3.98 log10), E. coli (3.83 log10), P. aeruginosa (3.86 log10). At a distance of 3 m from the light source, the greatest reduction was observed for S. aureus (3.49 log10), and P. aeruginosa (3.80 log10). An average percent microbial reduction of about 70% was found in the sampled air after 12 h of exposure to VBL405. VBL405 has proven to contrast microbial growth on the plates. Implementing this technology in the environment to provide continuous disinfection and to control microbial presence, even in the presence of people, may be an innovative solution.
Collapse
Affiliation(s)
- Davide Amodeo
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Valentina Lucarelli
- grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Isa De Palma
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Puccio
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Nante
- grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gabriele Cevenini
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gabriele Messina
- grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Lee S, Yoon K, Kim J, Kim KG. Specular Reflection Suppression through the Adjustment of Linear Polarization for Tumor Diagnosis Using Fluorescein Sodium. SENSORS (BASEL, SWITZERLAND) 2022; 22:6651. [PMID: 36081110 PMCID: PMC9460300 DOI: 10.3390/s22176651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
In tumor surgery, the edges of the tumor can be visually observed using a fluorescent contrast agent and a fluorescent imaging device. By distinguishing it from normal tissues and blood vessels, it is possible to objectively judge the extent of resection while visually observing it during surgery, and it guarantees safe tumor resection based on more information. However, the main problem of such an imaging device is the specular reflection phenomenon. If specular reflection overlaps with important lesion locations, they are a major factor leading to diagnostic errors. Here, we propose a method to reduce specular reflection that occurs during tumor diagnosis using a linear polarization filter and fluorescent contrast agent. To confirm the effect of removing specular reflection, a self-made fluorescein sodium vial phantom was used, and the reliability of the results was increased using a large animal (pig) test. As a result of the experiment, it was possible to obtain an image in which specular reflection was removed by controlling the rotation angle of the filter by 90° and 270°, and the same results were confirmed in the phantom experiment and the animal experiment.
Collapse
Affiliation(s)
- Sangyun Lee
- Department of Health and Safety Convergence Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Department of Health and Environmental Convergence Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Korea
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Korea
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea
| | - Jungmin Kim
- Department of Health and Safety Convergence Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Department of Health and Environmental Convergence Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Korea
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambak-moero, Yeonsu-gu, Incheon 21936, Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea
| |
Collapse
|
19
|
Bang JI, Kim JH, Choi A, Sung M. The Wavelength-Based Inactivation Effects of a Light-Emitting Diode Module on Indoor Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9659. [PMID: 35955018 PMCID: PMC9368635 DOI: 10.3390/ijerph19159659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
With the increased incidence of infectious disease outbreaks in recent years such as the COVID-19 pandemic, related research is being conducted on the need to prevent their spread; it is also necessary to develop more general physical-chemical control methods to manage them. Consequently, research has been carried out on light-emitting diodes (LEDs) as an effective means of light sterilization. In this study, the sterilization effects on four types of representative bacteria and mold that occur indoors, Bacillus subtilis, Escherichia coli, Penicillium chrysogenum, and Cladosporium cladosporidides, were confirmed using LED modules (with wavelengths of 275, 370, 385, and 405 nm). Additionally, power consumption was compared by calculating the time required for 99.9% sterilization of each microorganism. The results showed that the sterilization effect was high, in the order 275, 370, 385, and 405 nm. The sterilization effects at 385 and 405 nm were observed to be similar. Furthermore, when comparing the power consumption required for 99.9% sterilization of each microorganism, the 275 nm LED module required significantly less power than those of other wavelengths. However, at 405 nm, the power consumption required for 99.9% sterilization was less than that at 370 nm; that is, it was more efficient and similar to or less than that at 385 nm. Additionally, because 405 nm can be applied as general lighting, it was considered to have wider applicability and utility compared with UV wavelengths. Consequently, it should be possible to respond to infectious diseases in the environment using LEDs with visible light wavelengths.
Collapse
Affiliation(s)
- Jong-Il Bang
- Department of Architectural Engineering, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul 05006, Korea
| | - Ji-Hi Kim
- Specialization Strategy Technology Department, EAN Technology Co., Ltd., EAN Institute of Sustainable Technology, 77-gil Teheran-Ro, Gangnam-Gu, Seoul 06159, Korea
| | - Anseop Choi
- Department of Architectural Engineering, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul 05006, Korea
| | - Minki Sung
- Department of Architectural Engineering, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul 05006, Korea
| |
Collapse
|
20
|
Shi YG, Lin S, Chen WX, Jiang L, Gu Q, Li DH, Chen YW. Dual-Stage Blue-Light-Guided Membrane and DNA-Targeted Photodynamic Inactivation Using Octyl Gallate for Ultraefficient Eradication of Planktonic Bacteria and Sessile Biofilms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7547-7565. [PMID: 35687111 DOI: 10.1021/acs.jafc.2c01667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the synergistic bactericidal activity and mechanism of dual-stage light-guided membrane and DNA-targeted photodynamic inactivation (PDI) by the combination of blue light (BL, 420 nm) and the food additive octyl gallate (OG) against Vibrio parahaemolyticus in planktonic and biofilm growth modes. While OG serves as an outstanding exogenous photosensitizer, the planktonic cells were not visibly detectable after the OG-mediated PDI treatment with 0.2 mM OG within 15 min (191.7 J/cm2), and its biofilm was nearly eradicated within 60 min (383.4 J/cm2). Gram-positive Staphylococcus aureus was more susceptible to the PDI than Gram-negative V. parahaemolyticus. The cellular wall and proteins, as well as DNA, were the vulnerable targets for PDI. The membrane integrity could be initially disrupted by OG bearing a hydrophilic head and a hydrophobic tail via transmembrane insertion. The enhancement of OG uptake due to the first-stage light-assisted photochemical internalization (PCI) promoted the accumulation of OG in cells. It further boosted the second-stage light irradiation of the photosensitizer-inducing massive cell death. Upon the second-stage BL irradiation, reactive oxygen species (ROS) generated through the OG-mediated PDI in situ could extensively deconstruct membranes, proteins, and DNA, as well as biofilms, while OG could be activated by BL to carry out photochemical reactions involving the formation of OG-bacterial membrane protein (BMP) covalent conjugates and the interactions with DNA. This dual-stage light-guided subcellular dual-targeted PDI strategy exhibits encouraging effects on the eradication of planktonic bacteria and sessile biofilms, which provides a new insight into the development of an ultraeffective antimicrobial and biofilm removing/reducing technique to improve microbiological safety in the food industry.
Collapse
|
21
|
Cheng CW, Lee SY, Chen TY, Yang MJ, Yuann JMP, Chiu CM, Huang ST, Liang JY. A study of the effect of reactive oxygen species induced by violet and blue light from oxytetracycline on the deactivation of Escherichia coli. Photodiagnosis Photodyn Ther 2022; 39:102917. [PMID: 35597444 DOI: 10.1016/j.pdpdt.2022.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Oxytetracycline (OTC), a tetracycline antibiotic, is a broad-spectrum antibacterial agent. In this investigation, liquid chromatography-mass spectrometry (LC-MS) is utilized to determine the effects of blue light (λ = 448 nm) illumination (BLIA) and violet light (λ = 403 nm) illumination (VLIA) on conformational changes in OTC at pH 7.8. The photochemical effect of OTC that is exposed to BLIA and VLIA on the deactivation of Escherichia coli (E. coli) is studied. The deactivation of E. coli has an insignificant effect on treatment with OTC alone. OTC is relatively unstable under BLIA and VLIA illumination in an alkaline solution, and OTC has been shown to inactivate E. coli by generating reactive oxygen species (ROS). Less anionic superoxide radicals (O2•-) are generated from OTC that is treated with BLIA than that from VLIA treatment, so OTC is more efficient in inactivating E. coli under VLIA. Inactivation of reduction rates of 0.51 and 3.65 logs in E. coli are achieved using 0.1 mM OTC under BLIA for 120 min and VLIA for 30 min, respectively, under the same illumination intensity (20 W/m2). Two photolytic products of OTC (PPOs) are produced when OTC is exposed to BLIA and VLIA, with molecular ions at m/z 447 and 431, molecular formulae C21H22N2O9 and C21H22N2O8, and masses of 446.44 and 430.44 g/mol, respectively. The results show that when exposed to VLIA, OTC exhibits enhanced inactivation of E. coli, suggesting that the photochemical treatment of OTC is a potential supplement in a hygienic process.
Collapse
Affiliation(s)
- Chien-Wei Cheng
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan.
| | - Shwu-Yuan Lee
- Department of Tourism and Leisure, Hsing Wu University, New Taipei City 24452, Taiwan.
| | - Tang-Yu Chen
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan.
| | - Meei-Ju Yang
- Tea Research and Extension Station, Yangmei 326011, Taiwan.
| | - Jeu-Ming P Yuann
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan
| | - Chi-Ming Chiu
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan.
| | - Shiuh-Tsuen Huang
- Department of Science Education and Application, National Taichung University of Education, Taichung 40306, Taiwan; Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40200, Taiwan.
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan.
| |
Collapse
|
22
|
Growth medium- and strain-dependent bactericidal efficacy of blue light against Shiga toxin-producing Escherichia coli on food-grade stainless steel and plastic. Food Microbiol 2022; 103:103953. [DOI: 10.1016/j.fm.2021.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022]
|
23
|
Wang S, Wong KI, Li Y, Ishii M, Li X, Wei L, Lu M, Wu MX. Blue light potentiates safety and bactericidal activity of p-Toluquinone. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 230:112427. [PMID: 35338920 DOI: 10.1016/j.jphotobiol.2022.112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Fewer antibiotics are available for effective management of bacterial infections to date owing to increasing multiple-drug resistance (MDR). Here, we expand our early success in combination of 405 nm blue light irradiation with phenolic compounds to sufficiently kill blue light-refractory MDR Escherichia coli (E. coli). p-Toluquinone (p-TQ) alongside blue light inactivated 7.3 log10E. coli within 6 min, whereas either alone was totally ineffective. A similar killing efficacy was attained with four other pathogens commonly seen in hospital-acquired infections and Enterococcus faecalis (Ef) that don't produce porphyrins-like molecules. The combinatory therapy prevented recurrence of E. coli infection in skin scratch wounds of murine. The bactericidal activity was ascribed to reactive oxygen species (ROS) generation triggered by blue light-mediated excitation of p-TQ, which is less likely to induce resistance because of multi-targeted and non-specific nature of ROS. Remarkably, toxic p-TQ became harmless to mammalian cells after brief exposure to blue light while retaining its bactericidal activity. The opposite effect of blue light on p-TQ activity unravels a novel, simple strategy to detoxify p-TQ and its combination with blue light as a safe and efficacious bactericidal modality for managing MDR bacterial infections.
Collapse
Affiliation(s)
- Shen Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ka Ioi Wong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongli Li
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA
| | - Momoko Ishii
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA
| | - Xin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wei
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Luo S, Yang XI, Wu S, Liu M, Zhang X, Sun X, Li Y, Wang X, Wang X, Hu X. Blue Light for Inactivation of Meatborne Pathogens and Maintaining the Freshness of Beef. J Food Prot 2022; 85:553-562. [PMID: 34882203 DOI: 10.4315/jfp-21-234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Beef is rich in various nutrients but easily spoils due to bacterial contamination; thus, a bactericidal method is needed to inactivate meatborne pathogens while maintaining the freshness of beef. The present study was conducted to investigate for the first time the bactericidal effect of blue light (BL) at 415 nm against four meatborne pathogens (methicillin-resistant Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes) both in vitro and inoculated onto the surface of fresh beef. The populations of the four pathogens on the nonirradiated control beef did not change significantly (P > 0.05), whereas a dose-dependent inactivation effect was found for BL-treated beef both in vitro and in vivo. On the beef cuts, BL at 109.44 J/cm2 inactivated 90% of inoculated cells of the tested strains (P < 0.05), and this inactivation effect was sustained during 7 days of cold storage. Insignificant changes in lipid oxidation rate, water holding capacity, and cooking loss were found during storage between the control beef and the beef irradiated at 109.44 J/cm2 at the same time. BL had a minor and nonsignificant effect on surface color and free amino acid concentrations. The pH of the treated beef increased more slowly (P < 0.05) than did that of untreated beef. These results suggest that BL could be a novel bactericide and could help maintain the freshness of beef. HIGHLIGHTS
Collapse
Affiliation(s)
- Shuanghua Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - X I Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, University Avenue and Library Road, Massey University, Palmerston North 4442, New Zealand and
| | - Minmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiujuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoying Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanbu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, People's Republic of China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
25
|
Poonia A, Pandey S, Vasundhara. Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractLight-emitting diode (LED) technology is a new non-thermal food preservation method that works by converting light energy into heat. LED has potential to revolutionize crop production, protection and preservation. This technology is economical and environmentally friendly. LEDs have been shown to improve the nutritive quality and shelf life of foods, control the ripening of fruits, induce the synthesis of bioactive compounds and antioxidants and reduce the microbial contamination. This technology also has great scope in countries, where safety, hygiene, storage and distribution of foods are serious issues. While comparing this technology with other lighting technologies, LEDs can bring numerous advantages to food supply chain from farm to fork. In case of small growing amenities which exploit only LEDs, energy expenditure has been successfully reduced while producing nutritious food. LEDs can be used to give us better understanding and control over production and preservation of food with relation to spectral composition of light. LEDs also play significant role in food safety by inactivating the food borne pathogens. Therefore, LED lighting is a very effective and promising technology for extending shelf life of agricultural produce by increasing disease resistance and with increased nutritional values.
Graphical abstract
Collapse
|
26
|
Matafonova G, Batoev V. Dual-wavelength light radiation for synergistic water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151233. [PMID: 34715208 DOI: 10.1016/j.scitotenv.2021.151233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Development of the narrow-band mercury-free light sources, such as light emitting diodes (LEDs) and excilamps, has stimulated research on inactivation of pathogenic microorganisms by dual-wavelength light radiation. To date, dual-wavelength light radiation has emerged as an advanced tool for enhancing microbial inactivation in water in view of potential synergistic effect. This is the first review that aims at elucidating its mechanisms under dual-wavelength light exposure and surveying a body of related literature in terms of yes-or-no synergy. We have proposed three key inactivation mechanisms, which function in the estimated spectrum ranges I (190-254 nm), II (250-320 nm) and III (300-405 nm) and provide a synergistic effect when combined. These mechanisms involve proteins damage and DNA repair suppression (I), direct and indirect DNA damage (II) and generation of reactive oxygen species (ROS) by endogenous photosensitizers (III), such as porphyrins and flavins. A synergy under dual-wavelength light irradiation simultaneously or sequentially occurs if coupling two wavelengths of different ranges (I + II, I + III, II + III) in order to trigger different inactivation mechanisms. Recent advances of dual-wavelength light strategy in photodynamic therapy could be applied for water disinfection. They bring opportunities for applying the sources of near-UV and visible radiation and making the disinfection processes more energy- and cost-effective. From this standpoint, the synergistically efficient dual-wavelength combinations II + III and the combinations within the extended to 700 nm range III (near-UV + VIS) appear to be promising for developing novel advanced oxidation processes for disinfection of real turbid waters.
Collapse
Affiliation(s)
- Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
27
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
KEYVAN E, KAHRAMAN HA, TUTUN H, DONMEZ S, SEN E, DEMIRTAS A, AKYUZ AO. Inactivation efficacy of 405 nm light emitting diodes (LEDs) on Salmonella Enteritidis at different illumination temperatures. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Erdi SEN
- Burdur Mehmet Akif Ersoy University, Turkey
| | | | | |
Collapse
|
29
|
SHIRAI AKIHIRO, YASUTOMO YUKO, KANNO YUKA. Effects of Violet-Blue Light-Emitting Diode on Controlling Bacterial Contamination in Boiled Young Sardine. Biocontrol Sci 2022; 27:9-19. [DOI: 10.4265/bio.27.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- AKIHIRO SHIRAI
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - YU-KO YASUTOMO
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - YUKA KANNO
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| |
Collapse
|
30
|
Zhu S, Song Y, Pei J, Xue F, Cui X, Xiong X, Li C. The application of photodynamic inactivation to microorganisms in food. Food Chem X 2021; 12:100150. [PMID: 34761205 PMCID: PMC8566761 DOI: 10.1016/j.fochx.2021.100150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Nowadays, food safety issues have drawn increased attention due to the continual occurrence of infectious diseases caused by foodborne pathogens, which is an important factor causing food safety hazard. Meanwhile, the emergence of an increasing number of antibiotic-resistant pathogens is a worrisome phenomenon. Therefore, it is imperative to find new technologies with low-cost to inactivate pathogenic microorganisms and prevent cross-contamination. Compared with traditional preservatives, photodynamic inactivation (PDI) has emerged as a novel and promising strategy to eliminate foodborne pathogens with advantages such as non-toxic and low microbial resistance, which also meets the demand of current consumers for green treatment. Over the past few years, reports of using this technology for food safety have increased rapidly. This review summarizes recent progresses in the development of photodynamic inactivation of foodborne microorganisms. The mechanisms, factors influencing PDI and the application of different photosensitizers (PSs) in different food substrates are reviewed.
Collapse
Affiliation(s)
- Shengyu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yukang Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiliu Pei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaowen Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
31
|
Liu D, Gu W, Wang L, Sun J. Photodynamic inactivation and its application in food preservation. Crit Rev Food Sci Nutr 2021; 63:2042-2056. [PMID: 34459290 DOI: 10.1080/10408398.2021.1969892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Food incidents caused by various foodborne pathogenic bacteria are posing a major threat to human health. The traditional thermal and chemical-based procedures applied for microbial control in the food industry cause adverse effects on food quality and bacterial resistance. As a new means of innovative sterilization technology, photodynamic inactivation (PDI) has gained significant attention due to excellent sterilization effect, environmental friendliness, safety, and low cost. This review analyses new developments in recent years for PDI systems applied to the food preservation. The fundamentals of photosensitization mechanism, the development of photosensitizers and light source selection are discussed. The application of PDI in food preservation are presented, with the main emphasis on the natural photosensitizers and its application to inactivate in vitro and in vivo microorganisms in food matrixes such as fresh vegetable, fruits, seafood, and poultry. The challenges and future research directions facing the application of this technology to food systems have been proposed. This review will provide reference for combating microbial contamination in food industry.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, PR China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| |
Collapse
|
32
|
NIR Irradiation Based on Low-Power LED Drive Module Design for Fat Reduction. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9992095. [PMID: 34423044 PMCID: PMC8378979 DOI: 10.1155/2021/9992095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
In this study, we designed a low-power visible ray (V) drive module based on a light-emitting diode (LED) to initiate fat reduction using light source irradiation. A chemical phantom of muscle and fat was fabricated, and the performance of the proposed LED drive module was tested using this chemical phantom. The LED light source could reduce fat by irradiating the skin 4–5 cm deep. The device exhibits a negative feedback and parallel amplification to maintain a stable circuit based on low-power consumption. Muscles have a high-water content and low impedance, whereas fats have a low water content and significant salt content. Therefore, fat exhibits high impedance. Chemical phantoms were fabricated according to these impedance values, and the fat reduction effect using the LED circuits was analyzed. When the fat phantom was irradiated by the light source, the fat impedance lowered, and we confirmed that fat reduction could be obtained. This study is expected to be applicable to family medicine and weight management health care.
Collapse
|
33
|
Cossu M, Ledda L, Cossu A. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination. Food Res Int 2021; 144:110358. [PMID: 34053551 DOI: 10.1016/j.foodres.2021.110358] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
The food and drink manufacturing industry is constantly seeking for alternative sanitation and disinfection systems that may achieve the same antimicrobial efficiency of conventional chemical sanitisers and at the same time be convenient in terms of energy and water savings. A candidate technology for this purpose is the use of light in combination with photosensitisers (PS) to generate a bioactive effect against microbial agents in a process defined as photodynamic inactivation (PDI). This technology can be applied to the food processing of different food matrices to reduce the microbial load of foodborne pathogens such as bacteria, fungi, viruses and protozoa. Also, the PDI can be exploited to increase the shelf-life period of food by inactivation of spoiling microbes. This review analyses new developments in the last five years for PDI systems applied to the food decontamination from foodborne pathogens. The photosensitisation mechanisms and methods are reported to introduce the applied technology against microbial targets in food matrices. Recent blue light emitting diodes (LED) lamp systems for the PDI mediated by endogenous PS are discussed as well PDI technologies with the use of exogenous PS from plant sources such as curcumin and porphyrin-based molecules. The updated overview of the most recent developments in the PDI technology both in wavelengths and employed PS will provide further points of analysis for the advancement of the research on new competitive and effective disinfection systems in the food industry.
Collapse
Affiliation(s)
- Marco Cossu
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Luigi Ledda
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Andrea Cossu
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, United Kingdom.
| |
Collapse
|
34
|
Low-energy X-ray inactivation of Salmonella Enteritidis on shell eggs in mono-/co-culture biofilms with Pseudomonas fluorescens. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Hyun JE, Moon SK, Lee SY. Antibacterial activity and mechanism of 460–470 nm light-emitting diodes against pathogenic bacteria and spoilage bacteria at different temperatures. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Bacteria-specific pro-photosensitizer kills multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Commun Biol 2021; 4:408. [PMID: 33767385 PMCID: PMC7994569 DOI: 10.1038/s42003-021-01956-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
The emergence of multidrug-resistant bacteria has become a real threat and we are fast running out of treatment options. A combinatory strategy is explored here to eradicate multidrug-resistant Staphlococcus aureus and Pseudomonas aeruginosa including planktonic cells, established biofilms, and persisters as high as 7.5 log bacteria in less than 30 min. Blue-laser and thymol together rapidly sterilized acute infected or biofilm-associated wounds and successfully prevented systematic dissemination in mice. Mechanistically, blue-laser and thymol instigated oxidative bursts exclusively in bacteria owing to abundant proporphyrin-like compounds produced in bacteria over mammalian cells, which transformed harmless thymol into blue-laser sensitizers, thymoquinone and thymohydroquinone. Photo-excitations of thymoquinone and thymohydroquinone augmented reactive oxygen species production and initiated a torrent of cytotoxic events in bacteria while completely sparing the host tissue. The investigation unravels a previously unappreciated property of thymol as a pro-photosensitizer analogous to a prodrug that is activated only in bacteria. Multidrug-resistant bacteria are a real threat to human health. Here, the authors investigate a combinatory strategy using blue-laser and thymol against Staphylococcus aureus and Pseudomonas aeruginosa. Blue-laser and thymol succesfully sterilized acute infected or biofilm-associated wounds and prevented systematic dissemination in mice. Compared with mammalian cells, bacteria contain abundant proporphyrin-like compounds that transform harmless thymol into blue-laser sensitizers, thymoquinone and thymohydroquinone. Photo-excitation of thymoquinone and thymohydroquinone augmented reactive oxygen species production in bacteria while completely sparing the host tissue.
Collapse
|
37
|
Hoenes K, Bauer R, Meurle T, Spellerberg B, Hessling M. Inactivation Effect of Violet and Blue Light on ESKAPE Pathogens and Closely Related Non-pathogenic Bacterial Species - A Promising Tool Against Antibiotic-Sensitive and Antibiotic-Resistant Microorganisms. Front Microbiol 2021; 11:612367. [PMID: 33519770 PMCID: PMC7838345 DOI: 10.3389/fmicb.2020.612367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023] Open
Abstract
Due to the globally observed increase in antibiotic resistance of bacterial pathogens and the simultaneous decline in new antibiotic developments, the need for alternative inactivation approaches is growing. This is especially true for the treatment of infections with the problematic ESKAPE pathogens, which include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, and often exhibit multiple antibiotic resistances. Irradiation with visible light from the violet and blue spectral range is an inactivation approach that does not require any additional supplements. Multiple bacterial and fungal species were demonstrated to be sensitive to this disinfection technique. In the present study, pathogenic ESKAPE organisms and non-pathogenic relatives are irradiated with visible blue and violet light with wavelengths of 450 and 405 nm, respectively. The irradiation experiments are performed at 37°C to test a potential application for medical treatment. For all investigated microorganisms and both wavelengths, a decrease in colony forming units is observed with increasing irradiation dose, although there are differences between the examined bacterial species. A pronounced difference can be observed between Acinetobacter, which prove to be particularly light sensitive, and enterococci, which need higher irradiation doses for inactivation. Differences between pathogenic and non-pathogenic bacteria of one genus are comparatively small, with the tendency of non-pathogenic representatives being less susceptible. Visible light irradiation is therefore a promising approach to inactivate ESKAPE pathogens with future fields of application in prevention and therapy.
Collapse
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Tobias Meurle
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
38
|
Zhang H, Seck HL, Zhou W. Inactivation of Salmonella Typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes in cardamom using 150 KeV low-energy X-ray. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Angarano V, Akkermans S, Smet C, Chieffi A, Van Impe JF. The potential of violet, blue, green and red light for the inactivation of P. fluorescens as planktonic cells, individual cells on a surface and biofilms. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Kong D, Zhao W, Ma Y, Liang H, Zhao X. Effects of light‐emitting diode illumination on the quality of fresh‐cut cherry tomatoes during refrigerated storage. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dehui Kong
- Food Science and Engineering College Beijing University of Agriculture Beijing100096China
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing100097China
| | - Wenting Zhao
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing100097China
| | - Yue Ma
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing100097China
| | - Hao Liang
- Longda Food Group Company Limited Shandong265231China
| | - Xiaoyan Zhao
- Food Science and Engineering College Beijing University of Agriculture Beijing100096China
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing100097China
| |
Collapse
|
41
|
Prasad A, Du L, Zubair M, Subedi S, Ullah A, Roopesh MS. Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment. FOOD ENGINEERING REVIEWS 2020. [PMCID: PMC7223679 DOI: 10.1007/s12393-020-09221-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light-emitting diode (LED) technology is an emerging nonthermal food processing technique that utilizes light energy with wavelengths ranging from 200 to 780 nm. Inactivation of bacteria, viruses, and fungi in water by LED treatment has been studied extensively. LED technology has also shown antimicrobial efficacy in food systems. This review provides an overview of recent studies of LED decontamination of water and food. LEDs produce an antibacterial effect by photodynamic inactivation due to photosensitization of light absorbing compounds in the presence of oxygen and DNA damage; however, such inactivation is dependent on the wavelength of light energy used. Commercial applications of LED treatment include air ventilation systems in office spaces, curing, medical applications, water treatment, and algaculture. As low penetration depth and high-intensity usage can challenge optimal LED treatment, optimization studies are required to select the right light wavelength for the application and to standardize measurements of light energy dosage.
Collapse
Affiliation(s)
- Amritha Prasad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Lihui Du
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Samir Subedi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - M. S. Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
42
|
Angarano V, Smet C, Akkermans S, Watt C, Chieffi A, Van Impe JF. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics (Basel) 2020; 9:E171. [PMID: 32290162 PMCID: PMC7235755 DOI: 10.3390/antibiotics9040171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The increase of antimicrobial resistance is challenging the scientific community to find solutions to eradicate bacteria, specifically biofilms. Light-Emitting Diodes (LED) represent an alternative way to tackle this problem in the presence of endogenous or exogenous photosensitizers. This work adds to a growing body of research on photodynamic inactivation using visible light against biofilms. Violet (400 nm), blue (420 nm), green (570 nm), yellow (584 nm) and red (698 nm) LEDs were used against Pseudomonas fluorescens and Staphylococcus epidermidis. Biofilms, grown on a polystyrene surface, were irradiated for 4 h. Different irradiance levels were investigated (2.5%, 25%, 50% and 100% of the maximum irradiance). Surviving cells were quantified and the inactivation kinetic parameters were estimated. Violet light could successfully inactivate P. fluorescens and S. epidermidis (up to 6.80 and 3.69 log10 reduction, respectively), while blue light was effective only against P. fluorescens (100% of maximum irradiance). Green, yellow and red irradiation neither increased nor reduced the biofilm cell density. This is the first research to test five different wavelengths (each with three intensities) in the visible spectrum against Gram-positive and Gram-negative biofilms. It provides a detailed study of the potential of visible light against biofilms of a different Gram-nature.
Collapse
Affiliation(s)
- Valeria Angarano
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Charlotte Watt
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Andre Chieffi
- Procter & Gamble, Newcastle Innovation Center, Newcastle NE12 9TS, UK;
| | - Jan F.M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| |
Collapse
|
43
|
Turner ER, Luo Y, Buchanan RL. Microgreen nutrition, food safety, and shelf life: A review. J Food Sci 2020; 85:870-882. [PMID: 32144769 DOI: 10.1111/1750-3841.15049] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 02/02/2023]
Abstract
Microgreens have gained increasing popularity as food ingredients in recent years because of their high nutritional value and diverse sensorial characteristics. Microgreens are edible seedlings including vegetables and herbs, which have been used, primarily in the restaurant industry, to embellish cuisine since 1996. The rapidly growing microgreen industry faces many challenges. Microgreens share many characteristics with sprouts, and while they have not been associated with any foodborne illness outbreaks, they have recently been the subject of seven recalls. Thus, the potential to carry foodborne pathogens is there, and steps can and should be taken during production to reduce the likelihood of such incidents. One major limitation to the growth of the microgreen industry is the rapid quality deterioration that occurs soon after harvest, which keeps prices high and restricts commerce to local sales. Once harvested, microgreens easily dehydrate, wilt, decay and rapidly lose certain nutrients. Research has explored preharvest and postharvest interventions, such as calcium treatments, modified atmopsphere packaging, temperature control, and light, to maintain quality, augment nutritional value, and extend shelf life. However, more work is needed to optimize both production and storage conditions to improve the safety, quality, and shelf life of microgreens, thereby expanding potential markets.
Collapse
Affiliation(s)
- Ellen R Turner
- Food Quality Laboratory, Agricultural Research Service, U.S. Dept. of Agriculture, Beltsville, MD, 20705, U.S.A.,Environmental Microbiology and Food Safety Laboratory, Agricultural Research Service, U.S. Dept. of Agriculture, Beltsville, MD, 20705, U.S.A.,Dept. of Nutrition and Food Science, Univ. of Maryland, College Park, MD, 20740, U.S.A
| | - Yaguang Luo
- Food Quality Laboratory, Agricultural Research Service, U.S. Dept. of Agriculture, Beltsville, MD, 20705, U.S.A.,Environmental Microbiology and Food Safety Laboratory, Agricultural Research Service, U.S. Dept. of Agriculture, Beltsville, MD, 20705, U.S.A
| | - Robert L Buchanan
- Dept. of Nutrition and Food Science, Univ. of Maryland, College Park, MD, 20740, U.S.A.,Center for Food Safety and Security Systems, Univ. of Maryland, College Park, MD, 20742, U.S.A
| |
Collapse
|
44
|
Wang T, Dong J, Yin H, Zhang G. Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: an in vitro study. Lasers Med Sci 2020; 35:1329-1339. [PMID: 31900692 DOI: 10.1007/s10103-019-02928-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/27/2019] [Indexed: 01/31/2023]
Abstract
Anti-fungal blue light (ABL) therapies have been widely studied to treat various microbial infections in the literature. The blue light with wavelengths ranging from 400 to 470 nm has been reported to be effective to inhibit various kinds of bacteria and fungi. The existing studies usually report the viability rates of the pathogens under the irradiation of the blue light with different dosage parameters. However, to the best of our knowledge, there is still no work especially focusing on studying the effect of ABL therapies on treating candida vaginitis, where it is important to study the viability of both the Candida albicans (C. albicans) and the human vaginal epithelial cells. It is the purpose of this work to conduct ABL experiments on both of these two cells, analyze the effects, and determine the best ABL wavelength out of three candidates, i.e., 405-nm, 415-nm, and 450-nm wavelength. The viability rates of the C. albicans and the human vaginal epithelial cells irradiated by the three blue LED light sources were measured, whose irradiance (power density) were all set to 50 mW/cm2. The dynamic viability models of the C. albicans and the epithelial cells were built based on the experimental data. Moreover, in this work, we also built a functional relationship between the viability of these two types of cells, by which we further compared the effects of the blue light irradiation on both the C. albicans and vaginal epithelial cells. The experimental data showed that when an approximately 80% inhibiting rate of the C. albicans was achieved, the survival rates of the epithelial cells were 0.6700, 0.7748, and 0.6027, respectively for the treatment by the 405-nm, 415-nm, and 450-nm wavelength light. On the other hand, by simulating the functional relationship between the viability of the two types of cells, the survival rates of the epithelial cells became 0.5783, 0.6898, and 0.1918 respectively using the 405-nm, 415-nm and 450-nm wavelength light, when the C. albicans was completely inhibited. Therefore, both the experimental data and the model simulation results have demonstrated that the 415-nm light has a more effective anti-fungal result with less damage to the epithelial cells than the 405-nm and 450-nm light.
Collapse
Affiliation(s)
- Tianfeng Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Huancai Yin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
45
|
Wang Y, Ferrer-Espada R, Baglo Y, Gu Y, Dai T. Antimicrobial Blue Light Inactivation of Neisseria gonorrhoeae: Roles of Wavelength, Endogenous Photosensitizer, Oxygen, and Reactive Oxygen Species. Lasers Surg Med 2019; 51:815-823. [PMID: 31157931 DOI: 10.1002/lsm.23104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to investigate the efficacy, safety, and mechanism of action of antimicrobial blue light (aBL) for the inactivation of Neisseria gonorrhoeae, the etiological agent of gonorrhea. STUDY DESIGN/MATERIALS AND METHODS The susceptibilities of N. gonorrhoeae (ATCC 700825) in planktonic suspensions to aBL at 405- and 470-nm wavelengths were compared. The roles of oxygen in the anti-gonococcal activity of aBL were studied by examining the effects of hypoxic condition (blowing N2 ) on the anti-gonococcal efficiency of 405-nm aBL. The presence, identification, and quantification of endogenous photosensitizers in N. gonorrhoeae cells and human vaginal epithelial cells (VK2/E6E7 cells) were determined using fluorescence spectroscopy and ultra-performance liquid chromatography (UPLC). Finally, the selectivity of aBL inactivation of N. gonorrhoeae over the host cells were investigated by irradiating the co-cultures of N. gonorrhoeae and human vaginal epithelial cells using 405-nm aBL. RESULTS About 3.12-log10 reduction of bacterial colony forming units (CFU) was achieved by 27 J/cm 2 exposure at 405 nm, while about 3.70-log10 reduction of bacterial CFU was achieved by 234 J/cm2 exposure at 470 nm. The anti-gonococcal efficacy of 405-nm aBL was significantly suppressed under hypoxic condition. Spectroscopic and UPLC analyses revealed the presence of endogenous porphyrins and flavins in N. gonorrhoeae. The concentrations of endogenous photosensitizers in N. gonorrhoeae (ATCC 700825) cells were more than 10 times higher than those in the VK2/E6E7 cells. In the co-cultures of N. gonorrhoeae and VK2/E6E7 cells, 405-nm aBL at 108 J/cm2 preferentially inactivated N. gonorrhoeae cells while sparing the vaginal epithelial cells. CONCLUSIONS aBL at 405-nm wavelength is more effective than 470-nm wavelength in inactivating N. gonorrhoeae while sparing the vaginal epithelial cells. Reactive oxygen species generated from the photochemical reactions between aBL and endogenous photosensitizers play a vital role in the anti-gonococcal activity of 405-nm aBL. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Department of Laser Medicine, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Massachusetts, 02129
| | - Yan Baglo
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114
| | - Ying Gu
- Department of Laser Medicine, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Massachusetts, 02129
| |
Collapse
|
46
|
Abstract
The emergence of antimicrobial drug resistance requires development of alternative therapeutic options. Multidrug-resistant strains of Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter spp. are still the most commonly identified antimicrobial-resistant pathogens. These microorganisms are part of the so-called 'ESKAPE' pathogens to emphasize that they currently cause the majority of hospital acquired infections and effectively 'escape' the effects of antibacterial drugs. Thus, alternative, safer and more efficient antimicrobial strategies are urgently needed, especially against 'ESKAPE' superbugs. Antimicrobial photodynamic inactivation is a therapeutic option used in the treatment of infectious diseases. It is based on a combination of a photosensitizer, light and oxygen to remove highly metabolically active cells.
Collapse
|
47
|
Ghate VS, Zhou W, Yuk HG. Perspectives and Trends in the Application of Photodynamic Inactivation for Microbiological Food Safety. Compr Rev Food Sci Food Saf 2019; 18:402-424. [DOI: 10.1111/1541-4337.12418] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Vinayak S. Ghate
- Food Science & Technology Programme, Dept. of Chemistry; Natl. Univ. of Singapore; Science Drive 2 117543 Singapore
| | - Weibiao Zhou
- Food Science & Technology Programme, Dept. of Chemistry; Natl. Univ. of Singapore; Science Drive 2 117543 Singapore
| | - Hyun-Gyun Yuk
- Dept. of Food Science and Technology; Korea National Univ. of Transportation; 61 Daehak-ro Jeungpyeong-gun Chungbuk 27909 Republic of Korea
| |
Collapse
|
48
|
Grangeteau C, Lepinois F, Winckler P, Perrier-Cornet JM, Dupont S, Beney L. Cell Death Mechanisms Induced by Photo-Oxidation Studied at the Cell Scale in the Yeast Saccharomyces cerevisiae. Front Microbiol 2018; 9:2640. [PMID: 30455675 PMCID: PMC6230929 DOI: 10.3389/fmicb.2018.02640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
Blue light (400–430 nm) is known to induce lethal effects in some species of fungi by photo-oxidation caused by the excitation of porphyrins but the mechanisms involved remain poorly understood. In this work, we exposed the yeast Saccharomyces cerevisiae to a high density light flux with two-photon excitation (830 nm equivalent to a one-photon excitation around 415 nm) and used quasi real-time visualization with confocal microscopy to study the initiation and dynamics of photo-oxidation in subcellular structures. Our results show that the oxidation generated by light treatments led to the permeabilization of the plasma membrane accompanied by the sudden expulsion of the cellular content, corresponding to cell death by necrosis. Moreover, excitation in the plasma membrane led to very fast oxidation and membrane permeabilization (<60 s) while excitation at the center of the cell did not induce permeabilization even after a period exceeding 600 s. Finally, our study shows that the relationship between the laser power used for two-photon excitation and the time required to permeabilize the plasma membrane was not linear. Thus, the higher the power used, the lower the energy required to permeabilize the plasma membrane. We conclude that fungal destruction can be generated very quickly using a high density light flux. Better knowledge of the intracellular processes and the conditions necessary to induce necrosis should make it possible in the future to improve the efficiency of antimicrobial strategies photo-oxidation-based.
Collapse
Affiliation(s)
- Cédric Grangeteau
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Florine Lepinois
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Pascale Winckler
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | | | - Sebastien Dupont
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
49
|
Tran VN, Dasagrandhi C, Truong VG, Kim YM, Kang HW. Antibacterial activity of Staphylococcus aureus biofilm under combined exposure of glutaraldehyde, near-infrared light, and 405-nm laser. PLoS One 2018; 13:e0202821. [PMID: 30148865 PMCID: PMC6110465 DOI: 10.1371/journal.pone.0202821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/09/2018] [Indexed: 01/31/2023] Open
Abstract
Healthcare-associated infections have increasingly become problematic in the endoscopic procedures resulting in several severe diseases such as carbapenem-resistant Enterobacteriaceae (CRE)-related infections, pneumonia, and bacteremia. Especially, some bacterial strains are resistant to traditional antimicrobials. Therefore, the necessity of developing new antibiotics or management to deal with bacterial infections has been increasing. The current study combined a low concentration of glutaraldehyde (GTA) with near-infrared (NIR) light and 405-nm laser to entail antibacterial activity on Staphylococcus aureus biofilm. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and colony forming unit (CFU) counting were used to quantify the viable cells while fluorescent and scanning electron microscopic images were used to qualitatively evaluate the cell membrane integrity and structural deformation, respectively. Practically, S. aureus biofilm was highly susceptible (7% cell viability and 6.8-log CFU/cm2 bacterial reduction for MTT assay and CFU analysis, respectively) to the combination of GTA (0.1%), NIR light (270 J/cm2), and 405-nm laser (288 J/cm2) exposure. GTA could form either DNA-protein or protein-protein crosslinks to inhibit DNA and protein synthesis. The NIR light induced the thermal damage on protein/enzymes while 405-nm laser could induce reactive oxygen species (ROS) to damage the bacterial membrane. Thus, the proposed technique may be a feasible modality for endoscope cleaning to prevent any secondary infection in the healthcare industry.
Collapse
Affiliation(s)
- Van Nam Tran
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | | | - Van Gia Truong
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, Korea
| |
Collapse
|
50
|
Li X, Kim MJ, Yuk HG. Influence of 405 nm light-emitting diode illumination on the inactivation of Listeria monocytogenes and Salmonella spp. on ready-to-eat fresh salmon surface at chilling storage for 8 h and their susceptibility to simulated gastric fluid. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|