1
|
Mallick Ganguly O, Moulik S. Interactions of Mn complexes with DNA: the relevance of therapeutic applications towards cancer treatment. Dalton Trans 2023; 52:10639-10656. [PMID: 37475585 DOI: 10.1039/d3dt00659j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Manganese (Mn) is one of the most significant bio-metals that helps the body to form connective tissue, bones, blood clotting factors, and sex hormones. It is necessary for fat and carbohydrate metabolism, calcium absorption, blood sugar regulation, and normal brain and nerve functions. It accelerates the synthesis of proteins, vitamin C, and vitamin B. It is also involved in the catalysis of hematopoiesis, regulation of the endocrine level, and improvement of immune function. Again, Mn metalloenzymes like arginase, glutamine synthetase, phosphoenolpyruvate decarboxylase, and Mn superoxide dismutase (MnSOD) contribute to the metabolism processes and reduce oxidative stress against free radicals. Recent investigations have revealed that synthetic Mn-complexes act as antibacterial and antifungal agents. As a result, chemists and biologists have been actively involved in developing Mn-based drugs for the treatment of various diseases including cancer. Therefore, any therapeutic drugs based on manganese complexes would be invaluable for the treatment of cancer/infectious diseases and could be a better substitute for cisplatin and other related platinum based chemotherapeutic drugs. From this perspective, attempts have been made to discuss the interactions and nuclease activities of Mn(II/III/IV) complexes with DNA through which one can evaluate their therapeutic applications.
Collapse
Affiliation(s)
- Oishi Mallick Ganguly
- St Xavier's College, 30, Park St, Mullick Bazar, Park Street area, Kolkata, West Bengal 700016, India
| | - Shuvojit Moulik
- Suraksha Diagnostics Pvt Ltd, Newtown 12/1, Premises No. 02-0327, DG Block(Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India.
| |
Collapse
|
2
|
Arthi P, Dharmasivam M, Kaya B, Rahiman AK. Multi-target activity of copper complexes: Antibacterial, DNA binding, and molecular docking with SARS-CoV-2 receptor. Chem Biol Interact 2023; 373:110349. [PMID: 36639010 PMCID: PMC9831667 DOI: 10.1016/j.cbi.2023.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
A series of pendant-armed mixed-ligand copper(II) complexes of the type [CuL1-3(diimine)] (1-6) have been synthesized by the reaction of pendant-armed ligands N,N-bis(2-(((E)-2-hydroxy-5-methylbenzylidene)amino)ethyl)benzamide (H2L1), N,N-bis(2-(((E)-2-hydroxy-5-methylbenzylidene)amino)ethyl)-4-nitrobenzamide (H2L2) and N,N-bis(2-(((E)-2-hydroxy-5-methylbenzylidene)amino)ethyl)-3,5-dinitrobenzamide (H2L3) with diimine = 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) in the presence of copper(II) chloride and analyzed using various spectroscopic methods. All the spectroscopic results support that the complexes adopt a pentagonal-bipyramidal shape around the copper ion. Gram-positive and Gram-negative bacteria were used to test all the complexes for antibacterial activity and all the complexes had greater potency against gram-negative pathogens. DNA-binding experiments of complexes with calf thymus DNA revealed a major-groove binding pattern, further supported by molecular docking studies. Complexes have significantly interacted with SARS-CoV-2 receptor via π-π, π-σ, π-alkyl, π-anion, π-cation, alkyl, hydrogen bond, van der Waals, and electrostatic interactions. The estimated binding energy and inhibition constant of these complexes are higher than standard drugs, chloroquine, and molnupiravir.
Collapse
Affiliation(s)
- Padmanathan Arthi
- Department of Chemistry, SRM Institute of Science and Technology, Ramapuram, Chennai, 600 089, India
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia; Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India.
| |
Collapse
|
3
|
Archana B, Sreedaran S. Synthesis, Characterization, DNA Binding and Cleavage Studies, In-Vitro Antimicrobial, Cytotoxicity Assay of New Manganese(III) Complexes of N-Functionalized Macrocyclic Cyclam Based Schiff Base Ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
New cyclam based Zn(II) complexes: effect of flexibility and para substitution on DNA binding, in vitro cytotoxic studies and antimicrobial activities. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding. Pharmaceuticals (Basel) 2022; 15:ph15091107. [PMID: 36145328 PMCID: PMC9501577 DOI: 10.3390/ph15091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential. Rhenium complexes, amongst others, are particularly attractive due to their low in vivo toxicity and high antimicrobial activity, but little is known about their targets and mechanism of action. In this study, a series of rhenium di- and tricarbonyl diimine complexes were prepared and evaluated for their antimicrobial potential against eight different microorganisms comprising Gram-negative and -positive bacteria. Our data showed that none of the Re dicarbonyl or neutral tricarbonyl species have either bactericidal or bacteriostatic potential. In order to identify possible targets of the molecules, and thus possibly understand the observed differences in the antimicrobial efficacy of the molecules, we computationally evaluated the binding affinity of active and inactive complexes against structurally characterized membrane-bound S. aureus proteins. The computational analysis indicates two possible major targets for this class of compounds, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal peptidase II (LspA). Our results, consistent with the published in vitro studies, will be useful for the future design of rhenium tricarbonyl diimine-based antibiotics.
Collapse
|
6
|
Raj M, Padhi SK. Water Oxidation by a Neoteric Dinuclear Mn(II) Electrocatalyst in Aqueous Medium. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manaswini Raj
- Indian Institute of Technology (Indian School of Mines): Indian Institute of Technology Chemistry and Chemical Biology INDIA
| | - Sumanta Kumar Padhi
- Indian Institute of Technology (Indian School of Mines), Dhanbad Department of Chemistry and Chemical Biology Science BlockDepartment of Chemistry and Chemical Biology 826004 Dhanbad INDIA
| |
Collapse
|
7
|
Baishya T, Sharma P, Gomila RM, Frontera A, Barceló-Oliver M, Verma AK, Bhattacharyya MK. Fumarato and Phthalato Bridged Dinuclear Metal-Organic Cu(II) and Mn(II) Compounds involving Infinite Fumarate-water Assemblies and Unusual Structure-guiding H-bonded Synthons: Antiproliferative Evaluation and Theoretical Studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj01860h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new dinuclear coordination compounds viz. [Cu2(µ-fum)(phen)2(H2O)6](fum)•6H2O (1) and [Mn2(µ-phth)2(phen)4]•2H2O (2) (phen = 1,10-phenanthroline, fum = fumarate and phth = phthalate) have been synthesized and characterized by elemental analysis, single...
Collapse
|
8
|
Sharma P, Dutta D, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Bhattacharyya MK. Benzoato bridged dinuclear Mn(II) and Cu(II) compounds involving guest chlorobenzoates and dimeric paddle wheel supramolecular assemblies: Antiproliferative evaluation and theoretical studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Bio-macromolecular interaction studies: Synthesis, crystal structure of water-soluble manganese(II) complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2020026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is an increasingly serious threat to global public health that requires innovative solutions to counteract new resistance mechanisms emerging and spreading globally in infectious pathogens. Classic organic antibiotics are rapidly exhausting the structural variations available for an effective antimicrobial drug and new compounds emerging from the industrial pharmaceutical pipeline will likely have a short-term and limited impact before the pathogens can adapt. Inorganic and organometallic complexes offer the opportunity to discover and develop new active antimicrobial agents by exploiting their wide range of three-dimensional geometries and virtually infinite design possibilities that can affect their substitution kinetics, charge, lipophilicity, biological targets and modes of action. This review describes recent studies on the antimicrobial activity of transition metal complexes of groups 6–12. It focuses on the effectiveness of the metal complexes in relation to the rich structural chemical variations of the same. The aim is to provide a short vade mecum for the readers interested in the subject that can complement other reviews.
Collapse
|
11
|
Theoretical, biological and in silico studies of pendant-armed heteroleptic copper(II) phenolate complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Paulpandiyan R, Arunadevi A, Raman N. Role of Knoevenagel condensate pyrazolone derivative Schiff base ligated transition metal complexes in biological assay and cytotoxic efficacy. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Alagarraj Arunadevi
- Research Department of ChemistryVHNSN College Virudhunagar 626 001 Tamil Nadu India
| | - Natarajan Raman
- Research Department of ChemistryVHNSN College Virudhunagar 626 001 Tamil Nadu India
| |
Collapse
|
13
|
Karthick C, Karthikeyan K, Korrapati PS, Rahiman AK. Antioxidant, DNA interaction, molecular docking and cytotoxicity studies of aminoethylpiperazine-containing macrocyclic binuclear copper(II) complexes. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- C. Karthick
- Post-Graduate and Research Department of Chemistry; The New College (Autonomous); Chennai 600 014 India
| | - K. Karthikeyan
- Biomaterials Division; CSIR-Central Leather Research Institute; Chennai 600 020 India
| | - Purna Sai Korrapati
- Biomaterials Division; CSIR-Central Leather Research Institute; Chennai 600 020 India
| | - A. Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry; The New College (Autonomous); Chennai 600 014 India
| |
Collapse
|
14
|
Chauhan M, Joshi G, Kler H, Kashyap A, Amrutkar SM, Sharma P, Bhilare KD, Chand Banerjee U, Singh S, Kumar R. Dual inhibitors of epidermal growth factor receptor and topoisomerase IIα derived from a quinoline scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra15118c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Based on the quinazoline bearing EGFR inhibitors, a series of thirty four compounds having a quinoline scaffold were synthesized and evaluated in vitro for EGFR kinase inhibitory and anticancer activities.
Collapse
Affiliation(s)
- Monika Chauhan
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| | - Harveen Kler
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| | - Archana Kashyap
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| | - Suyog M. Amrutkar
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Praveen Sharma
- Centre for Human Genetics and Molecular Medicine
- Central University of Punjab
- Bathinda
- India
| | - Kiran D. Bhilare
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Sandeep Singh
- Centre for Human Genetics and Molecular Medicine
- Central University of Punjab
- Bathinda
- India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| |
Collapse
|