1
|
Liu L, Ma J, Wei Z, Yang Y, Liu Z, Li D, Yu X, Fan Y, Wang F, Wan Y. chi-miR-130b-3p regulates the ZEA-induced oxidative stress damage through the KEAP1/NRF2 signaling pathway by targeting SESN2 in goat GCs. FASEB J 2023; 37:e23212. [PMID: 37773760 DOI: 10.1096/fj.202300822r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/13/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.
Collapse
Affiliation(s)
- Liang Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jianyu Ma
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zongyou Wei
- Taicang Agricultural and Rural Science & Technology Service Center, and Enterprise Graduate Workstation, Taicang, P.R. China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiaoqing Yu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
2
|
Luo S, Liu Y, Guo Q, Wang X, Tian Y, Yang W, Li J, Chen Y. Determination of Zearalenone and Its Derivatives in Feed by Gas Chromatography-Mass Spectrometry with Immunoaffinity Column Cleanup and Isotope Dilution. Toxins (Basel) 2022; 14:toxins14110764. [PMID: 36356014 PMCID: PMC9697342 DOI: 10.3390/toxins14110764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, a gas chromatography-mass spectrometry (GC-MS) method was established for the determination of zearalenone and its five derivatives in feed, including zearalanone, α-zearalanol, β-zearalanol, α-zearalenol, and β-zearalenol. An effective immunoaffinity column was prepared for sample purification, which was followed by the silane derivatization of the eluate after an immunoaffinity chromatography analysis for target compounds by GC-MS. Matrix effects were corrected by an isotope internal standard of zearalenone in this method. The six analytes had a good linear relationship in the range of 2-500 ng/mL, and the correlation coefficients were all greater than 0.99. The limits of detection (LODs) and limits of quantification (LOQs) were less than 1.5 μg/kg and 5.0 μg/kg, respectively. The average spike recoveries for the six feed matrices ranged from 89.6% to 112.3% with relative standard deviations (RSDs) less than 12.6%. Twenty actual feed samples were analyzed using the established method, and at least one target was detected. The established GC-MS method was proven to be reliable and suitable for the determination of zearalenone and its derivatives in feed.
Collapse
Affiliation(s)
- Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi Guo
- Clover Technology Group Inc., Beijing 100044, China
| | - Xiong Wang
- Clover Technology Group Inc., Beijing 100044, China
| | - Ying Tian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (J.L.); (Y.C.)
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (J.L.); (Y.C.)
| |
Collapse
|
3
|
Fliszár-Nyúl E, Bock I, Csepregi R, Szente L, Szabó I, Csenki Z, Poór M. Testing the protective effects of cyclodextrins vs. alternariol-induced acute toxicity in HeLa cells and in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103965. [PMID: 36031178 DOI: 10.1016/j.etap.2022.103965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Alternariol (AOH) is a mycotoxin produced by Alternaria fungi, it appears as a contaminant in tomatoes, grains, and grapes. The chronic exposure to AOH may cause carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are cyclic oligosaccharides, they form host-guest complexes with apolar molecules. In this study, the interactions of AOH with CD monomers and polymers were examined employing fluorescence spectroscopy. Thereafter, the protective effects of certain CDs vs. AOH-induced toxicity were investigated on HeLa cells and on zebrafish embryos. Our major observations are the following: (1) Sugammadex forms highly stable complex with AOH (K = 4.8 ×104 L/mol). (2) Sugammadex abolished the AOH-induced toxicity in HeLa cells, while native β-CD did not show relevant protective effect. (3) Each CD tested decreased the AOH-induced mortality and sublethal adverse effects in zebrafish embryos: Interestingly, native β-CD showed the strongest protective impact in this model. (4) CD technology may be suitable to relieve AOH-induced toxicity.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, Budapest H-1097, Hungary.
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| |
Collapse
|
4
|
Testing the Protective Effects of Sulfobutylether-Βeta-Cyclodextrin (SBECD) and Sugammadex against Chlorpromazine-Induced Acute Toxicity in SH-SY5Y Cell Line and in NMRI Mice. Pharmaceutics 2022; 14:pharmaceutics14091888. [PMID: 36145637 PMCID: PMC9504268 DOI: 10.3390/pharmaceutics14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorpromazine (CPZ) is an antipsychotic drug which can cause several adverse effects and drug poisoning. Recent studies demonstrated that CPZ forms highly stable complexes with certain cyclodextrins (CDs) such as sulfobutylether-β-CD (SBECD) and sugammadex (SGD). Since there is no available antidote in CPZ intoxication, and considering the good tolerability of these CDs even if when administered parenterally, we aimed to investigate the protective effects of SBECD and SGD against CPZ-induced acute toxicity employing in vitro (SH-SY5Y neuroblastoma cells) and in vivo (zebrafish embryo) models. Our major findings and conclusions are the following: (1) both SBECD and SGD strongly relieved the cytotoxic effects of CPZ in SH-SY5Y cells. (2) SGD co-treatment did not affect or increase the CPZ-induced 24 h mortality in NMRI mice, while SBECD caused a protective effect in a dose-dependent fashion. (3) The binding constants of ligand–CD complexes and/or the in vitro protective effects of CDs can help to estimate the in vivo suitability of CDs as antidotes; however, some other factors can overwrite these predictions.
Collapse
|
5
|
Niazi S, Khan IM, Yue L, Ye H, Lai B, Sameh A K, Mohsin A, Rehman A, Zhang Y, Wang Z. Nanomaterial-based optical and electrochemical aptasensors: A reinforced approach for selective recognition of zearalenone. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Murtaza B, Li X, Dong L, Javed MT, Xu L, Saleemi MK, Li G, Jin B, Cui H, Ali A, Wang L, Xu Y. Microbial and enzymatic battle with food contaminant zearalenone (ZEN). Appl Microbiol Biotechnol 2022; 106:4353-4365. [PMID: 35705747 DOI: 10.1007/s00253-022-12009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Zearalenone (ZEN) contamination of various foods and feeds is an important global problem. In some animals and humans, ZEN causes significant health issues in addition to massive economic losses, annually. Therefore, removal or degradation of the ZEN in foods and feeds is required to be done. The conventional physical and chemical methods have some serious issues including poor efficiency, decrease in nutritional value, palatability of feed, and use of costly equipment. Research examined microbes from diverse media for their ability to degrade zearalenone and other toxins, and the findings of several investigations revealed that enzymes produced from microbes play a significant role in the degradation of mycotoxins. In established bacterial hosts, genetically engineered technique was used to enhance heterologously produced degrading enzymes. Then, the bio-degradation of ZEN by the use of micro-organisms or their enzymes is much more advantageous and is close to nature and ecofriendly. Furthermore, an effort is made to put forward the work done by different scientists on the biodegradation of ZEN by the use of fungi, yeast, bacteria, and/or their enzymes to degrade the ZEN to non-toxic products. KEY POINTS: •Evolved microbial strains degraded ZEA more quickly •Different degrading properties were studied.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | | | - Le Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Ashiq Ali
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China. .,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
7
|
Mohos V, Faisal Z, Fliszár-Nyúl E, Szente L, Poór M. Testing the extraction of 12 mycotoxins from aqueous solutions by insoluble beta-cyclodextrin bead polymer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:210-221. [PMID: 34322792 PMCID: PMC8724181 DOI: 10.1007/s11356-021-15628-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxins are toxic metabolites of filamentous fungi; they are common contaminants in numerous foods and beverages. Cyclodextrins are ring-shaped oligosaccharides, which can form host-guest type complexes with certain mycotoxins. Insoluble beta-cyclodextrin bead polymer (BBP) extracted successfully some mycotoxins (e.g., alternariol and zearalenone) from aqueous solutions, including beverages. Therefore, in this study, we aimed to examine the ability of BBP to remove other 12 mycotoxins (including aflatoxin B1, aflatoxin M1, citrinin, dihydrocitrinone, cyclopiazonic acid, deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, zearalanone, α-zearalanol, and β-zearalanol) from different buffers (pH 3.0, 5.0, and 7.0). Our results showed that BBP can effectively extract citrinin, dihydrocitrinone, sterigmatocystin, zearalanone, α-zearalanol, and β-zearalanol at each pH tested. However, for the removal of ochratoxin A, BBP was far the most effective at pH 3.0. Based on these observations, BBP may be a suitable mycotoxin binder to extract certain mycotoxins from aqueous solutions for decontamination and/or for analytical purposes.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs, H-7624 Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, H-7624 Hungary
| | - Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs, H-7624 Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, H-7624 Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs, H-7624 Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, H-7624 Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, Budapest, H-1097 Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs, H-7624 Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, H-7624 Hungary
| |
Collapse
|
8
|
Song JL, Sun YJ, Liu GQ, Zhang GL. Deoxynivalenol and zearalenone: Different mycotoxins with different toxic effects in donkey (Equus asinus) endometrial epithelial cells. Theriogenology 2021; 179:162-176. [PMID: 34879314 DOI: 10.1016/j.theriogenology.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEA), which are commonly found in feed products, exhibit serious negative effects on the reproductive systems of domestic animals. However, the toxicity of mycotoxins on the uterine function of donkey (Equus asinus) remains unclear. This study investigated the biological effects of DON and ZEA exposure on donkey endometrial epithelial cells (EECs). It was administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro. The results showed that 10 μM DON exposure markedly changed the expression levels of pyroptosis-associated genes and that 30 μM ZEA exposure changed the expression levels of inflammation-associated genes in EECs. The mRNA expression of cancer-promoting genes was markedly upregulated in cells exposed to DON and 30 μM ZEA; in particular, 10 μM and 30 μM DON and ZEA markedly disturbed the expression of androgen and estrogen secretion-related genes. Furthermore, Q-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed EECs. Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of EECs from donkey in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yu-Jiang Sun
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Gui-Qin Liu
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, 252059, China; Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng, Shandong, 252059, China
| | - Guo-Liang Zhang
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
9
|
Dong J, Chen W, Qin D, Chen Y, Li J, Wang C, Yu Y, Feng J, Du X. Cyclodextrin polymer-valved MoS 2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126404. [PMID: 34153613 DOI: 10.1016/j.jhazmat.2021.126404] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Targeted delivery of pesticides towards pests and pathogens can significantly improve the bioavailability and efficacy of pesticides and minimize the impact on the environment. Cyclodextrin polymer (CDP)-valved, benzimidazole functionalized, MoS2-embedded mesoporous silica (MoS2@MSN@CDP) nanopesticides were constructed toward hierarchical biological targets of pests, pathogens, and foliage. The splash and bounce of the aqueous droplets containing MoS2@MSN@CDP nanoparticles in the presence of Aersosol OT on superhydrophobic surfaces were well inhibited available for excellent wetting to prevent pesticides from losing to the environment. The multivalent supramolecular nanovalves between CDP and the functionalized benzimidazole moieties could be activated for the controlled release of pesticides in the cases of low pH and α-amylase. It is the first time to report the foliage-triggered controlled release of pesticides, owing to the competitive binding of epicuticular wax components to CDP. Furthermore, thermogenic MoS2 cores triggered the controlled release of pesticides under irradiation of near infrared light. The fungicidal efficacies of the stimuli-responsive nanopesticides against pathogenic fungi Rhizoctonia solani and Fusarium graminearum were demonstrated. It is clear that the smart nanopesticides could realize the controlled release of pesticides toward hierarchical biological targets for enhanced pesticide bioavailability and efficacy via the multidimensional stimuli of pH, α-amylase, epicuticular waxes, and sunlight.
Collapse
Affiliation(s)
- Jiangtao Dong
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Dunzhong Qin
- Jiangsu Sinvochem S&T Co., Ltd., Yangzhou 211400, People's Republic of China
| | - Yuxia Chen
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jun Li
- Food Processing Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006, People's Republic of China
| | - Chen Wang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yeqing Yu
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
10
|
Song JL, Zhang GL. Deoxynivalenol and Zearalenone: Different Mycotoxins with Different Toxic Effects in the Sertoli Cells of Equus asinus. Cells 2021; 10:cells10081898. [PMID: 34440667 PMCID: PMC8394322 DOI: 10.3390/cells10081898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Deoxynivalenol (DON) and zearalenone (ZEA) are type B trichothecene mycotoxins that exert serious toxic effects on the reproduction of domestic animals. However, there is little information about the toxicity of mycotoxins on testis development in Equus asinus. This study investigated the biological effects of DON and ZEA exposure on Sertoli cells (SCs) of Equus asinus; (2) Methods: We administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro; (3) Results: The results showed that 10 μM DON exposure remarkably changed pyroptosis-associated genes and that 30 μM ZEA exposure changed inflammation-associated genes in SCs. The mRNA expression of cancer-promoting genes was remarkably upregulated in the cells exposed to DON or 30 μM ZEA; in particular, DON and ZEA remarkably disturbed the expression of androgen and oestrogen secretion-related genes. Furthermore, quantitative RT-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed SCs; (4) Conclusions: Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of SCs from Equus asinus in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Correspondence:
| |
Collapse
|
11
|
|
12
|
Pickova D, Ostry V, Toman J, Malir F. Presence of Mycotoxins in Milk Thistle ( Silybum marianum) Food Supplements: A Review. Toxins (Basel) 2020; 12:E782. [PMID: 33302488 PMCID: PMC7763672 DOI: 10.3390/toxins12120782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/29/2022] Open
Abstract
The consumption of herbal-based supplements, which are believed to have beneficial effects on human health with no side effects, has become popular around the world and this trend is still increasing. Silybum marianum (L.) Gaertn, commonly known as milk thistle (MT), is the most commonly studied herb associated with the treatment of liver diseases. The hepatoprotective effects of active substances in silymarin, with silybin being the main compound, have been demonstrated in many studies. However, MT can be affected by toxigenic micro-fungi and contaminated by mycotoxins with adverse effects. The beneficial effect of silymarin can thus be reduced or totally antagonized by mycotoxins. MT has proven to be affected by micro-fungi of the Fusarium and Alternaria genera, in particular, and their mycotoxins. Alternariol-methyl-ether (AME), alternariol (AOH), beauvericin (BEA), deoxynivalenol (DON), enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1), HT-2 toxin (HT-2), T-2 toxin (T-2), tentoxin (TEN), and zearalenone (ZEA) seem to be most significant in MT-based dietary supplements. This review focuses on summarizing cases of mycotoxins in MT to emphasize the need for strict monitoring and regulation, as mycotoxins in relation with MT-based dietary supplements are not covered by European Union legislation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, National Institute of Public Health in Prague, Nutrition and Food in Brno, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
13
|
Fliszár-Nyúl E, Szabó Á, Szente L, Poór M. Extraction of mycotoxin alternariol from red wine and from tomato juice with beta-cyclodextrin bead polymer. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Faisal Z, Vörös V, Fliszár-Nyúl E, Lemli B, Kunsági-Máté S, Poór M. Interactions of zearalanone, α-zearalanol, β-zearalanol, zearalenone-14-sulfate, and zearalenone-14-glucoside with serum albumin. Mycotoxin Res 2020; 36:389-397. [PMID: 32740802 PMCID: PMC7536148 DOI: 10.1007/s12550-020-00404-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 01/29/2023]
Abstract
The xenoestrogenic mycotoxin zearalenone is a Fusarium-derived food and feed contaminant. In mammals, the reduced (e.g., zearalanone, α-zearalanol, and β-zearalanol) and conjugated (e.g., zearalenone-14-sulfate) metabolites of zearalenone are formed. Furthermore, filamentous fungi and plants are also able to convert zearalenone to conjugated derivatives, including zearalenone-14-sulfate and zearalenone-14-glucoside, respectively. Serum albumin is the dominant plasma protein in the circulation; it interacts with certain mycotoxins, affecting their toxicokinetics. In a previous investigation, we demonstrated the remarkable species differences regarding the albumin binding of zearalenone and zearalenols. In the current study, the interactions of zearalanone, α-zearalanol, β-zearalanol, zearalenone-14-sulfate, and zearalenone-14-glucoside with human, bovine, porcine, and rat serum albumins were examined, employing fluorescence spectroscopy and affinity chromatography. Zearalanone, zearalanols, and zearalenone-14-sulfate form stable complexes with albumins tested (K = 9.3 × 103 to 8.5 × 105 L/mol), while the albumin binding of zearalenone-14-glucoside seems to be weak. Zearalenone-14-sulfate formed the most stable complexes with albumins examined. Considerable species differences were observed in the albumin binding of zearalenone metabolites, which may have a role in the interspecies differences regarding the toxicity of zearalenone.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
- János Szentágothai Research Centre, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Virág Vörös
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
- János Szentágothai Research Centre, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
- János Szentágothai Research Centre, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Beáta Lemli
- János Szentágothai Research Centre, Ifjúság útja 20, Pécs, H-7624, Hungary
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Sándor Kunsági-Máté
- János Szentágothai Research Centre, Ifjúság útja 20, Pécs, H-7624, Hungary
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.
- János Szentágothai Research Centre, Ifjúság útja 20, Pécs, H-7624, Hungary.
| |
Collapse
|
15
|
Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, Bijak M. Molecular Aspects of Mycotoxins-A Serious Problem for Human Health. Int J Mol Sci 2020; 21:E8187. [PMID: 33142955 PMCID: PMC7662353 DOI: 10.3390/ijms21218187] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are toxic fungal secondary metabolities formed by a variety of fungi (moulds) species. Hundreds of potentially toxic mycotoxins have been already identified and are considered a serious problem in agriculture, animal husbandry, and public health. A large number of food-related products and beverages are yearly contaminated by mycotoxins, resulting in economic welfare losses. Mycotoxin indoor environment contamination is a global problem especially in less technologically developed countries. There is an ongoing effort in prevention of mould growth in the field and decontamination of contaminated food and feed in order to protect human and animal health. It should be emphasized that the mycotoxins production by fungi (moulds) species is unavoidable and that they are more toxic than pesticides. Human and animals are exposed to mycotoxin via food, inhalation, or contact which can result in many building-related illnesses including kidney and neurological diseases and cancer. In this review, we described in detail the molecular aspects of main representatives of mycotoxins, which are serious problems for global health, such as aflatoxins, ochratoxin A, T-2 toxin, deoxynivalenol, patulin, and zearalenone.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Adrian Siadkowski
- Department of Security and Crisis Menagement, Faculty of Applied Sciences, University of Dabrowa Gornicza, Zygmunta Cieplaka 1c, 41-300 Dabrowa Gornicza, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
16
|
Abstract
Abstract
The microscopic filamentous fungi of the genus Fusarium are capable of producing secondary metabolites—mycotoxins. Fusarium fungi synthesize trichothecenes, zearalenone (ZEA) and fumonisins under appropriate environmental conditions. In this biological experiment, we studied the effects of zearalenone on a model organism called Artemia franciscana. During the three-day in vivo tests, we used five different concentrations of zearalenone (0.08 ppm, 0.4 ppm, 2 ppm, 10 ppm and 50 ppm). The results of this study showed that as the zearalenone concentration and the duration of the mycotoxin exposure increased, the lethality of artemia also increased. Our study showed that the toxicity of zearalenone to Artemia franciscana was relatively low.
Collapse
|
17
|
Interaction of zearalenone-14-sulfate with cyclodextrins and the removal of the modified mycotoxin from aqueous solution by beta-cyclodextrin bead polymer. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Faisal Z, Garai E, Csepregi R, Bakos K, Fliszár-Nyúl E, Szente L, Balázs A, Cserháti M, Kőszegi T, Urbányi B, Csenki Z, Poór M. Protective effects of beta-cyclodextrins vs. zearalenone-induced toxicity in HeLa cells and Tg(vtg1:mCherry) zebrafish embryos. CHEMOSPHERE 2020; 240:124948. [PMID: 31726616 DOI: 10.1016/j.chemosphere.2019.124948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Zearalenone is a xenoestrogenic mycotoxin produced by Fusarium species. High exposure with zearalenone induces reproductive disorders worldwide. Cyclodextrins are ring-shaped host molecules built up from glucose units. The apolar cavity of cyclodextrins can entrap so-called guest molecules. The formation of highly stable host-guest type complexes with cyclodextrins can decrease the biological effect of the guest molecule. Therefore, cyclodextrins may be suitable to decrease the toxicity of some xenobiotics even after the exposure. In this study, the protective effect of beta-cyclodextrins against zearalenone-induced toxicity was investigated in HeLa cells and zebrafish embryos. Fluorescence spectroscopic studies demonstrated the formation of stable complexes of zearalenone with sulfobutyl-, methyl-, and succinyl-methyl-substituted beta-cyclodextrins at pH 7.4 (K = 1.4-4.7 × 104 L/mol). These chemically modified cyclodextrins considerably decreased or even abolished the zearalenone-induced loss of cell viability in HeLa cells and mortality in zebrafish embryos. Furthermore, the sublethal effects of zearalenone were also significantly alleviated by the co-treatment with beta-cyclodextrins. To test the estrogenic effect of the mycotoxin, a transgenic bioindicator zebrafish model (Tg(vtg1:mCherry)) was also applied. Our results suggest that the zearalenone-induced vitellogenin production is partly suppressed by the hepatotoxicity of zearalenone in zebrafish. This study demonstrates that the formation of stable zearalenone-cyclodextrin complexes can strongly decrease or even abolish the zearalenone-induced toxicity, both in vitro and in vivo. Therefore, cyclodextrins appear as promising new mycotoxin binders.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Edina Garai
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Rita Csepregi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Katalin Bakos
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, H-1097, Budapest, Hungary.
| | - Adrienn Balázs
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Mátyás Cserháti
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Tamás Kőszegi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Zsolt Csenki
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|
19
|
Mohamed Ameen H, Kunsági-Máté S, Szente L, Lemli B. Encapsulation of sulfamethazine by native and randomly methylated β-cyclodextrins: The role of the dipole properties of guests. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117475. [PMID: 31472423 DOI: 10.1016/j.saa.2019.117475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/28/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Sulfonamides are preventive and therapeutic agents for certain infections caused by gram-positive and gram-negative microorganisms. In this work the interactions of sulfamethazine, a representative of sulfonamide antibiotics, with two β-cyclodextrin derivatives were investigated at different pH. Results show formation of stable sulfamethazine - β-cyclodextrin complexes and reflect importance of the competition of the hydrogen bonding and electrostatic interactions. The complex geometry formed is affected by the orientation of the pH-dependent dipole moment of sulfamethazine molecule and prolonged prior the sulfamethazine molecule enters into the β-cyclodextrin's cavity. Functionalization of the β-cyclodextrin molecule doesn't affect considerably the complex stabilities, therefore the native β-cyclodextrin molecule looks the simplest and most effective inclusion host to design selective and sensitive tool for sulfamethazine sensing.
Collapse
Affiliation(s)
- Hiba Mohamed Ameen
- Department of General and Physical Chemistry, Faculty of Sciences, University of Pécs, H-7624 Pécs, Ifjúság 6, Hungary
| | - Sándor Kunsági-Máté
- Department of General and Physical Chemistry, Faculty of Sciences, University of Pécs, H-7624 Pécs, Ifjúság 6, Hungary; Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Szigeti 12, Hungary; János Szentágothai Research Center, University of Pécs, H-7624 Pécs, Ifjúság 20, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., H-1097 Budapest, Illatos 7, Hungary
| | - Beáta Lemli
- Department of General and Physical Chemistry, Faculty of Sciences, University of Pécs, H-7624 Pécs, Ifjúság 6, Hungary; Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Szigeti 12, Hungary; János Szentágothai Research Center, University of Pécs, H-7624 Pécs, Ifjúság 20, Hungary.
| |
Collapse
|
20
|
Fliszár-Nyúl E, Lemli B, Kunsági-Máté S, Szente L, Poór M. Interactions of Mycotoxin Alternariol with Cyclodextrins and its Removal from Aqueous Solution by Beta-Cyclodextrin Bead Polymer. Biomolecules 2019; 9:biom9090428. [PMID: 31480370 PMCID: PMC6769471 DOI: 10.3390/biom9090428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Alternariol is an Alternaria mycotoxin that appears in fruits, tomatoes, oilseeds, and corresponding products. Chronic exposure to it can induce carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are ring-shaped molecules built up by glucose units, which form host–guest type complexes with some mycotoxins. Furthermore, insoluble CD polymers seem suitable for the extraction/removal of mycotoxins from aqueous solutions. In this study, the interactions of alternariol with β- and γ-CDs were tested by employing fluorescence spectroscopic and modeling studies. Moreover, the removal of alternariol from aqueous solutions by insoluble β-CD bead polymer (BBP) was examined. Our major observations/conclusions are the following: (1) CDs strongly increased the fluorescence of alternariol, the strongest enhancement was induced by the native γ-CD at pH 7.4. (2) Alternariol formed the most stable complexes with the native γ-CD (logK = 3.2) and the quaternary ammonium derivatives (logK = 3.4–3.6) at acidic/physiological pH and at pH 10.0, respectively. (3) BBP effectively removed alternariol from aqueous solution. (4) The alternariol-binding ability of β-CD polymers was significantly higher than was expected based on their β-CD content. (5) CD technology seems a promising tool to improve the fluorescence detection of alternariol and/or to develop new mycotoxin binders to decrease alternariol exposure.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7642 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7642 Pécs, Hungary
| | - Beáta Lemli
- János Szentágothai Research Centre, University of Pécs, H-7642 Pécs, Hungary
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Sándor Kunsági-Máté
- János Szentágothai Research Centre, University of Pécs, H-7642 Pécs, Hungary
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin Research & Development Laboratory, Ltd., H-1097 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7642 Pécs, Hungary.
- János Szentágothai Research Centre, University of Pécs, H-7642 Pécs, Hungary.
| |
Collapse
|
21
|
Rai A, Das M, Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr 2019; 60:2710-2729. [DOI: 10.1080/10408398.2019.1655388] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ankita Rai
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Mukul Das
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| |
Collapse
|
22
|
Faisal Z, Fliszár-Nyúl E, Dellafiora L, Galaverna G, Dall'Asta C, Lemli B, Kunsági-Máté S, Szente L, Poór M. Cyclodextrins Can Entrap Zearalenone-14-Glucoside: Interaction of the Masked Mycotoxin with Cyclodextrins and Cyclodextrin Bead Polymer. Biomolecules 2019; 9:E354. [PMID: 31405003 PMCID: PMC6724229 DOI: 10.3390/biom9080354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Zearalenone (ZEN) is a Fusarium-derived xenoestrogenic mycotoxin. In plants, zearalenone-14-O-β-d-glucoside (Z14G) is the major conjugated metabolite of ZEN, and is a masked mycotoxin. Masked mycotoxins are plant-modified derivatives, which are not routinely screened in food and feed samples. Cyclodextrins (CDs) are cyclic oligosaccharides built up from D-glucopyranose units. CDs can form stable host-guest type complexes with lipophilic molecules (e.g., with some mycotoxins). In this study, the interaction of Z14G with native and chemically modified β- and γ-CDs was examined employing fluorescence spectroscopy and molecular modeling. Furthermore, the removal of Z14G from aqueous solution by insoluble β-CD bead polymer (BBP) was also tested. Our results demonstrate that Z14G forms the most stable complexes with γ-CDs under acidic and neutral conditions (K ≈ 103 L/mol). Among the CDs tested, randomly methylated γ-CD induced the highest increase in the fluorescence of Z14G (7.1-fold) and formed the most stable complexes with the mycotoxin (K = 2 × 103 L/mol). Furthermore, BBP considerably reduced the Z14G content of aqueous solution. Based on these observations, CD technology seems a promising tool to improve the fluorescence analytical detection of Z14G and to discover new mycotoxin binders which can also remove masked mycotoxins (e.g., Z14G).
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Via G.P. 7 Usberti 17/A, 43124 Parma, Italy
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Via G.P. 7 Usberti 17/A, 43124 Parma, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Via G.P. 7 Usberti 17/A, 43124 Parma, Italy
| | - Beáta Lemli
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Sándor Kunsági-Máté
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| |
Collapse
|
23
|
Faisal Z, Kunsági-Máté S, Lemli B, Szente L, Bergmann D, Humpf HU, Poór M. Interaction of Dihydrocitrinone with Native and Chemically Modified Cyclodextrins. Molecules 2019; 24:molecules24071328. [PMID: 30987312 PMCID: PMC6479545 DOI: 10.3390/molecules24071328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/18/2023] Open
Abstract
Citrinin (CIT) is a nephrotoxic mycotoxin produced by Aspergillus, Penicillium, and Monascus genera. It appears as a contaminant in grains, fruits, and spices. After oral exposure to CIT, its major urinary metabolite, dihydrocitrinone (DHC) is formed, which can be detected in human urine and blood samples. Cyclodextrins (CDs) are ring-shaped molecules built up from glucose units. CDs can form host-guest type complexes with several compounds, including mycotoxins. In this study, the complex formation of DHC with native and chemically modified beta- and gamma-cyclodextrins was tested at a wide pH range, employing steady-state fluorescence spectroscopic and modeling studies. The weakly acidic environment favors the formation of DHC-CD complexes. Among the CDs tested, the quaternary-ammonium-γ-cyclodextrin (QAGCD) formed the most stable complexes with DHC. However, the quaternary-ammonium-β-cyclodextrin (QABCD) induced the strongest enhancement in the fluorescence signal of DHC. Our results show that some of the chemically modified CDs are able to form stable complexes with DHC (logK = 3.2–3.4) and the complex formation can produce even a 20-fold increase in the fluorescence signal of DHC. Considering the above-listed observations, CD technology may be a promising tool to increase the sensitivity of the fluorescence detection of DHC.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary.
| | - Sándor Kunsági-Máté
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Rókus u. 2, 7624 Pécs, Hungary.
| | - Beáta Lemli
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary.
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, 1097 Budapest, Hungary.
| | - Dominik Bergmann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149 Münster, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149 Münster, Germany.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary.
| |
Collapse
|
24
|
Zhang GL, Feng YL, Song JL, Zhou XS. Zearalenone: A Mycotoxin With Different Toxic Effect in Domestic and Laboratory Animals' Granulosa Cells. Front Genet 2018; 9:667. [PMID: 30619484 PMCID: PMC6305301 DOI: 10.3389/fgene.2018.00667] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Zearalenone (ZEA), one of the most prevalent estrogenic mycotoxins, is mainly produced by Fusarium fungi and has been proven to affect the reproductive capacity of animals. Exposure of farm animals to ZEA is a global public health concern because of its toxicity and wide distribution in animal feeds. In vitro and in vivo experiments indicate that ZEA possesses estrogenic activity in mice, swine, Equus asinus and cattle. The precise mechanism of the reproductive toxicity of ZEA has not been established yet. This article reviews evidence on the deleterious effects of ZEA on mammalian folliculogenesis from early to final oogenesis stages. Such effects include impaired granulosa cell (GC) development and follicle steroidogenesis, reduced oocyte nest breakdown, damaged meiotic progression, poor fetal oocyte survival, accelerated primordial follicle activation and enhanced follicle atresia. These phenomena may result in reproductive and non-reproductive problems in domestic animals. In addition, emerging data indicates that ZEA may cause mRNA expression changes in the GCs. In general, E. asinus is more sensitive than swine to ZEA exposure. Finally, results of in vivo animal studies and in vitro tests are reported and discussed.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Qingdao Agricultural University, Qingdao, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | - Yu-Long Feng
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | | | - Xiang-Shan Zhou
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
25
|
Wu Q, Xu J, Xu H. Interactions of aflatoxin B1 and related secondary metabolites with native cyclodextrins and their potential utilization. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Antioxidant and antimicrobial properties of randomly methylated β cyclodextrin - captured essential oils. Food Chem 2018; 278:305-313. [PMID: 30583377 DOI: 10.1016/j.foodchem.2018.11.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 01/27/2023]
Abstract
Free essential oils and their active components have a low physiochemical stability and low aqueous solubility which limit their applications as food preservatives and in packaging industry. The aim of this study was to characterize the physicochemical properties, antioxidant activities and antimicrobial activity of randomly methylated β cyclodextrin (RAMEB) encapsulated thyme oil, lemon balm oil, lavender oil, peppermint oil and their active components that include thymol, citral, linalool, menthol and borneol. Inclusion complex formation of essential oils (EOs) and RAMEB were evaluated by several methods. Antioxidant capacities of RAMEB-EOs/components were reported to be more stable than free EOs/components (P < 0.05). Rapid SYBR green I/propidium iodide live/dead microbial cellular discrimination assay for Schizosaccharomyces pombe, Escherichia coli and Staphylococcus aureus showed similar results when compared with flow cytometry analysis (P < 0.01) suggesting that our novel microplate fluorescence method could be applied for the fast live/dead microbial discrimination in antimicrobial assays.
Collapse
|
27
|
Zhang GL, Song JL, Ji CL, Feng YL, Yu J, Nyachoti CM, Yang GS. Zearalenone Exposure Enhanced the Expression of Tumorigenesis Genes in Donkey Granulosa Cells via the PTEN/ PI3K/ AKT Signaling Pathway. Front Genet 2018; 9:293. [PMID: 30108608 PMCID: PMC6079390 DOI: 10.3389/fgene.2018.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/13/2018] [Indexed: 01/17/2023] Open
Abstract
Zearalenone (ZEA) is a natural contaminant existing in food and feed products that exhibits a negative effect on domestic animals’ reproduction. Donkeys possess high economic value in China and are at risk of exposure to ZEA. However, few information is available on ZEA-induced toxicity and no report on toxicity in donkeys can be found in scientific literature. We investigated the biological effects of ZEA exposure on donkey granulosa cells (dGCs) by using RNA-seq analysis. ZEA at 10 and 30 μM were administered to GCs within 72 h of in vitro culture. ZEA at 10 μM significantly altered the tumorigenesis associated genes in dGCs. Exposure to 10 and 30 μM ZEA treatment significantly reduced mRNA expression of PTEN, TGFβ, ATM, and CDK2 genes, particularly, the ZEA treatment significantly increased the expression of PI3K and AKT genes. Furthermore, immunofluorescence, RT-qPCR, and Western blot analysis verified the gene expression of ZEA-exposed GCs. Collectively, these results demonstrated the deleterious effect of ZEA exposure on the induction of ovarian cancer related genes via the PTEN/PI3K/AKT signaling pathway in dGCs in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Jun-Lin Song
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Chuan-Liang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Yu-Long Feng
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Charles M Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Gong-She Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
28
|
Interactions of zearalenone and its reduced metabolites α-zearalenol and β-zearalenol with serum albumins: species differences, binding sites, and thermodynamics. Mycotoxin Res 2018; 34:269-278. [PMID: 30014206 DOI: 10.1007/s12550-018-0321-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/30/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin produced by Fusarium species. ZEN mainly appears in cereals and related foodstuffs, causing reproductive disorders in animals, due to its xenoestrogenic effects. The main reduced metabolites of ZEN are α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL). Similarly to ZEN, ZELs can also activate estrogen receptors; moreover, α-ZEL is the most potent endocrine disruptor among these three compounds. Serum albumin is the most abundant plasma protein in the circulation; it affects the tissue distribution and elimination of several drugs and xenobiotics. Although ZEN binds to albumin with high affinity, albumin-binding of α-ZEL and β-ZEL has not been investigated. In this study, the complex formation of ZEN, α-ZEL, and β-ZEL with human (HSA), bovine (BSA), porcine (PSA), and rat serum albumins (RSA) was investigated by fluorescence spectroscopy, affinity chromatography, thermodynamic studies, and molecular modeling. Our main observations are as follows: (1) ZEN binds with higher affinity to albumins than α-ZEL and β-ZEL. (2) The low binding affinity of β-ZEL toward albumin may result from its different binding position or binding site. (3) The binding constants of the mycotoxin-albumin complexes significantly vary with the species. (4) From the thermodynamic point of view, the formation of ZEN-HSA and ZEN-RSA complexes are similar, while the formation of ZEN-BSA and ZEN-PSA complexes are markedly different. These results suggest that the toxicological relevance of ZEN-albumin and ZEL-albumin interactions may also be species-dependent.
Collapse
|
29
|
Removal of Zearalenone and Zearalenols from Aqueous Solutions Using Insoluble Beta-Cyclodextrin Bead Polymer. Toxins (Basel) 2018; 10:toxins10060216. [PMID: 29799507 PMCID: PMC6024756 DOI: 10.3390/toxins10060216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Zearalenone (ZEN) is a Fusarium-derived mycotoxin, exerting xenoestrogenic effects in animals and humans. ZEN and its derivatives commonly occur in cereals and cereal-based products. During the biotransformation of ZEN, its reduced metabolites, α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL), are formed; α-ZEL is even more toxic than the parent compound ZEN. Since previous studies demonstrated that ZEN and ZELs form stable complexes with β-cyclodextrins, it is reasonable to hypothesize that cyclodextrin polymers may be suitable for mycotoxin removal from aqueous solutions. In this study, the extraction of ZEN and ZELs from water, buffers, and corn beer was investigated, employing insoluble β-cyclodextrin bead polymer (BBP) as a mycotoxin-binder. Our results demonstrate that even relatively small amounts of BBP can strongly decrease the mycotoxin content of aqueous solutions (including beer). After the first application of BBP for mycotoxin binding, BBP could be completely reactivated through the elimination of ZEN from the cyclodextrin cavities by washing with a 50 v/v% ethanol-water mixture. Therefore, our study suggests that insoluble cyclodextrin polymers may be suitable tools in the future to deplete mycotoxins from contaminated drinks.
Collapse
|
30
|
Zhang GL, Song JL, Zhou Y, Zhang RQ, Cheng SF, Sun XF, Qin GQ, Shen W, Li L. Differentiation of sow and mouse ovarian granulosa cells exposed to zearalenone in vitro using RNA-seq gene expression. Toxicol Appl Pharmacol 2018; 350:78-90. [PMID: 29758222 DOI: 10.1016/j.taap.2018.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Zearalenone (ZEA), a natural contaminant found in feed, has been shown to have a negative impact on domestic animal reproduction, particularly in pigs. There are species-specific differences in the ZEA-induced toxicity pattern. Here, we investigated the different biological effects of ZEA exposure on porcine and mouse granulosa cells, using RNA-seq analysis. We treated murine and porcine granulosa cells with 10 μM and 30 μM ZEA during 72 h of culturing, in vitro. The results showed that 10 μM ZEA exposure significantly altered mitosis associated genes in porcine granulosa cells, while the same treatment significantly altered the steroidogenesis associated genes in mouse granulosa cells. Exposure to 30 μM ZEA resulted in significantly up-regulated expression of inflammatory related genes in porcine granulosa cells as well as the cancer related genes in mouse granulosa cells. Similarly, 30 μM ZEA exposure significantly decreased the expression of tumor suppressor factors in the mouse granulosa cells. Furthermore, immunofluorescence, RT-qPCR as well as western-blot analysis verified the different expression of related genes in ZEA exposed porcine and mouse granulosa cells. Collectively, these results illustrate the presence of species differences with regards to ZEA effects between porcine and mouse ovarian granulosa cells, in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Lin Song
- Central Laboratory, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yi Zhou
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Rui-Qian Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Qin
- Institute of Research & Development, Yongda Food, Hebi 458030, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
Csepregi R, Lemli B, Kunsági-Máté S, Szente L, Kőszegi T, Németi B, Poór M. Complex Formation of Resorufin and Resazurin with Β-Cyclodextrins: Can Cyclodextrins Interfere with a Resazurin Cell Viability Assay? Molecules 2018; 23:molecules23020382. [PMID: 29439432 PMCID: PMC6017802 DOI: 10.3390/molecules23020382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/15/2023] Open
Abstract
Resazurin (or Alamar Blue) is a poorly fluorescent dye. During the cellular reduction of resazurin, its highly fluorescent product resorufin is formed. Resazurin assay is a commonly applied method to investigate viability of bacterial and mammalian cells. In this study, the interaction of resazurin and resorufin with β-cyclodextrins was investigated employing spectroscopic and molecular modeling studies. Furthermore, the influence of β-cyclodextrins on resazurin-based cell viability assay was also tested. Both resazurin and resorufin form stable complexes with the examined β-cyclodextrins (2.0–3.1 × 103 and 1.3–1.8 × 103 L/mol were determined as binding constants, respectively). Cells were incubated for 30 and 120 min and treated with resazurin and/or β-cyclodextrins. Our results suggest that cyclodextrins are able to interfere with the resazurin-based cell viability assay that presumably results from the following mechanisms: (1) inhibition of the cellular uptake of resazurin and (2) enhancement of the fluorescence signal of the formed resorufin.
Collapse
Affiliation(s)
- Rita Csepregi
- Department of Laboratory Medicine, University of Pécs, Medical School, Pécs H-7624, Hungary; (R.C.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Pécs H-7624, Hungary; (B.L.); (S.K.-M.)
| | - Beáta Lemli
- János Szentágothai Research Center, University of Pécs, Pécs H-7624, Hungary; (B.L.); (S.K.-M.)
- Department of General and Physical Chemistry, University of Pécs, Pécs H-7624, Hungary
- Department of Pharmaceutical Chemistry, University of Pécs, Faculty of Pharmacy, Pécs H-7624, Hungary
| | - Sándor Kunsági-Máté
- János Szentágothai Research Center, University of Pécs, Pécs H-7624, Hungary; (B.L.); (S.K.-M.)
- Department of General and Physical Chemistry, University of Pécs, Pécs H-7624, Hungary
- Department of Pharmaceutical Chemistry, University of Pécs, Faculty of Pharmacy, Pécs H-7624, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Budapest H-1097, Hungary;
| | - Tamás Kőszegi
- Department of Laboratory Medicine, University of Pécs, Medical School, Pécs H-7624, Hungary; (R.C.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Pécs H-7624, Hungary; (B.L.); (S.K.-M.)
| | - Balázs Németi
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Pécs H-7624, Hungary;
| | - Miklós Poór
- János Szentágothai Research Center, University of Pécs, Pécs H-7624, Hungary; (B.L.); (S.K.-M.)
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Pécs H-7624, Hungary;
- Correspondence: ; Tel.: +36-72-536-000 (ext. 31646)
| |
Collapse
|
32
|
Poór M, Zand A, Szente L, Lemli B, Kunsági-Máté S. Interaction of α- and β-zearalenols with β-cyclodextrins. Molecules 2017; 22:molecules22111910. [PMID: 29113131 PMCID: PMC6150337 DOI: 10.3390/molecules22111910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi. ZEN primarily contaminates different cereals, and exerts a strong xenoestrogenic effect in animals and humans. ZEN is a fluorescent mycotoxin, although molecular interactions and microenvironmental changes significantly modify its spectral properties. During biotransformation, ZEN is converted into α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL), the toxic metabolites of ZEN, which mimick the effect of estrogen. Cyclodextrins (CDs) are host molecules, and have been studied extensively; they can form stable complexes with several mycotoxins, including ZEN. However, information is limited regarding the interactions of CDs with ZOLs. Therefore, we studied the interactions of α- and β-ZOLs with native and six chemically modified β-CDs by fluorescence spectroscopy. Fluorescence enhancement during complex formation, as well as binding constants, were determined. To understand ZOL-CD interactions better, molecular modeling studies were also carried out. Both mycotoxin derivatives formed the most stable complexes with methylated and sulfobutylated CD-derivatives; however, the CD complexes of α-ZOL were significantly stronger than those of β-ZOL. The data presented here indicate which of the chemically modified β-CDs appear more suitable as fluorescence enhancers or as potential mycotoxin binders.
Collapse
Affiliation(s)
- Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| | - Afshin Zand
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, H-1097 Budapest, Hungary.
| | - Beáta Lemli
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary.
| | - Sándor Kunsági-Máté
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary.
| |
Collapse
|
33
|
Zhang GL, Zhang RQ, Sun XF, Cheng SF, Wang YF, Ji CL, Feng YZ, Yu J, Ge W, Zhao Y, Sun SD, Shen W, Li L. RNA-seq based gene expression analysis of ovarian granulosa cells exposed to zearalenone in vitro: significance to steroidogenesis. Oncotarget 2017; 8:64001-64014. [PMID: 28969048 PMCID: PMC5609980 DOI: 10.18632/oncotarget.19699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Zearalenone (ZEA) is a natural contaminant of various food and feed products representing a significant problem worldwide. Since the occurrence of ZEA in grains and feeds is frequent, the present study was carried out to evaluate the possible effects of ZEA on steroid production and gene expression of porcine granulosa cells, using RNA-seq analysis. Porcine granulosa cells were administered 10 μM and 30 μM ZEA during 72 h of culture in vitro. Following ZEA treatment the gene expression profile of control and exposed granulosa cells was compared using RNA-seq analysis. The results showed that in the exposed granulosa cells ZEA significantly altered the transcript levels, particularly steroidogenesis associated genes. Compared with the control group, 10 μM and 30 μM ZEA treatment significantly increased the mRNA expression of EDN1, IER3, TGFβ and BDNF genes and significantly reduced the mRNA expression of IGF-1 and SFRP2 genes. In particular, ZEA significantly decreased the expression of genes essential for estrogen synthesis including FSHR, CYP19A1 and HSD17β in granulosa cells. Furthermore, Q-PCR and Western-blot analysis also confirmed reduced expression of these genes in ZEA exposed granulosa cells. These effects were associated with a significant reduction of 17β-estradiol concentrations in the culture medium of granulosa cells. Collectively, these results demonstrated a concretely deleterious effect of ZEA exposure on the mRNA expression of steroidogenesis related genes and the production of steroid hormones in porcine ovarian granulosa cells in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng Shandong 252000, China.,College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Rui-Qian Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Xiao-Feng Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Yu-Feng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Chuan-Liang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng Shandong 252000, China
| | - Yan-Zhong Feng
- Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin Heilongjiang 150086, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng Shandong 252000, China
| | - Wei Ge
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Shi-Duo Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao Shandong 266109, China
| |
Collapse
|
34
|
Poór M, Kunsági-Máté S, Bálint M, Hetényi C, Gerner Z, Lemli B. Interaction of mycotoxin zearalenone with human serum albumin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:16-24. [PMID: 28365492 DOI: 10.1016/j.jphotobiol.2017.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin produced mainly by Fusarium species. Fungal contamination of cereals and plants can result in the formation of ZEN, leading to its presence in different foods, animal feeds, and drinks. Because ZEN is an endocrine disruptor, it causes reproductive disorders in farm animals and hyperoestrogenic syndromes in humans. Despite toxicokinetic properties of ZEN were studied in more species, we have no information regarding the interaction of ZEN with serum albumin. Since albumin commonly plays an important role in the toxicokinetics of different toxins, interaction of ZEN with albumin has of high biological importance. Therefore the interaction of ZEN with human serum albumin (HSA) was investigated using spectroscopic methods, ultrafiltration, and molecular modeling studies. Fluorescence spectroscopic studies demonstrate that ZEN forms complex with HSA. Binding constant (K) of ZEN-HSA complex was quantified with fluorescence quenching technique. The determined binding constant (logK=5.1) reflects the strong interaction of ZEN with albumin suggesting the potential biological importance of ZEN-HSA complex formation. Based on the results of the investigations with site markers as well as docking studies, ZEN occupies a non-conventional binding site on HSA. Considering the above listed observations, we should keep in mind this interaction if we would like to precisely understand the toxicokinetic behavior of ZEN.
Collapse
Affiliation(s)
- Miklós Poór
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Szigeti út 12, Pécs H-7624, Hungary; Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, Pécs H-7624, Hungary.
| | - Sándor Kunsági-Máté
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs H-7624, Hungary; János Szentágothai Research Center, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, Pécs H-7624, Hungary; Department of Biochemistry, Eötvös Loránd University, Pázmány sétány 1/C, Budapest H-1117, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, Pécs H-7624, Hungary; MTA-ELTE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Pázmány sétány 1/C, Budapest H-1117, Hungary
| | - Zsófia Gerner
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs H-7624, Hungary
| | - Beáta Lemli
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs H-7624, Hungary; János Szentágothai Research Center, Ifjúság útja 20, Pécs H-7624, Hungary
| |
Collapse
|